首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study explored the role of dopaminergic transmission in spinal cord in a model of carrageenan-induced inflammatory pain by examining the effects of selective agonists and antagonists of dopamine receptors. The results were as follows: (1) trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline hydrochloride (LY171555), a dopamine D(2) receptor agonist, produced anti-hyperalgesia (150 and 300 nmol) or hypoalgesia (300 nmol) in the inflamed hindpaws and non-inflamed hindpaws, respectively; spiperone hydrochloride (8-[4-(4-fluorophenyl)-4-oxobutyl]-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one hydrochloride), a dopamine D(2) receptor antagonist, decreased the pain threshold of non-inflamed hindpaws (300 nmol). (2) (+/-)-SKF38393 hydrochloride ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride), a dopamine D(1) receptor agonist, had no effect on either hindpaw, even at a higher dose (300 nmol); R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (R(+)-SCH23390 hydrochloride), a dopamine D(1) receptor antagonist, induced anti-hyperalgesia in the inflamed hindpaws (300 nmol). The present results suggest that the dopaminergic system in the spinal cord is involved in the central modulation of inflammatory hyperalgesia, and that the different effects are probably induced by different receptors.  相似文献   

2.
The effects of intracerebroventricular administration of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on passive avoidance learning associated with long-term memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (17.5 microg) produced a significant decrease in step-down latency in a passive avoidance learning task. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (17.5 microg)- and endomorphin-2 (17.5 microg)-induced shortening of step-down latency, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on the effects of endomorphins 1 and 2. These results suggest that endomorphins 1 and 2 impair long-term memory through the mediation of mu-opioid receptors in the brain.  相似文献   

3.
The expression of dopamine receptors by human platelets was investigated by Western blot analysis and immunocytochemical techniques using antibodies raised against dopamine D1-D5 receptor protein. The influence of dopamine D1-like and D2-like receptor agonists on adrenaline-induced platelet aggregation was also investigated. Western blot analysis revealed that platelet membranes bind anti-dopamine D3 or D5 receptor protein antibodies, but not anti-D1, D2 or D4 receptor protein antibodies. Cytospin centrifuged human platelets exposed to anti-dopamine D3 or D5 receptor protein antibodies developed a specific immune staining, whereas no positive staining was noticeable in platelets exposed to other antibodies tested. Both the D1-like receptor agonist 1-phenyl2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF 38393) and the D2-like receptor agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) dose-dependently inhibited adrenaline-induced platelet aggregation. These effects were decreased respectively by the D-like and D2-like receptor antagonists R(+)-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrochloride (SCH 23390) and (-)sulpiride. The above findings indicate that human platelets express dopamine D3 and D5 receptors probably involved in the regulation of platelet function.  相似文献   

4.
In the present study, the effects of dopamine receptor agonists and antagonists on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. Naloxone was injected to elicit jumping (as withdrawal sign). The first group received dopamine receptor drugs before naloxone injection to test the effects of the drugs on the expression of jumping. Administration of the dopamine D1/D2 receptor agonist, apomorphine (0.25, 0.5 and 1 mg/kg), decreased jumping, but not diarrhoea, induced by naloxone. The effect of apomorphine on jumping was reduced by the dopamine D2 receptor antagonist, sulpiride. The dopamine D2 receptor agonist, quinpirole (0.1, 0.3 and 0.5 mg/kg), increased jumping, while it decreased diarrhoea in mice. Different doses of sulpiride did not alter jumping, but one dose of the drug (12.5 mg/kg) decreased jumping. Neither the dopamine D1 receptor agonist, SKF38393 (1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride; 8 and 16 mg/kg), nor the dopamine D1 receptor antagonist, SCH23390 (R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol maleate; 5, 10 and 25 mg/kg), altered jumping, but they decreased diarrhoea. The second group of animals received the drugs during the development of dependence. Administration of quinpirole (0.1, 0.3 and 0.5 mg/kg), but not bromocriptine (4, 8 and 16 mg/kg), apomorphine (0.25, 0.5, 1 and 2 mg/kg) or sulpiride (12.5, 25 and 50 mg/kg) decreased naloxone-induced jumping and diarrhoea. A dose of SKF38393 (8 mg/kg) decreased jumping, while both SKF38393 (4 and 16 mg/kg) and SCH23390 (5 and 10 microg/kg) increased diarrhoea. It is concluded that activation of both dopamine D1 and D2 receptors may suppress naloxone-induced jumping in morphine-dependent mice, and that stimulation of dopamine D1 receptors during development of morphine dependence may increase diarrhoea through peripheral mechanism.  相似文献   

