首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugai T  Onoda N 《Neuroscience》2005,135(2):583-594
To characterize the role of N-methyl-d-aspartate glutamate receptors in oscillations induced by a single electrical stimulation of the vomeronasal nerve layer, optical, field potential and patch clamp recordings were carried out in guinea-pig accessory olfactory bulb slice preparations. Bath application of the N-methyl-D-aspartate receptor antagonists, 2-amino-5-phosphonovaleric acid or MK-801, produced an increase in frequency of oscillating waves (oscillation) in external plexiform and mitral cell layers. The removal of Mg2+ from perfusate abolished oscillations, while subsequent application of 2-amino-5-phosphonovaleric acid or MK-801 restored oscillations. Vomeronasal nerve layer-evoked postsynaptic currents were analyzed by whole-cell clamp recordings from mitral and granule cells. A long-lasting excitatory postsynaptic current and periodic inhibitory postsynaptic currents, which were superimposed on the long excitatory postsynaptic current, were observed in mitral cells. The frequency of the periodic inhibitory postsynaptic currents correlated with the frequency of oscillations observed in the optical and field potential recordings. Furthermore, periodic inhibitory postsynaptic currents were blocked by puff application of bicuculline to the external plexiform layer/mitral cell layer, where mitral cells make dendrodendritic synapses with granule cells. In addition, puff application of the non-N-methyl-D-aspartate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, to the external plexiform layer/mitral cell layer suppressed an early phase of periodic inhibitory postsynaptic currents (membrane oscillation), whereas 2-amino-5-phosphonovaleric acid suppressed the late phase of periodic inhibitory postsynaptic currents. These data indicate that periodic excitatory postsynaptic currents of granule cells induce relevantly periodic inhibitory postsynaptic currents in mitral cells via dendrodendritic synapses and suggest that feedback inhibition regulates generation of oscillation via activation of non-N-methyl-d-aspartate glutamate receptors and gradual attenuation of oscillation via activation of N-methyl-D-aspartate receptors on granule cells.  相似文献   

2.
M Taniguchi  H Kaba 《Neuroscience》2001,108(3):365-370
Reciprocal dendrodendritic synapses between mitral and granule cells in the accessory olfactory bulb have been implicated in a specialized form of olfactory learning in mice, in which a female forms a memory to the pheromonal signal of the male that mates with her. Relatively little is known, however, about the mechanism of synaptic transmission at the reciprocal synapses. We analyzed synaptic currents generated in accessory olfactory bulb mitral cells in slice preparations with the patch-clamp technique in nystatin-perforated whole-cell configuration. A brief (5-20-ms) depolarizing voltage step from -70 to 0 mV applied to a single mitral cell evoked GABA(A) receptor-mediated inhibitory postsynaptic currents. The inhibitory postsynaptic currents persisted in the presence of tetrodotoxin, indicating that the inhibitory postsynaptic current in mitral cells can be elicited through purely dendritic interactions. The inhibitory postsynaptic currents were greatly enhanced by washout of extracellular Mg(2+). In Mg(2+)-free solution, the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid greatly reduced the inhibitory postsynaptic currents, whereas the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-(1H,4H)-dione (CNQX) slightly reduced them.These data demonstrate that NMDA receptors play an important role in the generation of dendrodendritic inhibition in mitral cells of the mouse accessory olfactory bulb.  相似文献   

