首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine activates four different receptors, the A(1), A(2A), A(2B), and the A(3) receptors, all of which are G protein-coupled. We have previously shown that stimulation of the human adenosine A(3) receptor can induce phosphorylation of extracellular signal-regulated kinase (ERK1/2). Here we show that the adenosine receptor agonist 5' N-ethylcarboxamidoadenosine (NECA) induces phosphorylation and activation of ERK1/2 in Chinese hamster ovary (CHO) cells expressing the human adenosine A(3) receptor (CHO A(3) cells) with the same potency. Pretreatment with pertussis toxin abolished the effect, which also could be blunted by overexpressing the betagamma-sequestering peptide beta-adrenergic receptor kinase-ct, implicating the involvement of betagamma subunits released from G(i/o) proteins. Activation of phosphatidylinositol-3-kinase (PI3K) by adenosine A(3) receptors is inferred from a dose-dependent Ser-phosphorylation of the protein kinase B (Akt). Furthermore the ERK1/2 phosphorylation was sensitive to the PI3K inhibitors wortmannin and LY294002 (2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride) and the MEK inhibitor PD98059 (2'-amino-3'-methoxyflavone), whereas chelation of Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) and long-term treatment with phorboldibutyrate did not decrease the adenosine A(3) receptor-mediated ERK1/2 phosphorylation. Thus, Ca(2+) mobilization and conventional and novel protein kinase C (PKC) isoforms are not involved in this pathway. The atypical PKCzeta was not activated by NECA and thus not involved in the A(3) receptor-mediated ERK1/2 phosphorylation. NECA stimulation of CHO A(3) cells activated the small G protein Ras and the dominant negative mutant RasS17N prevented the phosphorylation of ERK1/2. In conclusion, the adenosine A(3) receptor recruits a pathway that involves betagamma release from G(i/o), PI3K, Ras, and MEK to induce ERK1/2 phosphorylation and activation, whereas signaling is independent of Ca(2+), PKC, and c-Src.  相似文献   

2.
1. An [3H]-adenine pre-labelling methodology was employed to assay cyclic AMP generation by adenosine analogues in Chinese hamster ovary (CHO.A2B4) cells, transfected with cDNA which has been proposed to code for the human brain A2B adenosine receptor, and in guinea-pig cerebral cortical slices. 2. Adenosine analogues showing the following rank order of potency in the CHO.A2B4 cells (pD2 value): 5'-N-ethylcarboxamidoadenosine (NECA, 5.91) > adenosine (5.69) > 2-chloroadenosine (5.27) > N6-(2-(4-aminophenyl)-ethylamino)adenosine (APNEA, 4.06). The purportedly A2A-selective agonist, CGS 21680, failed to elicit a significant stimulation of cyclic AMP generation at concentrations up to 10 microM in CHO.A2B4 cells. In the guinea-pig cerebral cortex, NECA was more potent than APNEA with pD2 values of 5.91 and 4.60, respectively. 3. Of these agents, NECA was observed to exhibit the greatest intrinsic activity in CHO.A2B4 cells (ca. 10 fold stimulation of cyclic AMP), while, in comparison, maximal responses to adenosine (32% NECA response), 2-chloroadenosine (61%), and APNEA (73%) were reduced. 4. Antagonists of NECA-evoked cyclic AMP generation showed the rank order of apparent affinity (apparent pA2 value in CHO.A2B4 cells: guinea-pig cerebral cortex): XAC (7.89: 7.46) > CGS 15943 (7.75: 7.33) > DPCPX (7.16: 6.91) > PD 115,199 (6.95: 6.39) > 8FB-PTP (6.52: 6.55) > 3-propylxanthine (4.63: 4.59). 5. We conclude that, using the agents tested, the A2B adenosine receptor cloned from human brain expressed in Chinese hamster ovary cells exhibits an identical pharmacological profile to native A2B receptors in guinea-pig brain.  相似文献   