5.
The dopamine receptor agonist apomorphine has been recently introduced in the treatment of erectile dysfunction. While it is well established that dopamine D2-like receptors play a crucial role in this effect, conflicting result are reported in the literature as for the role of dopamine D1-like receptors. The aim of this study was to determine the effect of systemic administration of dopamine D1-like receptor agonists on penile erection in rats. Male Wistar rats were treated with three different, and not structurally related, dopamine D1-like receptor agonists: the partial agonists SKF38393 ((+) 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) and CY 208-243 ((-)-4,6,6a,7,8,12b-exahydro-7-methylindole [4,3-ab]fenantridine), and the full agonist A 77636 ((-)-(1R,3S)-3-Adamantyl-1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyran hydrochloride). All three compounds dose-dependently increased the number of penile erections, with the full agonist A77636 showing a more pronounced effect with respect to the other two. Moreover, the dopamine D1-like receptor antagonist SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) dose-dependently antagonised A77636 effect. These results show that systemic administration of dopamine D1-like receptor agonists induce penile erection in rats. This observation suggests that dopamine D1-like receptor agonists might be considered as a possible alternative to apomorphine in the treatment of erectile dysfunction, thus avoiding the typical side effects related to the stimulation of dopamine D2-like receptors such as nausea.  相似文献   

6.
Structurally dissimilar dopamine D(1) receptor agonists were compared with dopamine in their ability to activate adenylate cyclase and to internalize hemagglutinin-tagged human D(1) receptors in a stably transfected human embryonic kidney cell line. Thirteen dopamine D(1) receptor agonists were selected rationally from three different structural classes: rigid fused ring compounds [dihydrexidine, dinapsoline, dinoxyline, apomorphine, and (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]-phenanthrene-9,10-diol (A86929)]; isochromans [(1R,3S)-3-(1'adamantyl)-1-aminomethyl-3,4-dihydo-5,6-dihydroxy-1H-2-benzopyran (A77636) and (1R,3S)-3-phenyl-1-aminomethyl-3,4-dihydo-5,6-dihydroxy-1H-2-benzopyran (A68930)]; and benzazepines [7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF38393), (+/-)-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF77434), 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82958), 3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-]H-3-benzazepine (SKF83959), R(+)-6-chloro-7,8,-dihydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82957), and R(+)-6-chloro-7,8,-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF81297)]. The working hypothesis was that some agonists have differential effects on adenylate cyclase versus receptor internalization that could be correlated to the structural class of the agonist. First, the affinity for the hemagglutinin-hD(1) receptor and the intrinsic activity and potency of adenylate cyclase activation were determined for each compound. The internalization time course and internalization efficacy were then determined for each agonist. It was surprising that internalization efficacy was found to be independent of either agonist structural class or affinity. Only agonists that had both high adenylate cyclase functional potency and high intrinsic activity caused internalization. In addition, four agonists from two structural classes were identified that were capable of fully activating adenylate cyclase without eliciting an internalization response. This study provides the first extensive characterization of D(1) receptor internalization in response to structurally diverse agonists and, at least for the D(1) receptor, shows that functional selectivity is not predictable by simple structural examination. These data are consistent with the hypothesis that functional selectivity reflects subtle ligand-induced conformational changes as opposed to simple agonist trafficking among discrete receptor active states.  相似文献   

7.
The dopamine D(1) receptor agonist, R(+)-6-chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297), the dopamine D(2)/D(3) receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3, 4-g]quinoline hydrochloride (quinpirole), and the dopamine D(3) receptor agonist, (+/-)-7-hydroxy-dipropylaminotetralin hydrobromide (7-OH-DPAT) all reduced the frequency of isolation-induced infant rat ultrasonic vocalizations and lowered body temperature when compared to saline-injected controls. Ultrasonic vocalization rate was not affected by either the dopamine D(1) receptor antagonist, R(+)-2,3,4, 5-tetrahydro-8-iodo-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrochloride (SCH 23390) or the dopamine D(2)/D(3) receptor antagonist, S(-)-raclopride-L-tartrate (raclopride) when given alone, nor did these antagonists block the ultrasonic vocalization reductions caused by the dopamine D(1) receptor agonist or the dopamine D(2)/D(3) receptor agonist. The dopamine D(2)/D(3) receptor antagonist but not the dopamine D(1) receptor antagonist blocked the dopamine D(3) receptor agonist's ultrasonic vocalization reduction. SKF 81297 reduced general activity while quinpirole and 7-OH-DPAT increased activity. Raclopride reversed quinpirole's reduction in body temperature, as well as 7-OH-DPAT's effects on body temperature, ultrasonic vocalizations, and activity. These results indicate that dopamine D(1), D(2)/D(3), and D(3) receptor agonists all reduce ultrasonic vocalizations by as yet undetermined mechanisms.  相似文献   