3.
《Neuroscience》1999,95(1):23-32
Wistaria floribunda agglutinin and peanut agglutinin were found to bind histochemically to the anterior and posterior regions, respectively, of the vomeronasal nerve and glomerular layers in the rat accessory olfactory bulb. Furthermore, Ricinus communis agglutinin showed strong binding to the anterior region of the vomeronasal nerve and glomerular layers, whereas it bound weakly and/or moderately to the rostral two-thirds of the posterior glomerular layer but not at all to the caudal one-third. This suggests that the posterior region is further divided into two subregions. An electrophysiological mapping study in sagittal slice preparations demonstrated that stimulation given within the anterior vomeronasal nerve layer elicited field potentials within the anterior region of the external plexiform layer, whereas shocks to the rostral two-thirds and the caudal one-third of the posterior vomeronasal nerve layer provoked field responses within the rostral two-thirds and within the caudal one-third of the posterior external plexiform layer, respectively, indicating that the posterior external plexiform layer is also divided into two subregions. Real-time optical imaging showed similar results as above, except that neural activity also spread into mitral cell layers. Furthermore, the most anterior and posterior ends of the neural activity evoked in the rostral two-thirds of the posterior region immediately adjoined the posterior border of that evoked in the anterior region and the anterior border of that evoked in the caudal one-third of the posterior region, respectively. Moreover, the granule cell layer was also found to have similar boundaries. Thus, optical imaging studies demonstrated individual precise boundaries of these subdivisions, which were positioned right beneath those defined by Ricinus communis agglutinin histochemistry.The presence of functional segregation in each layer leads us to conclude that there are at least three different input–output pathways in the rat vomeronasal system.  相似文献   

4.
Wistaria floribunda agglutinin and peanut agglutinin were found to bind histochemically to the anterior and posterior regions, respectively, of the vomeronasal nerve and glomerular layers in the rat accessory olfactory bulb. Furthermore, Ricinus communis agglutinin showed strong binding to the anterior region of the vomeronasal nerve and glomerular layers, whereas it bound weakly and/or moderately to the rostral two-thirds of the posterior glomerular layer but not at all to the caudal one-third. This suggests that the posterior region is further divided into two subregions. An electrophysiological mapping study in sagittal slice preparations demonstrated that stimulation given within the anterior vomeronasal nerve layer elicited field potentials within the anterior region of the external plexiform layer, whereas shocks to the rostral two-thirds and the caudal one-third of the posterior vomeronasal nerve layer provoked field responses within the rostral two-thirds and within the caudal one-third of the posterior external plexiform layer, respectively, indicating that the posterior external plexiform layer is also divided into two subregions. Real-time optical imaging showed similar results as above, except that neural activity also spread into mitral cell layers. Furthermore, the most anterior and posterior ends of the neural activity evoked in the rostral two-thirds of the posterior region immediately adjoined the posterior border of that evoked in the anterior region and the anterior border of that evoked in the caudal one-third of the posterior region, respectively. Moreover, the granule cell layer was also found to have similar boundaries. Thus, optical imaging studies demonstrated individual precise boundaries of these subdivisions, which were positioned right beneath those defined by Ricinus communis agglutinin histochemistry. The presence of functional segregation in each layer leads us to conclude that there are at least three different input-output pathways in the rat vomeronasal system.  相似文献   

5.
Field potential, patch-clamp and optical recordings were performed in accessory olfactory bulb slices of postnatal rats following single electrical stimulation of the vomeronasal nerve layer. On the basis of differences in the components of the field potential, postnatal days were divided into three periods: immature (until postnatal day 11), transitional (postnatal days P12-17) and mature periods (after postnatal day 18). During the immature period, vomeronasal nerve layer stimulation provoked a characteristic damped oscillatory field potential, and the field potential recorded in the glomerular layer consisted of a compound action potential followed by several periodic negative peaks superimposed on slow components. Reduction in [Mg2+] enhanced slow components but did not affect oscillation, whereas an NMDA receptor antagonist, D-2-amino-5-phosphonovalerate, depressed slow components but did not affect the oscillation. During the mature period, slow components and the periodic waves (oscillation) disappeared. The time course of the field potential was similar to that in adults, suggesting that the accessory olfactory bulb reached electrophysiologically maturity at postnatal day 18. A non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, inhibited vomeronasal nerve layer-induced responses, while D-2-amino-5-phosphonovalerate had no effect, suggesting that NMDA and non-NMDA receptors are active in immature tissues, whereas non-NMDA receptors predominated in mature tissue. Results from whole-cell patch recordings in mitral and granule cells yielded results consistent with those from field potential and optical recordings. Further, a gradual decrease in number and frequency of oscillating waves was observed until postnatal day 17. Analyses of the depth profile of field potentials and current source density in immature tissue suggested that the oscillation and slow components originated in the glomerular layer but not in the external plexiform/mitral cell layer. Further, a new type of oscillation, which was independent of the reciprocal dendrodendritic synapses between mitral and granule cells, was detected. These data indicate that the lack of oscillatory suppression by immature NMDA receptors may play a critical role in the dynamic alteration of bulbar conditions.  相似文献   