3.
The potency of adenosine and inosine as agonists at human adenosine receptors was examined in a functional assay using changes in cyclic AMP (cAMP) formation in intact Chinese hamster ovary (CHO) cells stably transfected with the human A1, A2A, A2B, and A3 receptors. Adenosine increased cAMP formation in cells expressing the A2A (EC(50): 0.7 microM) and A2B (EC(50): 24 microM) receptors and inhibited forskolin (0.3-3 microM)-stimulated cAMP formation in cells expressing the A1 (EC(50): 0.31 microM) and A3 receptors (EC(50): 0.29 microM). The potency of adenosine at the A2A and A2B receptors was not altered by the presence of the uptake inhibitor nitrobenzylthioinosine (NBMPR), whereas it was increased about 6-fold by NBMPR at the A1 and A3 receptors. In the presence of NBMPR, inosine was a potent agonist (EC(50): 7 and 0.08 microM at the A1 and A3 receptors, respectively), but with low efficacy especially at the A3 receptors. No effect of inosine was seen at the A(2) receptors. Caffeine, theophylline, and paraxanthine shifted the dose-response curve for adenosine at the A1, A2A, and A2B receptors. These results indicate that adenosine is the endogenous agonist at all human adenosine receptors and that physiological levels of this nucleoside can activate A1, A2A, and A3 receptors on cells where they are abundantly expressed, whereas pathophysiological conditions are required to stimulate A2B receptors to produce cyclic AMP.  相似文献   

4.
Human adenosine A2A and rat dopamine D2 receptors (A2A and D2 receptors) were co-transfected in Chinese hamster ovary (CHO) cells to study the interactions between two receptors that are co-localized in striatopallidal gamma-aminobutyric acid-(GABA)ergic neurons. Membranes from transfected cells showed a high density of D2 (3.6 pmol per mg protein) and A2A receptors (0.56 pmol per mg protein). The D2 receptors were functional: an agonist, quinpirole, could stimulate GTPgammaS binding and reduce stimulated adenylyl cyclase activity. The A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) decreased high-affinity binding of the agonist dopamine at D2 receptors. Activation of adenosine A2A receptors shifted the dose-response curve for quinpirole on adenosine 3',5'-cyclic monophosphate (cAMP) to the right. However, CGS 21680 did not affect dopamine D2 receptor-induced GTPgammaS binding, but did cause a concentration-dependent increase in cAMP accumulation. The maximal cAMP response was decreased by the D2 agonist quinpirole in a concentration-dependent manner, but there was no change in EC50 and no effect in cells transfected only with adenosine A2A receptors. A2A receptor activation also increased phosphorylation of cAMP response element-binding protein and expression of c-fos mRNA. These effects were also strongly counteracted by quinpirole. These results show that the antagonistic actions between adenosine A2A and dopamine D2 receptors noted previously in vivo can also be observed in CHO cells where the two receptors are co-transfected. Thus, no brain cell-specific factors are required for such interactions. Furthermore, the interaction at the second messenger level and beyond may be quantitatively more important than A2A receptor-mediated inhibition of high affinity D2 agonist binding to the receptor.  相似文献   

5.
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (-)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells.  相似文献   

6.
7.
A rat D2L dopamine receptor, a splice variant of the D2 receptor, has recently been cloned. When transfected into and stably expressed in Chinese hamster ovary cells, these receptors mediate the inhibition of both basal and forskolin-stimulated cAMP production, as previously described. We examined what role this receptor might play in the production of the second messenger arachidonic acid. The calcium ionophore A23187 stimulated the release of arachidonic acid, and this release of arachidonic acid was potentiated by dopamine in a concentration-dependent manner. Dopamine alone, however, had no effect on arachidonic acid release. Quinpirole, a D2-selective agonist, augmented A23187-stimulated arachidonic acid release, and sulpiride, a D2-selective antagonist, blocked this augmentation. cAMP analogs and agents that activate adenylyl cyclase were utilized in an attempt to overcome this dopamine effect. Forskolin, prostaglandin E2, dibutyryl-cAMP, 8-(4-chlorophenylthio)-cAMP, and pertussis toxin all had no appreciable effect on either A23187-stimulated arachidonic acid release or the dopamine enhancement. Inhibition of protein kinase C using long term phorbol ester desensitization and pharmacological inhibitors diminished the dopamine potentiation of arachidonic acid release. These results suggest that the D2 receptor may be increasing the release of arachidonic acid by a mechanism involving protein kinase C but independent of the D2 receptor's inhibition of adenylyl cyclase.  相似文献   