8.
The effects of dopaminergic drugs on the inhibitory avoidance memory affected by lithium were examined in the Naval Medical Research Institute (NMRI) mice using a single-trial step-down inhibitory (passive) avoidance task. The results showed that post-training administration of lithium (10 mg/kg, i.p.) decreased the step-down latency on the test day, which was fully or partly reversed by pre-test administration of the same dose of the drug; suggesting state-dependent learning induced by lithium. Our results also showed that pre-test (i.p.) administration of the dopamine D1 receptor agonist SKF38393 and the dopamine D2 receptor agonist quinpirole by themselves and in combination with ineffective doses of lithium (0.3, 0.6 and 1.25 mg/kg) reversed the decrease of the step-down latency induced by post-training lithium. In contrast, pre-test administration of the dopamine D1 receptor antagonist SCH23390 (0.025, 0.05 and 0.1 mg/kg, i.p.) and the dopamine D2 receptor antagonist sulpiride (6.25 and 12.5 mg/kg, i.p.) alone or in combination with pre-test lithium (10 mg/kg), did not significantly alter the step-down latency on the test day, except for a higher dose of sulpiride (25 mg/kg) which by itself increased the step-down latency. Furthermore, pre-test administration of a lower dose of sulpiride (3 mg/kg) in combination with ineffective doses of lithium (03, 0.6 and 1.25 mg/kg) also reversed the decrease in the step-down latency induced by post-training lithium. In conclusion, the dopamine D1 and D2 receptor mechanism(s) may be involved, at least partly, in the effect of lithium on retrieval of the inhibitory avoidance memory influenced by the drug.  相似文献   

9.
1. The isolated perfused lung of the ferret was used to study the effects of dopamine receptor agonists and antagonists. Under constant flow, a fall in pulmonary artery pressure reflects a vasodilator response. Since tone is normally low, agonists were given during hypoxic pulmonary vasoconstriction to enable detection of dilator responses. 2. Vasodilator responses were produced by bolus doses of dopamine over the range 0.1 to 5.0 micrograms kg-1, and by the selective DA1 agonist SK&F 38393 (1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride). 3. The dopamine response was blocked by low doses of the selective DA1-antagonist SCH23390 (R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol maleate), and by sulpiride. 4. The vasodilator response to the relatively selective DA2-agonist N,N-di-n-propyl dopamine occurred only at high dose and was incompletely blocked by the selective DA2 antagonist domperidone at a cumulative dose of 10 mg kg-1. 5. Thus dopamine receptors of the DA1 type may mediate vasodilatation in the ferret pulmonary circulation, but no evidence was obtained for the existence of DA2-receptors.  相似文献   

10.
In the present study, the effects of morphine sensitization on impairment of memory formation and the state-dependent learning by morphine have been investigated in mice. Pretraining administration of morphine (0.5, 2.5 and 5 mg/kg) dose dependently decreased the learning of a one-trial passive avoidance task. Pretest administration of morphine (0.5, 2.5 and 5 mg/kg) induced state-dependent retrieval of the memory acquired under pretraining morphine influence. Pretraining or pretest administration of naloxone (0.25, 0.5 and 1 mg/kg) reversed both responses to morphine (5 mg/kg). Amnesia induced by pretraining morphine was significantly reversed in morphine-sensitized mice which had previously received once daily injections of morphine [20 and 30 mg/kg, subcutaneously (s.c.)] for 3 days. Morphine sensitization tended to reverse but did not significantly affect morphine state-dependent memory. The inhibition of morphine-induced amnesia in morphine-sensitized mice was decreased by once daily administration of naloxone (0.5, 1 and 2 mg/kg) 30 min prior to injection of morphine (20 mg/kg/day x 3 days). Three-days administration of 1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine HCL (SKF 38393; 8, 16 and 32 mg/kg) or SCH 23390; R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCL (0.01, 0.05 and 0.1 mg/kg) before morphine (for 3 days) and during morphine-sensitization, decreased and increased, the amnesia induced by pretraining morphine, respectively. Similar administration of quinpirole (0.5, 1 and 2 mg/kg) or sulpiride (25, 50 and 100 mg/kg) before morphine also decreased and increased the amnesia induced by pretraining morphine, respectively. The results suggest that morphine sensitization affects the impairment of memory formation, but not the facilitation of retrieval induced by morphine and thus it is postulated that dopamine receptors may play an important role in this effect.  相似文献   