6.
Summary The distribution and structural features of tyrosine hydroxylase-like immunoreactive (TH-LI) neurons were studied in the olfactory bulb of a snake, Elaphe quadrivirgata, by using pre-and post-embedding immunocytochemistry at the light microscopic level. In contrast to rodent olfactory bulbs previously reported, many TH-LI neurons were seen not only in the main olfactory bulb (MOB) but also in the accessory olfactory bulb (AOB). With regard to the TH-like immunoreactivity, there appeared no appreciable differences between MOB and AOB. As in mammalian MOB, the majority of TH-LI neurons were clustered in the periglomerular region and appeared to send their dendritic branches into glomeruli, which as a whole make an intense TH-LI band in the glomerular layer (GML). In the external plexiform/mitral cell layer (EPL/ML) of MOB and AOB as well as in the outer sublamina of the internal plexiform layer (OSL) of AOB, an appreciable number of TH-LI neurons were scattered, extending dendritic processes which appeared to make a loose meshwork. TH-LI neurons in EPL/ML (including OSL) appeared to consist of at least two morphologically different types. The first had a small perikaryon and one or two smooth dendrites which usually extended to GML and were frequently confirmed to enter into glomeruli. The second had a larger perikaryon and 2–3 dendrites which branched into several varicose processes extending in EPL/ML/OSL but appeared not to enter into glomeruli. The TH-like immunoreactivity was rarely seen in the internal plexiform layer and internal granule cell layer. The colocalization of GABA-like and TH-like immunoreactivities was further studied. Almost all TH-LI neurons in both EPL/ ML/OSL and GML contained GABA-like immunoreactivity irrespectively of the type of TH-LI cells.Abbreviations in Figures AOB accessory olfactory bulb - MOB main olfactory bulb - Hem hemisphere - ON olfactory nerve layer - VN vomeronasal nerve layer - GM glomerular layer - EP/M external plexiform layer/Mitral cell layer - IP internal plexiform layer - IG internal granular layer - OS outer sublamina of the IPL of AOB - MS middle sublamina of the IPL of AOB - IS inner sublamina of the IPL of AOB  相似文献   

7.
1. Whole-cell patch clamp recording techniques were applied to granule cells in an in vitro salamander olfactory bulb preparation to study their morphology, membrane properties and pharmacology of postsynaptic responses to electrical stimulation of either the olfactory nerve (ON) or medial olfactory tract (MOT). Optical recordings of the same preparations stained with the voltage-sensitive dye RH414 were also made. 2. Anatomical reconstructions of biocytin-filled granule cells showed that they extend widespread spine-bearing dendrites and an axon-like process that branched within the external plexiform layer. 3. ON or MOT stimulation evoked a long-lasting depolarization, usually generating only a single action potential, in granule cells studied under standard recording conditions. Bath application of bicuculline methiodide (BMI, a GABAA receptor antagonist, 20 or 25 microM) enhanced the spontaneous and electrically evoked excitatory drive to granule cells. 4. The electrically evoked synaptic responses consisted of both excitatory and inhibitory synaptic inputs. Using symmetrical Cl- conditions inside and outside the cell to enhance Cl- currents, spontaneous and electrically driven BMI-sensitive inhibitory postsynaptic currents (IPSCs) were revealed, indicating that granule cells receive GABAergic synaptic input. 5. Bath application of GABA (250 microM to 1 mM) shunted and hyperpolarized granule cells as observed directly from whole-cell recordings and indirectly from cell-attached patch single channel recordings. 6. Bath application of the glutamate receptor antagonists 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX, 10 microM) and/or DL-2-amino-5-phosphonopentanoic acid (DL-AP5, 100 microM) showed that granule cell dendrodendritic EPSPs are shaped by both non-NMDA and NMDA receptors. 7. The time course and pharmacological sensitivity of both single granule cell responses and ensemble responses recorded optically in the deeper layers of the bulb correlated well. 8. It is concluded that salamander granule cells integrate several types of synaptic input, may have both dendritic and axonal output, and play a major role in generating voltage-sensitive dye signals in the olfactory bulb.  相似文献   