8.
9.
The pharmacological properties of the human D2L (long isoform) and rat D3 dopamine receptors in functional assays were examined. A range of dopamine agonists were assessed for their ability to inhibit adenosine 3'5'-cyclic monophosphate (cAMP) accumulation via the two receptors expressed stably in Chinese hamster ovary cells. Dopamine caused a significantly greater maximal inhibition (P < 0.05) of cAMP accumulation via the D2L receptor (approximately 70%) as compared to the D3 receptor (approximately 50%). The pattern of agonist effects was different at the two receptors. The absolute and relative potencies for inhibition of cAMP accumulation were different for a range of agonists acting at the two receptors. Similarly, the maximal inhibitions achieved by a range of agonists were different for the two receptors.  相似文献   

10.
1. In the light of recent findings that VPAC1 and VPAC2 receptors form homodimers and heterodimers, we have evaluated the function of these receptors coexpressed in the same cells, using whole-cell and membrane preparations. Cells expressing each receptor alone were used for comparison. 2. The study was performed on Chinese hamster ovary cells stably transfected with both human recombinant receptors and we compared receptor occupancy and adenylate cyclase activation by VIP, Ro 25-1553 - a VPAC2 selective agonist - and [K(15),R(16),L(27)]VIP(1-7)/GRF(8-27) - a VPAC1 selective agonist - on membranes prepared from each cell line and on a mixture of membranes from cells expressing each receptor individually. We also studied receptor internalization induced by the three agonists on intact cells expressing both receptors alone or together by fluorescence-activated cell sorting using monoclonal antibodies and demonstrated by using co-immunoprecipitation that the two receptors did interact.3. The results indicated that coexpression of the receptors did not modify the recognition of ligands, nor the capacity of the agonists to stimulate adenylate cyclase activity and, in intact cells, to induce internalization of the receptors.4. As a consequence, the properties of the selective ligands that were established on cell lines expressing a single population of VIP receptors were valid on cells expressing both receptors. Furthermore, the recently demonstrated VPAC1/VPAC2 receptor heterodimerization did not affect the function of either receptor.  相似文献   

11.
1. The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry. 2. All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members. 3. At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor. 4. Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s. 5. The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities. 6. The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound.  相似文献   

12.
Bradykinin B1 and B2 receptors, members of the G-protein coupled receptor superfamily, are involved in inflammation and pain. Chinese hamster ovary (CHO) cells stably expressing the human B2 bradykinin receptor (CHO-B2) were used to characterize the signal transduction pathways associated with this receptor and its regulation. The selective B2 antagonist [3H]NPC17731 but not the selective B1 antagonist [3,4-prolyl-3,4-(3)H(N)]-[des-Arg10,Leu9]kallidin ([3H]DALKD) bound to CHO-B2 cell membranes with a Kd of 0.77 nM and a Bmax of 1087 fmol/mg protein. [3H]NPC17731 binding was inhibited by bradykinin ligands in the order: NPC17731 > bradykinin > kallidin > DALKD > [des-Arg10] kallidin (DAKD), consistent with the pharmacological profile of B2 bradykinin receptors. The B2 agonist bradykinin and the B1/B2 agonist kallidin, but not the B1 agonist DAKD, increased [35S]GTP gamma S binding to the CHO-B2 cell membranes. The B2 bradykinin receptors were co-immunoprecipitated with G alpha q/11. In response to bradykinin stimulation, coupling of the B2 receptors to G alpha q/11 was increased by 10-fold. Bradykinin and kallidin, but not DAKD, induced intracellular calcium release in CHO-B2 cells, which was blocked by NPC17731 but not by DALKD. These results demonstrate that B2 bradykinin receptors directly coupled to G alpha q/11 to regulate intracellular calcium release. CHO-B2 cell is a useful system that can be applied to study the effect of potential agents that may influence the B2 receptor function.  相似文献   

