首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hwang BH  Stewart R  Zhang JK  Lumeng L  Li TK 《Brain research》2004,1026(1):143-150
The role of amygdaloid corticotropin-releasing factor (CRF) in alcoholism is not clear. Alcohol-preferring (P) rats and high alcohol-drinking (HAD) rats are selectively bred for high alcohol preference, and have been considered suitable animal models for studying alcoholism. The CRF neurons in the central nucleus of the amygdala (CeA) of P rats and HAD rats were studied in comparison with those of their respective counterparts, namely, alcohol-nonpreferring (NP) rats and low alcohol-drinking (LAD) rats. Specifically, CRF-immunoreactivity (ir) in the CeA and paraventricular hypothalamic nucleus (PVN) was assessed using radioimmunohistochemical (RIH) assay in alcohol-naive P/NP rats, and HAD/LAD rats. Furthermore, CRF mRNA was examined using in situ hybridization in the CeA of P/NP rats. Anxiety levels were also evaluated using an elevated plus maze. Results of the present study showed that CRF-ir was significantly lower in the CeA of P rats than NP rats. Moreover, CRF mRNA in the CeA was also much lower in P rats than NP rats. Such differences were not seen in the PVN. Interestingly, those P rats exhibited higher anxiety than NP rats. In contrary, there were no innate differences of CRF-ir in both the CeA and PVN between HAD and LAD rats whose anxiety levels were similar. This study is consistent with the literature showing CRF knockout (KO) induces alcohol drinking, and central administrations of CRF reduce alcohol intake. Collectively, the present study suggests that reduced CRF gene expression in the CeA of P rats is associated with their alcohol preference and anxiety.  相似文献   

2.
The neuropeptide Y (NPY) gene in rat chromosome 4 has been shown to play an important role in alcohol-seeking behavior. NPY knockout mice drink more alcohol than wild-type mice, implicating a link between NPY deficiency and high alcohol intake. This is supported by recent studies showing that intracerebroventricular injections of NPY reduce alcohol intake in both alcohol-preferring (P) and high alcohol-drinking rats. However, it is unknown which anatomical NPY systems are involved in alcohol preference. This study was designed to investigate whether there are innate differences in NPY mRNA in cerebral cortical areas, dentate gyrus (DG) of the hippocampus and medial habenular nucleus (MHb) between P and alcohol-nonpreferring (NP) rats, as these discrete brain regions are rich in NPY mRNA. [(33)P]-labeled 28-mer oligodeoxynucleotide probe was applied for the in situ hybridization study to detect the NPY mRNA, measured using quantitative autoradiography. This study revealed an absence of NPY mRNA in the MHb of P rats. We found that NPY mRNA was significantly lower in the DG of P rats than NP rats. This innate difference of NPY mRNA expression in the DG between P and NP rats is region specific. For example, in most of the cerebral cortical areas examined, an innate difference was not seen. Our study suggests that lower NPY gene expression in the DG and MHb of P rats may be factors contributing to some of the phenotypic differences observed between the P and NP lines of rats.  相似文献   