11.
R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) is a widely used, highly selective antagonist of D1 dopamine receptors. While investigating the crosstalk between D1 and D3 dopamine receptor signaling pathways, we discovered that in addition to being a D1 receptor antagonist, SCH23390 and related compounds inhibit G protein-coupled inwardly rectifying potassium (GIRK) channels. We present evidence that SCH23390 blocks endogenous GIRK currents induced by either somatostatin or D3 dopamine receptors in AtT-20 cells (IC50, 268 nM). The inhibition is receptor-independent because constitutive GIRK currents in Chinese hamster ovary cells expressing only GIRK channels are also blocked by SCH23390. The inhibition of GIRK channels is somewhat selective because members of the closely related Kir2.0 family of inwardly rectifying potassium channels, as well as various endogenous cationic currents present in AtT-20 cells, are not affected. In addition, in current clamp recordings, SCH23390 can depolarize the membrane potential and induce AtT-20 cells to fire action potentials, indicating potential physiological significance of the GIRK channel inhibition. To identify the chemical features that contribute to GIRK channel block, we tested several structurally related compounds [SKF38393, R-(+)-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (nor-methyl-SCH23390), and R-(+)-2,3,4,5-tetrahydro-8-iodo-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrochloride (iodo-SCH23390)], and our results indicate that the halide atom is critical for blocking GIRK channels. Taken together, our results suggest that SCH23390 and related compounds might provide the basis for designing novel GIRK channel-selective blockers. Perhaps more importantly, some studies that have exclusively used SCH23390 to probe D1 receptor function or as a diagnostic of D1 receptor involvement may need to be reevaluated in light of these results.  相似文献   

12.
We investigated the involvement of striatal dopamine release in electrographic and motor seizure activity evoked by kainic acid in the guinea pig. The involvement of the dopamine receptor subtypes was studied by systemic administration of the dopamine D(1) receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390; 0.5 mg kg(-1)), or the dopamine D(2) antagonist, (5-aminosulphonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride, 30 mg kg(-1)). Microdialysis and high performance liquid chromatography were used to monitor changes in extracellular levels of striatal dopamine and its metabolites, glutamate, aspartate and gamma-amino-butyric acid (GABA). These data were correlated with changes in the striatal and cortical electroencephalographs and clinical signs. We found that, although neither dopamine receptor antagonist inhibited behavioural seizure activity, blockade of the dopamine D(1)-like receptor with SCH 23390 significantly reduced both the 'power' of the electrical seizure activity and the associated change in extracellular striatal concentration of glutamate, whilst increasing the extracellular striatal concentration of GABA. In contrast, blockade of the dopamine D(2)-like receptor with sulpiride significantly increased the extracellular, striatal content of glutamate and the dopamine metabolites. These results confirm previous evidence in other models of chemically-evoked seizures that antagonism of the dopamine D(1) receptor tends to reduce motor and electrographic seizure activity as well as excitatory amino-acid transmitter activity, while antagonism of the dopamine D(2) receptor has relatively less apparent effect.  相似文献   

13.
The present study explored the role of central dopaminergic transmission in a model of carrageenan-induced inflammatory pain by examining the effects of selective agonists and antagonists of dopamine receptors. The results were as follow: (1) LY171555 (trans-(-)-4aR-4,4a,5,6,7,8,8a,9-Octahydro-5-propyl-1H-pyrazolo[3, 4-g]quinoline hydrochloride), dopamine D(2) receptor agonist, produced anti-hyperalgesia or hypoalgesia in the inflamed hindpaws and non-inflamed hindpaws, respectively; spiperone hydrochloride (8-[4-(4-Fluorophenyl)-4-oxobutyl]-1-phenyl-1,3,8-triazaspiro[4, 5]decan-4-one hydrochloride), dopamine D(2) receptor antagonist, decreased the pain threshold of the non-inflamed hindpaws. (2) (+/-)-SKF38393 hydrochloride ((+/-)-1-Phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride), dopamine D(1) receptor agonist, produced anti-hyperalgesia or hypoalgesia when administered in a high dose (600 nmol), and decreased the pain threshold of non-inflamed hindpaws when administered in a low dose (150 nmol); R(+)-SCH23390 hydrochloride (R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine hydrochloride), dopamine D(1) receptor antagonist, induced anti-hyperalgesia or hypoalgesia, respectively. The present study suggests that the dopaminergic system is involved in the central modulation of inflammatory hyperalgesia, and that the different effects are probably induced by the different receptors.  相似文献   