8.
The input-output relations of the rabbit accessory olfactory bulb were studied by intra- and extracellular single unit recordings following electrical stimulation of the vomeronasal nerves, the lateral olfactory tract and the corticomedial amygdala. Cellular activity of accessory bulb mitral cells evoked by stimulation of the vomeronasal nerves consisted of a brief excitation with a latency of 16 ms. This initial response was followed by a period of reduced firing probability which was due to an inhibitory postsynaptic potential. In many cases this secondary response was followed by a second excitatory postsynaptic potential on which action potentials were generated at higher stimulus intensities. Deeper cells in the granule cell layer responded with a long latency, long duration, excitation, often consisting of bursts of 2-3 spikes. The majority of mitral cells were antidromically invaded by amygdala stimulation. The latencies of the antidromic spikes showed a wide range of variation (12-80 ms). Due to this great variation in antidromic latency the inhibitory postsynaptic potential following the antidromic action potential was rather modest but prolonged in duration. In many cases the onset of the inhibitory postsynaptic potential preceded the antidromic response. The majority of cells did not respond to lateral olfactory tract stimulation. Only 10% of the tested cells were invaded antidromically by stimulation at this site. These neurons were also driven antidromically by amygdala stimulation. We conclude that, although the physiological characteristics of mitral cells of the main and accessory olfactory bulb are very similar, there are important differences. The efferent fibres of the accessory bulb conduct at very slow and variable rates and project directly to the corticomedial amygdala.  相似文献   

9.
To investigate the interaction between vomeronasal receptor neurons and accessory olfactory bulb neurons during pheromonal signal processing and specific synapse formation, partially dissociated rat vomeronasal receptor neurons were co-cultured with accessory olfactory bulb neurons. Between 7 and 14 days in co-culture, a few bundles of fibers from a spherical structure, termed the vomeronasal pocket, of cultured vomeronasal receptor neurons extended to the accessory olfactory bulb neurons. An optical recording of the intracellular Ca(2+) concentration was used to monitor the synaptic activation of cultured accessory olfactory bulb neurons. Electrical stimulation of the vomeronasal pocket between 7 and 14 days in co-culture had no effects on most of the cultured neurons tested, although it occasionally evoked weak responses in a small number of neurons. In contrast, vomeronasal pocket stimulation after 21 days in co-culture evoked clear calcium transients in a substantial number of cultured accessory olfactory bulb neurons. These responses of accessory olfactory bulb neurons were reversibly suppressed by the application of 6-cyano-7-nitroquinoxaline-2,3-dione; the calcium transients disappeared in most of the neurons and were diminished in the others. The application of d-2-amino-5-phosphonopentanoic acid partially affected the calcium transients, but blocked spontaneous calcium increases, which were observed repeatedly in accessory olfactory bulb-alone cultures. The application of both 6-cyano-7-nitroquinoxaline-2,3-dione and d-2-amino-5-phosphonopentanoic acid completely blocked the evoked calcium transients. These results suggest that functional glutamatergic synapses between vomeronasal receptor neurons and accessory olfactory bulb neurons were formed at around 21 days in co-culture.  相似文献   

10.
The intrinsic organization of the accessory olfactory bulb (AOB) in the snake was studied using the rapid Golgi method. A distinct laminar organization was observed in the snake AOB. Beginning with the most superficial surface, the following layers were distinguished: the layer of the vomeronasal fibers, the olfactory glomeruli, the mitral cells, the deep fiber plexus, the granule cells and the ependymal cells. While the general organizational pattern of the snake AOB resembles that of the main olfactory bulb (MOB) and the AOB reported in various vertebrate species, the present study shows that: (1) the external and internal plexiform layers cannot be identified as independent layers and are considered to be included in the mitral cell layer; (2) the afferent and efferent paths, which are disseminated in the granule cell layer in the mammalian MOB, accumulate external to the granule cell layer to form the layer of the deep fiber plexus: and (3) as a result of accumulation of the afferent and efferent paths in the layer of the deep fiber plexus, the granule cell layer is very fiber-sparse. These structural patterns are quite similar to those of the snake MOB.  相似文献   