3.
In the present study, in vitro and in vivo studies were conducted to determine the relationship between innate substance P (SP) levels and alcohol‐motivated behavior in alcohol‐preferring (P) and nonpreferring (NP) rat lines. In Experiment 1, in situ hybridization and quantitative autoradiography were used to detect and measure SP mRNA levels in discrete brain loci of the P and NP rats. The results indicated significantly lower SP mRNA levels in the central nucleus of the amygdala (CeA) of P compared with those of NP rats. Experiment 2 evaluated the effects of SP, microinfused into the CeA, on alcohol (10%, v/v) and sucrose (2%, w/v) motivated responding in the P rat. The results revealed that, when infused into the CeA (1–8 μg), SP reduced alcohol responding by 48–85% of control levels, with no effects on sucrose responding. Neuroanatomical control infusions (1–8 μg) into the caudate putamen (CPu) also failed to significantly alter alcohol‐ or sucrose‐motivated behaviors. Given the selective reductions on alcohol (compared to sucrose) responding by direct intracranial infusion of SP, the data suggest that deficits in SP signaling within the CeA (an anxiety regulating locus) are inversely associated with alcohol‐motivated behaviors. Activation of SP receptors in the CeA may reduce anxiety‐like behavior in the P rat and contribute to reductions on alcohol responding. The SP system may be a suitable target for the development of drugs to reduce alcohol‐drinking behavior in humans. Synapse 63:972–981, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Evidence suggests that alcohol-induced activation of the endogenous opioid system is part of a neurobiological mechanism that may be functionally involved in alcohol reinforcement and high alcohol drinking behavior. We postulate that a genetic predisposition toward alcohol drinking is accompanied by increased responsiveness of the opioid system to alcohol. To test this hypothesis, the present study compared the effect of an acute alcohol challenge on enkephalin gene expression in discrete brain regions which are high in preproenkephalin (PPENK) mRNA content and/or are important in mediating alcohol reward in rats selectively bred for alcohol preference (P) or nonpreference (NP). PPENK mRNA content was measured by in situ hybridization performed with a 36 base oligonucleotide probe for PPENK mRNA and was quantified using a computerized image-analysis system. Blood alcohol concentration (BAC) and rate of alcohol elimination following alcohol infusion were similar in P and NP rats. P and NP rats did not differ in basal content of PPENK mRNA in any of the brain areas examined prior to onset of infusion. An intragastric (I.G.) infusion of alcohol (2.5 g/kg b.wt) produced a significant increase in PPENK mRNA in the nucleus accumbens (both shell and core) of P but not NP rats at 1 h after the onset of infusion which coincided with the time at which peak BAC was attained. In contrast, at 8 h after the onset of the alcohol infusion, when BAC was falling toward baseline, PPENK mRNA was decreased in the nucleus accumbens of both P and NP rats and in the anterior striatum and amygdala of NP rats. The results suggest that enhanced responsiveness of the enkephalinergic system to alcohol is associated with, and may be functionally involved in, mediating high alcohol drinking behavior.  相似文献   

5.
Alcohol use disorders are characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and withdrawal syndrome in the absence of drug. The central amygdala (CeA) and neighboring regions (extended amygdala) mediate alcohol-related behaviors and chronic alcohol-induced plasticity. Acute alcohol suppresses excitatory (glutamatergic) transmission whereas chronic alcohol enhances glutamatergic transmission in CeA. Acute alcohol facilitates inhibitory (GABAergic) transmission in CeA, and chronic alcohol increases GABAergic transmission. Electrophysiology techniques are used to explore the effects of neuropeptides/neuromodulators (CRF, NPY, nociceptin, dynorphin, endocannabinoids, galanin) on inhibitory transmission in CeA. In general, pro-anxiety peptides increase, and anti-anxiety peptides decrease CeA GABAergic transmission. These neuropeptides facilitate or block the action of acute alcohol in CeA, and chronic alcohol produces plasticity in neuropeptide systems, possibly reflecting recruitment of negative reinforcement mechanisms during the transition to alcohol dependence. A disinhibition model of CeA output is discussed in the context of alcohol dependence- and anxiety-related behaviors.  相似文献   

6.
Although it is widely accepted that alcohol abuse and alcoholism have a significant genetic component of risk, the identities of the genes themselves remain obscure. To illuminate such potential genetic contributions, DNA macroarrays were used to probe for differences in normative cortical gene expression between rat strains genetically selected for alcohol self-administration preference, AA (Alko, alcohol) and P (Indiana, preferring), or avoidance, ANA (Alko, nonalcohol) and NP (Indiana, nonpreferring). Among 1,176 genes studied, six demonstrated confirmable, differential expression following comparison of ethanol-naive AA and ANA rats. Specifically, the mRNA level for metabotropic glutamate receptor 3 (mGluR3) was down-regulated in the AA vs. ANA lines. In contrast, calcium channel subunit alpha2delta1 (cacna2d1), vesicle-associated membrane protein 2 (VAMP2), syntaxin 1 (both syntaxin 1a and 1b; STX1a and STX1b), and syntaxin binding protein (MUNC-18) mRNAs were found to be increased in frontal cortex following comparison of AA with ANA animals. Bioinformatic analysis of these molecular targets showed that mGluR3 and cacna2d1 fall within chromosomal locations reported to be alcohol-related by the Collaborative Study on the Genetics of Alcoholism (COGA) as well as quantitative trait loci (QTL) studies. To determine further whether these differences were strain specific, the above-mentioned genes were compared in ethanol-preferring (P) and -nonpreferring (NP) selected lines. VAMP2 was the only gene that displayed statistically different mRNA levels in a comparison of P and NP rats. In conclusion, the altered cortical gene expression illuminated here would have the effect of altering neurotransmitter release in AA rats (compared with ANA rats). Such alterations, however, might not be a universal characteristic of all animal models of alcohol abuse and will also require further investigation in post-mortem human samples.  相似文献   