14.
A four-step synthesis of 2-chlorodopamine (2b) is presented as well as methods for the syntheses of the N-methyl, ethyl, and n-propyl analogues (2c-e). Compounds 2b and 2c were essentially equipotent to dopamine for increasing renal blood flow in anesthetized dogs that had been treated with the alpha-adrenergic antagonist phenoxybenzamine. The increases in renal blood flow were blocked by the DA1 antagonist (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine. Compounds 2d and 2e were significantly less potent than dopamine in the same model; the increases in renal blood flow were attenuated by propranolol and blocked by a combination of propranolol and (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine. The significance of an o-chloro substituent on dopamine analogues for the activation of the DA1 receptor is briefly discussed.  相似文献   

15.
Herein, we examined the direct coupling of human dopamine D1 receptors to G(s) proteins using an antibody capture assay together with a detection technique employing scintillation proximity assay beads. Using a specific antibody, dopamine (DA) and the selective dopamine D1 receptor agonists, 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF81297) and 3-allyl-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82958), behaved as high-efficacy agonists ( approximately 100%) in stimulating guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding to G(s) in L-cells, whereas 2,3,4,5,-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine (SKF38393) displayed partial agonist properties (70%). The action of dopamine was specifically mediated by human dopamine D1 receptors inasmuch as the selective human dopamine D1 receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol (SCH23390), blocked dopamine-induced [35S]GTP gamma S binding to G(s) with a pK(B) (9.29) close to its pK(i) (9.33). The antipsychotic agents, clozapine and haloperidol, displayed no intrinsic activity when tested alone and inhibited dopamine-stimulated G(s) activation with pK(B)'s of 6.7 and 7.3, respectively, values close to their pK(i) values at these sites. In conclusion, the use of an anti-G(s) protein immunoprecipitation assay coupled to scintillation proximity assays allows direct evaluation of the functional activity of dopamine D1 receptors ligands at the G protein level. Employing this novel technique, the typical and atypical antipsychotics, clozapine and haloperidol, respectively, both exhibited antagonist properties at dopamine D1 receptors.  相似文献   

16.
Dopamine causes inhibition of Na(+),K(+)-ATPase activity via activation of dopamine D(1)-like receptors. It is the phosphorylation of Serine(18) of the alpha(1)-subunit of Na(+),K(+)-ATPase which results in the inhibition of the enzyme activity; however, such a phosphorylation by dopamine D(1)-like receptor agonist has not been demonstrated in the proximal tubules. We show here by immunoprecipitation and detection with phosphoserine antibody that SKF 38393, a dopamine D(1)-like receptor agonist, causes phosphorylation of the alpha(1)-subunit of Na(+),K(+)-ATPase. The effect of (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride, SKF 38393, is blocked by R(+)-7-choro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-benzazepine hydrochloride, SCH 23390, a dopamine D(1)-like receptor antagonist, and staurosporin, a protein kinase C inhibitor. The phosphorylation is also increased by phorbol 12-13 dibutyrate ester. However, Rp-cAMP triethylamine, an inhibitor of protein kinase A, does not affect the SKF 38393-mediated phosphorylation of Na(+),K(+)-ATPase. Therefore, these results provide the evidence that dopamine D(1)-like receptor activation causes phosphorylation of the alpha(1)-subunit of Na(+),K(+)-ATPase in renal proximal tubules via protein kinase C pathway.  相似文献   