11.
Summary The present anatomical findings point to the existence of a separate subdivision of the olfactory system whose connections are quite different from the principal part. The main olfactory bulb has olfactory afferents from the receptors of the general olfactory mucosa, while the accessory bulb has afferents from receptors in the vomeronasal organ. The main bulb projects to the olfactory tubercle and pyriform cortex, while the accessory bulb projects to the amygdala. In turn these areas are further related with the medial forebrain bundle in the case of the pyriform cortex and olfactory tubercle, and with the medial preoptic area and medial hypothalamus in the case of the amygdala. The main and accessory olfactory bulbs are further distinguished by their centrifugal connections, the main bulb receiving fibres from the olfactory tubercle passing through the lateral olfactory tract, and the accessory olfactory bulb receiving fibres from the amygdala through the stria terminalis. The centrifugals to the accessory olfactory bulb resemble those to the main bulb in that both appear to terminate upon granule cells, although further projections to the external plexiform layer or to the periglomerular region have not been demonstrated for the accessory bulb. By virtue of its neural connections the accessory olfactory system is ideally placed to mediate the effects of olfactory stimuli on reproduction.  相似文献   

12.
Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg(2+) enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells.  相似文献   

13.
The distribution of seven kinds of neuropeptide precursor mRNA-containing neurons was investigated in the rat main and accessory olfactory bulbs, where various peptides have previously been identified immunohistochemically, by means of in situ hybridization using [35S]cRNA probes. In the glomerular layer, numerous preprothyrotropin-releasing hormone mRNA-expressing neurons, moderate numbers of preprosomatostatin and preproenkephalin A neurons, and a small number of preprocholecystokinin neurons were detected. In the external plexiform layer, numerous medium sized preprocholecystokinin and preprocorticotropin-releasing hormone neurons, and a small number of beta-preprotachykinin A neurons were observed. In addition, small preprovasoactive intestinal polypeptide and preprothyrotropin-releasing hormone neurons were evenly distributed in the external plexiform layer. Medium to large sized beta-preprotachykinin A neurons formed a thin layer in the mitral cell layer. In the granule cell layer, in addition to numerous small preproenkephalin A neurons, moderate numbers of small beta-preprotachykinin A and preprocorticotropin-releasing hormone neurons, and a small number of preprothyrotropin-releasing hormone neurons, were identified. Large sized preprosomatostatin neurons were located in the deep layer of the granule cell layer. The distribution patterns of these neurons, as a whole, confirmed previous studies based on immunohistochemistry, although peptide precursor mRNA-expressing neurons were far more numerous than those immunoreactive to the respective neuropeptides. Moreover, mRNA-expressing neurons were observed in areas where no immunoreactive neurons had been observed (e.g. preprovasoactive intestinal polypeptide and preprosomatostatin neurons in the mitral cell layer of the assessory olfactory bulb). The distribution patterns were generally similar in the main and accessory olfactory bulbs.  相似文献   