7.
目的:研究低灌注状态脑组织神经肽Y1受体的mRNA表达。方法:建立左侧颈外静脉与颈总动脉端侧吻合的大鼠模型,测定吻合形成后脑血流动力学及脑组织神经肽Y(NPY)改变,检测该组织NPY1R mRNA表达。结果:大鼠静脉动脉端侧吻合形成动静脉分流,左侧局部脑血流量显著降低,脑组织中NPY增加,NPY1R mRNA表达下降。吻合口阻断后,左侧大脑血流量显著增加,NPY1R mRNA表达进一步减低。结论:长期低灌注脑缺血后NPY1R减少,使脑血管自动调节功能下降导致“正常灌注压突破”。  相似文献   

8.
This study showed that alcohol-preferring (P) rats and high alcohol-drinking (HAD) rats possess fewer calcitonin gene-related peptide (CGRP) receptor binding sites than their respective controls in the central amygdaloid nucleus (CeA) which is known to be related to anxiety. Since P and HAD rats were selectively bred for high alcohol preference, and alcohol can produce anxiolytic effect, one can postulate that P and HAD rats preferentially drink alcohol in order to obtain its anxiolytic effect. This study supports a hypothesis that deficit of CGRP receptors in the CeA of P and HAD rats may contribute to alcohol preference.  相似文献   

9.
Neuropeptide Y (NPY) is found in autonomic neurones and participates in regulation of autonomic functions. To investigate the role of NPY in the stress response in normo- and hypertensive rats, activation of brainstem and arcuate nucleus (ARC) NPY neurones and levels of NPY mRNA in the ARC were measured in response to restraint stress in adult spontaneously hypertensive rats (SHRs) and two strains of normotensive rats. Controls from each strain were not restrained. Sections of the brain were prepared for Fos immunohistochemistry and NPY in-situ hybridization to identify activated NPY neurones in the nucleus of the tractus solitarii (NTS), ventrolateral medulla (VLM), and ARC. NPY mRNA levels were quantified in the ARC. In the NTS and VLM of restrained rats, approximately 33% and 75%, respectively, of NPY neurones were activated. No differences among strains were found. In the ARC, about 36% of neurones activated by restraint contained NPY mRNA with no differences found among strains. In unrestrained rats, NPY mRNA levels were significantly elevated in SHRs compared to the normotensive rats. Restraint led to significant decreases in mRNA levels in all strains and mRNA levels among strains were no longer different from one another. These data show that NPY likely participates as a neurotransmitter in the autonomic pathways utilized during stress and originating in the NTS, VLM, and ARC. On the other hand, the decreased gene expression of NPY in the ARC in response to restraint stress argues against a role for activation of autonomic pathways or the hypothalamo-pituitary-adrenal (HPA) axis by NPY from the ARC of stressed rats. The elevated NPY gene expression in resting SHRs compared to normotensive rats is abrogated after restraint, suggesting that this gene is differentially regulated in SHRs compared to normotensive rats.  相似文献   

10.
Anorexia nervosa is mostly seen in adolescent females, although the gender-differentiation mechanism is unclear. Corticotropin-releasing factor (CRF), a key peptide for stress responses such as inhibition of food intake, increases in arousal and locomotor activity, and gonadal dysfunction, is thought to be involved in the pathophysiology of anorexia nervosa. CRF in the paraventricular nucleus of the hypothalamus (PVN) and CRF in the central nucleus of the amygdala (CeA) are involved in the regulation of stress responses, and gender differences in CRF mRNA expression in these regions in response to various stressors are controversial. We therefore examined CRF gene expression in the PVN and CeA as well as corticotropin (ACTH) and corticosterone secretion in response to a 60-min period of electric footshock (FS) or psychological stress (PS) induced by a communication box in both male and female rats in proestrus or diestrus in an effort to elucidate the mechanism underlying the gender difference in the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the mechanism underlying the remarkable prevalence of anorexia nervosa in females. Female rats in proestrus showed higher basal plasma ACTH and CRF mRNA expression levels in the PVN and CeA than males. Females more rapidly showed higher plasma ACTH and corticosterone levels and a higher CRF mRNA expression level in the PVN in response to FS than males. Although females in both proestrus and diestrus showed significant increases in plasma ACTH and corticosterone and CRF mRNA expression in the PVN in response to PS, no significant responses of the HPA axis to PS were found in males. FS significantly increased CRF mRNA expression in the CeA in both females and males, with significantly higher peaks in females in proestrus than in males, while PS significantly increased CRF mRNA expression in the CeA only in males. These results suggest that gender affects differentially the function of the stress-related regions such as the PVN and CeA. The finding that CRF gene expression in the PVN responds to PS only in females may be a clue to elucidation of the neurobiological mechanism underlying the gender-differential prevalence of anorexia nervosa.  相似文献   