13.
The agonist (-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide [(-)U50,488H] caused desensitization of the human kappa-opioid receptor (hkor) and Flag-tagged hkor (Flag-hkor) but not the rat kappa-opioid receptor (rkor) and Flag-tagged rkor (Flag-rkor) stably expressed in CHO cells as assessed by guanosine 5'-O-(3-[35S]thiotriphosphate) binding. In addition, (-)U50,488H stimulation enhanced phosphorylation of the Flag-hkor, but not Flag-rkor. (-)U50,488H-induced phosphorylation of the Flag-hkor was reduced by expression of the dominant negative mutant GRK2-K220R, demonstrating the involvement of G protein-coupled receptor kinases (GRKs). However, expression of GRK2 and arrestin-2 or GRK3 and arrestin-3 did not result in desensitization or phosphorylation of the Flag-rkor after (-)U50,488H pretreatment. To understand the molecular basis of the species differences, we constructed two Flag-tagged chimeric receptors, Flag-h/rkor and Flag-r/hkor, in which the C-terminal domains of Flag-hkor and Flag-rkor were switched. When stably expressed in CHO cells, Flag-r/hkor, but not Flag-h/rkor, was desensitized and phosphorylated after exposure to (-)U50,488H, indicating that the C-terminal domain plays a critical role in the differences. We then generated a Flag-hkor mutant, in which S358 was mutated to N (Flag-hkorS358N) and a Flag-rkor mutant, in which N358 was substituted with S (Flag-rkorN358S). Although Flag-hkorS358N was not phosphorylated or desensitized by (-)U50,488H stimulation, Flag-rkorN358S underwent (-)U50,488H-induced desensitization with slightly increased phosphorylation. These results indicate that there are differences in (-)U50,488H-induced desensitization and phosphorylation between the hkor and the rkor. In addition, the C-terminal domain plays a crucial role in these differences and the 358 locus contributes to the differences. Our findings suggest caution in extrapolating studies on kappa-opioid receptor regulation from rats to humans.  相似文献   

14.
1. The human recombinant alpha1a-adrenoceptor (AR) has been stably expressed in Chinese hamster ovary cells. Four stable clones, aH4, aH5, aH6 and aH7, expressing 30, 370, 940 and 2900 fmol AR mg(-1) protein, respectively, have been employed to characterize this AR subtype using radioligand binding and microphysiometry to measure extracellular acidification rates. 2. Noradrenaline (NA) gave concentration-dependent responses in microphysiometry with increasing extracellular acidification rates. The potency of NA increased as the receptor density increased; pEC50 values of NA for the clones aH4, aH5, aH6 and aH7 were 6.9, 7.5, 7.8 and 8.1, respectively. This increase of potency according to receptor density indicates the presence of spare receptor for NA. Methoxamine, phenylephrine, oxymetazoline and clonidine also gave concentration-dependent responses with various intrinsic activities. 3. Antagonists shifted concentration-response curves for NA rightward in a concentration-dependent manner. Schild analysis revealed that the affinity profile of this AR subtype to antagonists in the clone aH7 had a typical pattern for the alpha1a-AR; high affinity for prazosin and WB 4101, and low affinity for BMY7378 (pA2=9.5, 9.8 and 7.3, respectively). This profile is similar in the case of the clone aH4. These affinities were in good agreement with those obtained in binding experiments. 4. These results have demonstrated that (1) classical receptor theory can be applied in microphysiometry, and (2) microphysiometry is a useful tool to investigate the pharmacological characterization of alpha1a-AR.  相似文献   