14.
The olfactory bulb of the musk shrew, Suncus murinus, is characterized by the presence of various interneurons. Our previous report (Kakuta et al., 2001) demonstrated that positive immunoreactions for calretinin were observed in periglomerular and perinidal cells in the glomerular layer, small ovoid neurons in the external plexiform layer, and granule cells in the granule cell layer of the olfactory bulb in the musk shrew aged 1 to 5 weeks, in addition to calretinin-immunoreactive bipolar cells distributed in the anterior subependymal layer and in each layer of the olfactory bulb. To examine the origin and migration of interneurons of the olfactory bulb, we labeled generated cells by injecting 28-day-old musk shrews with 5-bromo-2'-deoxyuridine (BrdU), and detected the labeled progeny cells that survived after several intervals. BrdU-labeled cells originated in the subependymal layer around the anterior horn of the lateral ventricle, and rostrally migrated in the subependymal layer from the anterior wall of the lateral ventricle into the center of the olfactory bulb, where they radially migrated into the granule cell layer, external plexiform layer, and glomerular layer. It took 2 days to migrate rostrally in the subependymal layer from the anterior lateral ventricle to the center of the olfactory bulb, and 2 to 6 days to migrate radially from the bulbar subependymal layer into the three layers mentioned. The rate of rostralward migration of the labeled cells was estimated to be 38 microm/h, while that of radial migration, 7 to 25 microm/h. The present BrdU-labeling study, together with our previous immunohistochemical study (Kakuta et al., 2001), indicates that anterior subependymal cells differentiate into granule cells in the granule cell layer, into Van Gehuchten cells in the external plexiform layer, and into periglomerular and perinidal cells in the glomerular layer of the olfactory bulb in the musk shrew.  相似文献   

15.
Following electrical stimulation of the vomeronasal nerves, the primary olfactory nerves, the lateral olfactory tract and the corticomedial amygdala, we have made a study of evoked potentials in the rabbit accessory olfactory bulb. Vomeronasal nerve stimulation evoked a complex field potential consisting of a compound action potential followed by 4 negative waves (N1, N2, N3, N4). In contrast to the field potential elicited in the main olfactory bulb following primary olfactory nerve stimulation, there was either no evoked wave or only a weak positive component of the field in the accessory bulb. Amygdala stimulation caused a long latency, long duration negative-positive dipolar field potential in the accessory olfactory bulb. Both antidromic and orthodromic field potentials showed sign reversal when the electrode penetrated the bulb at a point corresponding to the lower border of the mitral cell band. Stimulation of the lateral olfactory tract elicited a weak, short-latency wave which did not show any sign reversal when the electrode was lowered into the accessory bulb. This wave was presumably due to fibres arising in the main bulb and projecting through the accessory bulb into the lateral olfactory tract. Electrical stimulation of the primary olfactory nerves did not induce any response in the accessory bulb neither did vomeronasal nerve stimulation evoke a response in the main olfactory bulb. The origin of these potential fields is discussed and it is concluded that the synaptic organization of the accessory olfactory bulb resembles that of the main olfactory bulb in lower vertebrates. There is no detectable communication between the two olfactory systems.  相似文献   

16.
Mitral and tufted cells constitute the primary output cells of the olfactory bulb. While tufted cells are often considered as "displaced" mitral cells, their actual role in olfactory bulb processing has been little explored. We examined dendrodendritic inhibition between tufted cells and interneurons using whole cell voltage-clamp recording. Dendrodendritic inhibitory postsynaptic currents (IPSCs) generated by depolarizing voltage steps in tufted cells were completely blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2amino-5-phosphonopentanoic acid (D,L-AP5), whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2-3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f] quinoxaline-7-sulfonamide (NBQX) had no effect. Tufted cells in the external plexiform layer (EPL) and in the periglomerular region (PGR) showed similar behavior. These results indicate that NMDA receptor-mediated excitation of interneurons drives inhibition of tufted cells at dendrodendritic synapses as it does in mitral cells. However, the spatial extent of lateral inhibition in tufted cells was much more limited than in mitral cells. We suggest that the sphere of influence of tufted cells, while qualitatively similar to mitral cells, is centered on only one or a few glomeruli.  相似文献   