11.
长期饮酒脑缺血大鼠血浆NPY、CGRP、ET含量的测定   总被引:4,自引:0,他引:4  
目的 探讨长期饮酒对脑缺血大鼠血浆中神经肽Y(NPY)、降钙素基因相关肽(CGRP)、内皮素(ET)含量的影响。方法 选用180~200g雄性Wistar大鼠50只,分为饮水组与饮酒组,饮酒组以7.2%酒精喂养100d,制作长期饮酒模型,后将两组用线拴法制作脑缺血模型,在缺血前、缺血1h、3h、6h分别取血,用放免法测定NPY、CGRP、ET。结果 各时间段饮酒组NPY含量明显高于饮水组P%0.05,缺血3h时,两组血浆NPY含量明显升高,于6h逐渐下降;各时间段饮酒组CGRP均低于饮水组P%0.01,饮水组于缺血3h、饮酒组于缺血1h时,血浆中CGRP明显下降;饮酒组血浆ET于缺血前及缺血1h明显高于饮水组P%0.05,饮水组于缺血3h、饮酒组于缺血1h血浆ET明显升高。结论 脑梗死超早期伴有血浆NPY、CGRP、ET的动态改变,长期饮酒可加重这些变化.增加血浆中缩血管物质的含量减少舒血管物质的含量,进一步减少脑部血液供应。  相似文献   

12.
The present study examined the effects of stereotaxic delivery of corticosterone to the amygdala on anxiety-like behavior and corticotropin-releasing factor (CRF) mRNA level in the central nucleus of the amygdala (CeA). Micropellets (30 microg) of crystalline corticosterone or cholesterol (control) were implanted bilaterally at the dorsal margin of the CeA in Wistar rats. Seven days post-implantation, anxiety-like behavior was accessed using an elevated plus-maze. CRF mRNA level in the CeA was determined by in situ hybridization 4 h after being tested on the elevated plus-maze. Corticosterone implants increased indices of anxiety on the elevated plus-maze and produced a concomitant increase in both basal level of CRF mRNA per neuron and the number of neurons with CRF hybridization signal in the CeA. The plus-maze increased CRF mRNA levels in the CeA of cholesterol implanted rats to the elevated basal levels observed in corticosterone treated animals. Exposure to the plus-maze did not increase CRF mRNA level in the CeA of corticosterone implanted rats beyond elevated basal levels. Taken together, these findings support the involvement of the amygdala in anxiety-like behaviors in response to chronically elevated corticosterone and suggests that elevated glucocorticoids may increase anxiety by inducing CRF expression in the CeA.  相似文献   

13.
Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus.  相似文献   

14.
目的 研究孕期酒精暴露对子代大鼠学习记忆及海马N-甲基-D-天冬氨酸(NMDA)受体2B亚基(NR2B)表达的影响.方法 按照随机数字表法,将雌性SD大鼠随机分为正常对照组、饮酒对照组和孕期酒精暴露组,每组各8只;饮酒法建立大鼠孕期酒精暴露模型,子代成年后,采用Y-型迷宫测试子鼠学习记忆成绩;采用聚合酶链反应分析子鼠海马组织NR2B mRNA的表达;采用免疫荧光法检测子鼠海马区NR2B蛋白表达.结果 (1)各组子鼠成年后学习记忆成绩的差异有统计学意义(F=4.566,P<0.05),孕期酒精暴露组子鼠学习记忆成绩[(43.00±15.33)次]比正常对照组[ (25.13±12.35)次]和饮酒对照组[(26.12±11.95)次]明显下降(P均<0.05);(2)各组子鼠成年后海马组织中NR2B mRNA表达差异有统计学意义(F=29.795,P<0.01),孕期酒精暴露组子鼠海马区NR2B mRNA表达(0.97±0.14)较正常对照组(0.52±0.10)和饮酒对照组(0.62±0.12)明显上升(P均<0.01);孕期酒精暴露组子鼠海马区NR2B蛋白表达明显增加.结论 孕期酒精暴露对子代大鼠的神经损伤可能与NMDA受体亚基NR2B蛋白表达的上调有关.  相似文献   