15.
Relaxations to adenosine and analogues were investigated in the mouse aorta in the presence of the adenosine A(1) receptor-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 30 nM), which did not affect relaxations to adenosine or its analogue N(6)-R-phenylisopropyladenosine (R-PIA) but abolished contractile adenosine A(1) receptor-mediated responses to these agonists. Relaxations to adenosine, 5'-N-ethylcarboxamidoadenosine, R-PIA, 2-[p-(2-carbonylethyl)-phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680), and N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) were unaffected by the adenosine A(1)/A(2) receptor antagonist 8-sulphophenyltheophylline (100 microM). IB-MECA relaxations were unaffected by the adenosine A(3) receptor-selective antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191, 30 microM) and R-PIA relaxations were unaffected by N(G)-nitro-L-arginine methyl ester (100 microM) and endothelium removal. In conclusion, relaxant responses to adenosine and analogues do not involve adenosine A(1), A(2) or A(3) receptors and are endothelium- and nitric oxide-independent.  相似文献   

16.
1. The human H1 receptor gene expressed in Chinese hamster ovary cells (CHOhumH1) encodes a classical histamine H1 receptor with a pharmacology similar to that of the H1 receptor found in guinea-pig cerebellum and the endogenously expressed human H1 receptor in 1321N1 astrocytoma cells as determined by [3H]-mepyramine binding studies. 2. In CHOhumH1 cells, histamine induced a concentration-dependent rise in inositol phosphates (EC50 2.23 +/- 0.97 microM) and a rapid increase of [Ca2+]i, followed by a sustained increase of [Ca2+]i upon addition of 100 microM histamine. 3. Short-term exposure of CHOhumH1 cells to histamine (100 microM) resulted in a decrease of subsequent histamine-induced Ca2+ responses. The histamine-induced desensitization appeared to be heterologous as the ATP-induced Ca2+ response was also found to be affected. 4. The process of heterologous histamine-induced desensitization of the Ca2+ response in CHOhumH1 cells can be ascribed to an alteration at the level of the intracellular Ca2+ pool, as the Ca2+ response of caffeine (10 mM), which releases Ca2+ from intracellular Ca2+ stores was also attenuated upon short-term histamine exposure. 5. In CHOhumH1 cells the PKC activator, PMA, was found to inhibit the histamine (100 microM)-induced Ca2+ response concentration-dependently (IC50 0.2 +/- 0.03 microM) as well as the ATP (100 microM)-induced Ca2+ response. However, this inhibition was only partial and less effective than histamine-pretreatment. Moreover, in CHOhumH1 cells PKC downregulation induced by long-term exposure to PMA (1 microM) did not affect the histamine-induced desensitization nor did pretreatment with the specific PKC inhibitor Ro-31-8220 (10 microM), indicating that in CHOhumH1 cells PKC is probably not involved in the heterologous desensitization. 6. Long-term treatment of CHOhumH1 cells with histamine or other H1 agonists resulted in a time- and concentration-dependent decrease in the number of H1 receptor binding sites (maximal reduction: 47 +/- 5%). 7. Long-term exposure of CHOhumH1 cells to ATP or PMA did not affect H1 receptor density. 8. Both histamine (100 microM)- and ATP (100 microM)-induced Ca2+ responses were affected upon long-term exposure of cells to histamine (100 microM), which might be explained by an alteration at a level distant from the receptor. 9. These results show that in CHOhumH1 cells the human histamine H1 receptor is susceptible to short-term and long-term receptor regulation in which PKC does not seem to play a role. The CHOhumH1 cells therefore provide an excellent model system for studying the mechanism(s) of PKC-independent H1 receptor regulation.  相似文献   