17.
A growing body of evidence suggests that teleosts are important models for the study of neural processing of olfactory information, and the functional role of dopamine (DA), which is a potent neuromodulator endogenous to the mammalian olfactory bulb, has been one of the strongest focuses in this field. However, the cellular mechanisms of dopaminergic neuromodulation in olfactory bulbar neural circuits have not been fully understood. We investigated such mechanisms by using the goldfish, which offers several advantages for analyzing olfactory information processing by electrophysiological methods. First, we found in the olfactory bulb that numerous cell bodies of the dopaminergic neurons are mainly distributed in the mitral cell layer and extend fine processes to the glomerular layer. Next, we made in vitro field potential recordings and showed that synaptic transmissions from mitral to granule cells were suppressed by DA application. DA also increased the paired-pulse ratio, suggesting that the suppression of synaptic transmission is caused by a decrease in presynaptic glutamate release from the mitral cells. Furthermore, DA significantly suppressed the oscillatory activity of the olfactory bulb in response to olfactory stimuli. Although DA suppresses the synaptic inputs from the olfactory nerve to the olfactory bulbar neurons in mammals, this phenomenon was not observed in the goldfish. These findings indicate that suppression of the mitral to granule cell synaptic transmission in the reciprocal synapses plays an important role in the negative regulation of olfactory responsiveness in the goldfish olfactory bulb.  相似文献   

18.
Little is known about the cellular mechanisms that underlie the processing and storage of sensory in the mammalian olfactory system. Here we show that persistent spiking, an activity pattern associated with working memory in other brain regions, can be evoked in the olfactory bulb by stimuli that mimic physiological patterns of synaptic input. We find that brief discharges trigger persistent activity in individual interneurons that receive slow, subthreshold oscillatory input in acute rat olfactory bulb slices. A 2- to 5-Hz oscillatory input, which resembles the synaptic drive that the olfactory bulb receives during sniffing, is required to maintain persistent firing. Persistent activity depends on muscarinic receptor activation and results from interactions between calcium-dependent afterdepolarizations and low-threshold Ca spikes in granule cells. Computer simulations suggest that intrinsically generated persistent activity in granule cells can evoke correlated spiking in reciprocally connected mitral cells. The interaction between the intrinsic currents present in reciprocally connected olfactory bulb neurons constitutes a novel mechanism for synchronized firing in subpopulations of neurons during olfactory processing.  相似文献   

19.
A significant fraction of the interneurons added in adulthood to the glomerular layer (GL) of the olfactory bulb (OB) are dopaminergic (DA). In the OB, DA neurons are restricted to the GL, but using transgenic mice expressing eGFP under the tyrosine hydroxylase (TH) promoter, we also detected the presence of TH-GFP+ cells in the mitral and external plexiform layers. We hypothesized that these could be adult-generated neurons committed to become DA but not yet entirely differentiated. Accordingly, TH-GFP+ cells outside the GL exhibit functional properties (appearance of pacemaker currents, synaptic connection with the olfactory nerve, intracellular chloride concentration, and other) marking a gradient of maturity toward the dopaminergic phenotype along the mitral–glomerular axis. Finally, we propose that the establishment of a synaptic contact with the olfactory nerve is the key event allowing these cells to complete their differentiation toward the DA phenotype and to reach their final destination.  相似文献   

20.
The intrinsic organization of the olfactory bulb in the lamprey was studied using the rapid Golgi method. Although not as discrete as in many vertebrates, a laminar organization was recognized. From the periphery inward, the following layers were discernible: the layer of the olfactory fibers, the olfactory glomeruli with the mitral cells, the granule cells, and the ependymal cells. Just beneath the surface of the olfactory bulb, the olfactory fibers extended over the entire bulb forming a dense fiber plexus terminating in the olfactory glomeruli which were arranged in one to two layers internally to the layer of the olfactory fibers. The mitral cells formed no discrete layer and were located mainly around the olfactory glomeruli. The mitral cells in the lamprey were lacking in secondary dendrites, but had two or more primary dendrites which terminated in the olfactory glomeruli. The axons of the mitral cells proceeded inwardly and accumulated diffusely in the granule cell layer which occupied a wide area internally to the layer of the olfactory glomeruli with the mitral cells. The granule cell layer was composed of densely packed small spindle or fusiform axonless cells, the processes of which extended superficially to be distributed in the olfactory glomeruli. At the deepest region of the bulb was a layer of the ependymal cells lining the surface of the olfactory ventricle. The external and internal plexiform layers were not evident. Thus, while the major constituents of the olfactory bulb of the vertebrate could be identified in that of the lamprey, the general laminar organization seemed indiscrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号