15.
1. Calcium channel blockers have been proposed, in addition to inhibiting the influx of Ca++ into the cells, to possess a wide variety of pharmacological effects, including interference with certain neurotransmitters involved in mood, mental disorders and alcohol craving. Further, it has been documented that certain neurotransmitters are involved in alcohol craving both in animals and humans. 2. To investigate the effects of Ca(++)-channel antagonist on alcohol preference, verapamil in three doses (5, 10 and 15 mg/kg) was injected (S.C.) twice daily over a period of one day in alcohol-preferring (P) and alcohol non-preferring (NP) rats at 9:00 a.m. and 4:00 p.m. 3. Water, alcohol and food intake were monitored. 4. Our results show that verapamil in doses of 10 and 15 mg/kg significantly (p less than 0.02 and 0.01, respectively) reduced the intake of ethanol and increased the intake of water by P rats. However, injection of an equal volume of saline did not change the pattern of alcohol intake. 5. These results suggest that a (++(+)-channel blocker such as verapamil, could, at least partially, attenuate alcohol preference in alcohol preferring rats. It is possible that verapamil exerts an inhibitory effect on alcohol preference by interfering with Ca++ channels, blocking serotonin uptake or through another mechanism(s).  相似文献   

16.
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time‐polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre‐treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.  相似文献   

17.
Repeated administration of addictive drugs and prolonged exposure to stressful stimuli induce sensitization to their behavioural stimulant properties. In this study, male Sprague–Dawley rats were repeatedly exposed to morphine [twice a day for 3 days at increasing doses, 10, 20, 40 mg/kg subcutaneously (s.c)], amphetamine (1 mg/kg s.c., once a day for 10 days), nicotine (0.4 mg/kg s.c., once a day for 5 days) and stress (food restriction for 7 days). After an interval of 3–30 days, depending on the pretreatment, rats were challenged with vehicle, with the same drug received as pretreatment (5 mg/kg of morphine, 0.5 mg/kg of amphetamine or 0.4 mg/kg of nicotine, respectively) or, in the case of food-restricted rats, with 0.5 mg/kg of amphetamine. Thereafter, changes in the expression of glutamic acid decarboxylase (GAD)67 mRNA were estimated by in situ hybridization in the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), dorsolateral striatum (dLStr), nucleus accumbens shell (AcS) and core (AcC). All sensitizing pretreatments increased GAD67 mRNA in the CeA. Drug challenge did not further affect GAD67 mRNA in the CeA of saline, drug and stress pre-exposed rats. As to the other areas, no differences were observed in drug pre-exposed compared with saline pre-exposed and fed ad libitum rats, except for amphetamine. Amphetamine pre-exposure decreased GAD67 mRNA levels in the dLStr and the AcC and AcS, and this effect was reversed by amphetamine challenge. The results show that different drugs and stress models of behavioural sensitization have in common an increase of GA67 in the CeA but not in the BLA, and suggest the changes of GAD67 in the CeA are a substrate of the sensitized response to drug challenge.  相似文献   

18.
Neuropeptide Y (NPY) is an important hypothalamic orexigenic neuropeptide that acts in the brain. It has been established that the fasting-induced up-regulation of NPY expression is mainly caused by a reduction in the activity of leptin, which is a hormone secreted by adipose tissue. We have reported that in female rats hypothalamic NPY mRNA expression does not respond to fasting during the early neonatal period, but subsequently becomes sensitive to it later in the neonatal period. In this study, we compared the developmental changes in the responses of NPY and leptin expression to fasting between male and female rats during the neonatal to pre-pubertal period. Fasting was induced by maternal deprivation during the pre-weaning period (postnatal days 10 and 20) and by food deprivation during the post-weaning period (postnatal day 30). Hypothalamic NPY mRNA expression was not affected by fasting on postnatal day 10, whereas it was increased by fasting on postnatal day 20 and 30 in both males and females. On the other hand, the serum leptin level was decreased by fasting at all examined ages in both sexes. Namely, hypothalamic NPY mRNA expression was not correlated with the reduction in the serum leptin level at postnatal day 10 in either sex. Under the fasted conditions, the hypothalamic NPY mRNA levels of the males were higher than those of the females on postnatal days 20 and 30, whereas no such differences were observed under the normal nourishment conditions. The serum leptin levels observed under the fasted conditions did not differ between males and females at any examined age. These results suggest that some hypothalamic NPY functions develop during the neonatal period and that there is no major difference between the sexes with regard to the time when NPY neurons become sensitive to fasting. They also indicate that hypothalamic NPY expression is more sensitive to under-nutrition in male rats than in female rats, at least during the pre-pubertal period.  相似文献   