17.
  1. Eight types and subtypes of the mouse prostanoid receptor, the prostaglandin D (DP) receptor, the prostaglandin F (FP) receptor, the prostaglandin I (IP) receptor, the thromboxane A (TP) receptor and the EP1, EP2, EP3 and EP4 subtypes of the prostaglandin E receptor, were stably expressed in Chinese hamster ovary cells. Their ligand binding characteristics were examined with thirty two prostanoids and their analogues by determining the Ki values from the displacement curves of radioligand binding to the respective receptors.
  2. The DP, IP and TP receptors showed high ligand binding specificity and only bound their own putative ligands with high affinity such as PGD2, BW245C and BW868C for DP, cicaprost, iloprost and isocabacyclin for IP, and S-145, I-BOP and GR 32191 for TP.
  3. The FP receptor bound PGF and fluprostenol with Ki values of 3–4 nM. In addition, PGD2, 17-phenyl-PGE2, STA2, I-BOP, PGE2 and M&B̀-28767 bound to this receptor with Ki values less than 100 nM.
  4. The EP1 receptor bound 17-phenyl-PGE2, sulprostone and iloprost in addition to PGE2 and PGE1, with Ki values of 14–36 nM. 16,16-dimethyl-PGE2 and two putative EP1 antagonists, AH6809 and SC-19220, did not show any significant binding to this receptor. M&B-28767, a putative EP3 agonist, and misoprostol, a putative EP2/EP3 agonist, also bound to this receptor with Ki values of 120 nM.
  5. The EP2 and EP4 receptors showed similar binding profiles. They bound 16,16-dimethyl PGE2 and 11-deoxy-PGE1 in addition to PGE2 and PGE1. The two receptors were discriminated by butaprost, AH-13205 and AH-6809 that bound to the EP2 receptor but not to the EP4 receptor, and by 1-OH-PGE1 that bound to the EP4 but not to the EP2 receptor.
  6. The EP3 receptor showed the broadest binding profile, and bound sulprostone, M&B-28767, GR63799X, 11-deoxy-PGE1, 16,16-dimethyl-PGE2 and 17-phenyl-PGE2, in addition to PGE2 and PGE1, with Ki values of 0.6–3.7 nM. In addition, three IP ligands, iloprost, carbacyclin and isocarbacyclin, and one TP ligand, STA2, bound to this receptor with Ki values comparable to the Ki values of these compounds for the IP and TP receptors, respectively.
  7. 8-Epi-PGF showed only weak binding to the IP, TP, FP, EP2 and EP3 receptor at 10 μM concentration.
  相似文献   

18.
The effects of ketamine, which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation in layer II/III of adult rat visual cortex were examined in vitro. Field potentials were recorded in layer II/III following layer IV stimulation. Primed-burst stimulation was used for induction of long-term potentiation. Stimulation of layer IV resulted in a two-component response in layer II/III, a population excitatory postsynaptic potential1 (EPSP1) and a population excitatory postsynaptic potential2 (EPSP2). DL-2-Amino-5-phosphono-valeric acid (AP5), a competitive NMDA receptor antagonist, reduced the amplitude of the population EPSP1 while ketamine increased the amplitude of the population EPSP2. The results showed that primed-burst stimulation induced long-term potentiation in layer II/III of the visual cortex in vitro. Preincubation for 30 min with AP5 (25-100 microM) reduced the extent of long-term potentiation of the population EPSP2 and blocked the induction of long-term potentiation of the population EPSP1. When ketamine (100-200 microM) was present for 30 min prior to tetanic stimulation, it blocked the induction of long-term potentiation of the population EPSP1 and reduced the extent of long-term potentiation of the population EPSP2. We conclude that ketamine can interfere with synaptic transmission in the visual cortex. Primed-burst stimulation is an effective protocol for neocortical potentiation. NMDA receptors are involved in the induction of long-term potentiation by primed-burst stimulation of the population EPSP1 and population EPSP2 in adult rat visual cortex in vitro.  相似文献   

19.
1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号