17.
The antagonistic interactions between adenosine A1 receptors and dopamine D1 receptors were studied in a human embryonic kidney 293 cell line stably cotransfected with human adenosine A1 receptor and dopamine D1 receptor cDNAs. In the cotransfected cells, but not in control cells only transfected with dopamine D1 receptors, adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA, 10 microM) increased the Kd of dopamine D1 receptor antagonist [N-methyl-3H]R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine ([3H]SCH23390) without affecting the Bmax. Moreover, CPA induced a concentration-dependent decrease in the affinity of dopamine D1 receptors for the agonist (+/-)-1-Phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF38393) and inhibited dopamine D1 receptor-mediated cyclic AMP response element recruitment. Furthermore, pertussis toxin treatment completely counteracted the effects of low concentrations of CPA but only partially counteracted the effects of high concentrations of CPA. These results suggest that adenosine A1 receptors antagonistically modulate dopamine D1 receptors at the level of receptor binding and the second messenger generation. Furthermore, the antagonistic interactions between these two receptors induced by low concentrations of CPA might have a different manner with those induced by high concentrations of CPA.  相似文献   

18.
This study compared the effects of intracerebral injections of the dopamine D(1)-like receptor agents 3-methyl-6-chloro-7,8-dihydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 83959) and [R]-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390) into the ventrolateral striatum or the shell of the nucleus accumbens on the synergistic induction of jaw movements by intravenous (i.v.) co-administration of [R]-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 38393) or SK&F 83959 with the dopamine D(2)-like receptor agonist, quinpirole. In the ventrolateral striatum, SCH 23390 and SK&F 83959 each blocked jaw movements induced by i.v. SK&F 38393 with quinpirole, while only SCH 23390 blocked i.v. SK&F 83959 with quinpirole. SCH 23390 was less effective in the accumbens shell than in the ventrolateral striatum, and SK&F 83959 was ineffective to block i.v. SK&F 38393 with quinpirole, while neither SCH 23390 nor SK&F 83959 blocked i.v. SK&F 83959 with quinpirole. As SK&F 83959 inhibits the stimulation of adenylyl cyclase via dopamine D(1A) receptors but acts as an agonist at a putative dopamine D(1)-like receptor site not linked to cyclase, an important role is indicated for non-cyclase-coupled dopamine D(1)-like receptor sites as well as dopamine D(1A) receptors in the regulation of jaw movements via dopamine D(1)-like/D(2)-like receptor synergism, particularly in the ventrolateral striatum.  相似文献   

19.
Cocaine-paired stimuli can suppress food-reinforced operant behavior in rats, providing an animal model of conditioned drug effects. To study the neuropharmacological basis of this phenomenon, we examined the effects of various dopamine receptor antagonists on the acquisition and expression of cocaine-induced conditioned suppression in rats. Superimposed on an ongoing baseline of food-reinforced operant responding, a stimulus was paired with response-independent cocaine (3.0 mg/kg, i.v.) during each of 8 training sessions. To study acquisition, independent groups of rats were given saline, the dopamine D(1)-like receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390) (0.001-0.03 mg/kg, i.p.), or the dopamine D(2)-like receptor antagonist eticlopride (0.001-0.03 mg/kg, i.p.) prior to each training session. To study expression, independent groups of rats were trained first, then given saline, SCH 23390, eticlopride, or N-[4-(4-(2-methoxyphenyl)piperazinyl)butyl]-2-naphthamide (BP 897) (a dopamine D(3) partial receptor agonist; 0.1-1.0 mg/kg, i.p.) before test sessions in which the stimulus was presented without cocaine. Pre-treatment with either SCH 23390 or eticlopride during acquisition reduced the direct suppressant effects of cocaine, but conditioning was blocked only in rats that were treated with SCH 23390 during acquisition training. Expression of conditioning was attenuated only by eticlopride. Thus, dopamine at least partially mediates both the acquisition and expression of cocaine-induced conditioned suppression, with activation of dopamine D(1)- and D(2)-like receptors underlying these respective processes.  相似文献   

20.
Summary The dopamine receptor agonist apomorphine in experiments on rats in low doses (0.025–0.2 mg/kg, s.c.) induced yawning which reflected a selective activation of presynaptic dopamine receptors. In high doses (0.25–1.0 mg/kg) apomorphine induced stereotyped sniffing and yawning in consequence of postsynaptic D 2 receptor activation. Dopamine D 1 receptor agonist SKF 38393 inhibited yawning induced by low doses of apomorphine. The inhibitory effect of SKF 38393 on apomorphine-induced yawning was attenuated by pretreatment with specific D I receptor antagonist SCH 23390 [2-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1 H-3-benzazepine-7-ol]. On the other hand however, SKF 38393 potentiated sniffing induced by the high doses of apomorphine without affecting gnawing. These data indicate that D 1 receptor activation modulates both pre- and postsynaptic effects of apomorphine in opposite directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号