19.
In rats, circulating corticosterone and insulin are involved in regulation of the hypothalamic neuropeptide Y (NPY) system, which in turn, is involved in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Since the HPA axis and stress responsivity is altered in diseases such as depression, we investigated interactions between the effects of stress and antidepressant drug treatment on arcuate nucleus and locus coeruleus NPY mRNA expressions using in-situ hybridization histochemistry. After acute (2 h) and repeated immobilization (2 h daily, for 14 days), plasma concentrations of corticosterone increased, and those of insulin decreased. The expression of NPY mRNA was significantly increased in the arcuate nucleus, but was unchanged in the locus coeruleus following acute and repeated immobilization. Adrenalectomized rats with systemic corticosterone replacement (ADX+CORT), whose corticosterone concentration was maintained at approximately 50-100 ng/ml during repeated stress, showed a decrease in plasma insulin and an increase in arcuate nucleus NPY mRNA similar to that observed in sham rats, suggesting that changes in NPY mRNA levels are more closely tied to circulating insulin than to circulating corticosterone. In contrast, locus coeruleus NPY mRNA expressions in ADX+CORT rats were significantly higher than those in sham rats after repeated stress. Desmethylimipramine (DMI) treatment for 24 days did not affect basal plasma concentrations of corticosterone or insulin, or arcuate nucleus NPY mRNA expressions, but significantly decreased basal levels of locus coeruleus NPY mRNA compared to saline-treated rats. After repeated immobilization (2 h daily, for 4 days), DMI significantly reduced the stress-induced rise in locus coeruleus NPY mRNA levels, but potentiated the stress-induced rise in arcuate nucleus NPY mRNA expression. These results demonstrate that: (1) the increase in arcuate nucleus NPY mRNA expressions in stressed rats closely follows the decrease in plasma concentrations of insulin; (2) increases in NPY mRNA expressions occur in the absence of changes in plasma corticosterone; and (3) desipramine treatment potentiated the effect of stress on arcuate nucleus NPY mRNA expressions, but blocked the repeated stress-induced increase in locus coeruleus NPY mRNA expressions. Thus, NPY mRNA expression in the arcuate nucleus and the locus coeruleus is sensitive to the effects of stress and to the antidepressant drug desipramine, but the arcuate nucleus NPY system is regulated by different mechanisms than the locus coeruleus NPY system. The results provide further evidence for the importance of circulating insulin in the regulation of the arcuate nucleus NPY system.  相似文献   

20.
Neuropeptide Y (NPY) is an important orexigenic peptide that acts in the brain. The increase in hypothalamic NPY mRNA expression induced by fasting is mainly caused by a decrease in the effects of leptin. We investigated the developmental changes in the sensitivities of leptin and hypothalamic neuropeptide Y to fasting. Hypothalamic NPY mRNA levels were increased by fasting in postnatal days 15 and 25 rats, but not in postnatal day 5 rats. Serum leptin levels were decreased by fasting in rats at all ages (days 5, 15, and 25). In addition, hypothalamic OB-Rb mRNA levels were decreased by fasting in postnatal day 25 rats, but not in postnatal day 5 or 15 rats. Although the percentage of fating-induced decrease in the serum leptin level was larger in the postnatal day 15 rats than in the postnatal day 25 rats, the percentage of increase in the hypothalamic NPY mRNA level in the postnatal day 15 rats was smaller than that in the postnatal day 25 rats. There was a strong inverse correlation between serum leptin levels and hypothalamic NPY mRNA levels in the postnatal day 25 rats, whereas no significant correlation was found between these parameters in the postnatal day 5 or 15 rats. These findings indicate that the sensitivity of hypothalamic NPY mRNA expression to food deprivation and hypoleptinemia has developed by postnatal day 25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号