首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Apoptosis signal-regulating kinase 1 (ASK1), a serine/threonine protein kinase, is a reactive oxygen species-sensitive mitogen-activated protein kinase kinase kinase and activates both p38 and c-Jun N-terminal kinase pathways. Two isoforms of thioredoxin (Trx), cytosolic and mitochondrial Trx (Trx1 and Trx2, respectively), have been identified in mammalian cells. Trx1 was initially identified as an ASK1-binding protein. Trx1 and Trx2 bind directly to the N-terminal regulatory domain of ASK1 and inhibit ASK1-dependent apoptosis. Numerous other proteins interact with ASK1 and regulate its activity. In cardiomyocytes, ASK1 is involved not only in cardiac apoptosis, leading to cardiac remodeling, but also in cardiac hypertrophy as well as nonapoptotic cardiomyocyte death.  相似文献   

3.
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.  相似文献   

4.
5.
Inter-alpha-trypsin inhibitor (IalphaI) family molecules are composed of a common light chain of chondroitin sulfate proteoglycan, bikunin, and one or two of three genetically distinct heavy chain isoforms (designated HC1, 2, 3) that are bound covalently to the chondroitin sulfate chain. Hyaluronan can substitute for chondroitin sulfate to form a covalent complex with HCs. Important physiological and pathological roles of the formation of HC-hyaluronan complex have been well established. However, the involvement of the three HC isoforms in the assembly of IalphaI family molecules and the subsequent formation of SHAP-hyaluronan complex has not been studied yet in mice. In this study, we showed that mouse IalphaI and pre-alpha inhibitor contain HC1 approximately HC3 and HC3, respectively. All three HC isoforms are found in the SHAP-hyaluronan complexes of physiological or pathological origins as well as that formed in vitro, indicating that the three HC isoforms are all potential in forming complex with hyaluronan.  相似文献   

6.
Bim is an essential regulator of lymphoid system homeostasis and appears essential for B cell apoptosis induction. The mechanism by which Bim isoforms are held in an inactive form remains poorly documented in normal B cells. In the current study, we demonstrated that in normal tonsil B cells the three major Bim isoforms are strongly associated with the anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2 and Bcl-x(L). On the other hand, only a weak association of BimEL and L with the dynein LC8 chain has been found. In addition, there is no free Bim in normal B cells. Moreover, subcellular fractionation demonstrated that Bim and the anti-apoptotic counterparts are localized preferentially in the mitochondria-rich fraction. The fact that most Bim was found in this fraction supports the hypothesis that it is sequestered by anti-apoptotic molecules in mitochondria where its pro-apoptotic activity is controlled. Of interest, BimS is essentially complexed to Mcl-1 and the Mcl-1/Bim complex is the most abundant among the three types of complexes. This supports the idea that this complex is critical for the control of B cell death. In conclusion, these results favor a model in which Bim release from anti-apoptotic proteins is a critical event for initiation of apoptosis.  相似文献   

7.
Inter-α-trypsin inhibitor (IαI) family molecules are composed of a common light chain of chondroitin sulfate proteoglycan, bikunin, and one or two of three genetically distinct heavy chain isoforms (designated HC1, 2, 3) that are bound covalently to the chondroitin sulfate chain. Hyaluronan can substitute for chondroitin sulfate to form a covalent complex with HCs. Important physiological and pathological roles of the formation of HC-hyaluronan complex have been well established. However, the involvement of the three HC isoforms in the assembly of IαI family molecules and the subsequent formation of SHAP-hyaluronan complex has not been studied yet in mice. In this study, we showed that mouse IαI and pre-α inhibitor contain HC1~HC3 and HC3, respectively. All three HC isoforms are found in the SHAP-hyaluronan complexes of physiological or pathological origins as well as that formed in vitro, indicating that the three HC isoforms are all potential in forming complex with hyaluronan.  相似文献   

8.
9.
Thioredoxin (Trx) is a protein disulfide oxidoreductase that can be secreted and act as a chemoattractant for leukocytes. Like chemokines, it causes desensitization of monocytes against its chemotactic activity and that of monocyte chemoattractant protein-1 (MCP-1). To investigate the role of the redox properties of Trx, and particularly of some of its five cysteines, in its chemotactic and desensitizing action, we tested different mutants, including Trx80, a truncated form, and various mutants lacking specific cysteines: Trx C62S/C73S and the redox-inactive mutant Trx C32S/C35S. Of the mutants, only Trx80 maintained the chemotactic activity of wild-type Trx toward both monocytes and polymorphonuclear neutrophils, all of them desensitized monocytes against wild-type Trx or MCP-1, but not chemotactic peptide formyl-methionyl-leucil peptide. These data indicate that different redox-active cysteines are important for Trx chemotactic action, whereas its desensitizing action does not have these requirements, suggesting a redox-independent mechanism.  相似文献   

10.
We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower K(m) than the TrxR1 native substrate thioredoxin (Trx; chaetocin K(m) = 4.6 +/- 0.6 microM, Trx K(m) = 104.7 +/- 26 microM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)--and as chaetocin exerts its selective anticancer effects via ROS imposition--the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents.  相似文献   

11.
12.
Aims:  Lung cancer is one of the most common causes of cancer lethality worldwide. Despite recent progress, long-term survival remains poor. The aim of this study was to explore the expression pattern of the thioredoxin superfamily of proteins as potential new diagnostic and/or predictive markers.
Methods and results:  The expression of thioredoxin 1 (Trx1), thioredoxin reductase 1 (TrxR1), the isoforms TrxR1-v.2,3,5, glutaredoxin 1 (Grx1) and glutaredoxin 2 (Grx2) was examined by immunohistochemistry on paraffin-embedded sections from 42 cases of non-small cell lung cancer patients. Additional cases of lung cancer from tissue microarray were examined and the immunoreactivity was compared. All proteins except TrxR1 showed a significant correlation with the degree of differentiation in adenocarcinoma. Trx1 and TrxR1-v.2,3,5 also showed a significant correlation with differentiation in squamous carcinoma. Furthermore, Grx1 and Grx2 showed a clear inverse correlation with proliferation. The proliferation rate was further analysed in vitro in stably transfected Grx2 overproducing cells, showing that the proliferative effect of Grx2 is strictly dependent on subcellular localization.
Conclusions:  The thioredoxin family of proteins is important for growth and differentiation of lung cancer cells. The correlation with differentiation and proliferation of these enzymes makes them promising predictive/diagnostic markers.  相似文献   

13.
CD44 cell adhesion molecules.   总被引:21,自引:0,他引:21  
The CD44 proteins form a ubiquitously expressed family of cell surface adhesion molecules involved in cell-cell and cell-matrix interactions. The multiple protein isoforms are encoded by a single gene by alternative splicing and are further modified by a range of post-translational modifications. CD44 proteins are single chain molecules comprising an N-terminal extracellular domain, a membrane proximal region, a transmembrane domain, and a cytoplasmic tail. The CD44 gene has only been detected in higher organisms and the amino acid sequence of most of the molecule is highly conserved between mammalian species. The principal ligand of CD44 is hyaluronic acid, an integral component of the extracellular matrix. Other CD44 ligands include osteopontin, serglycin, collagens, fibronectin, and laminin. The major physiological role of CD44 is to maintain organ and tissue structure via cell-cell and cell-matrix adhesion, but certain variant isoforms can also mediate lymphocyte activation and homing, and the presentation of chemical factors and hormones. Increased interest has been directed at the characterisation of this molecule since it was observed that expression of multiple CD44 isoforms is greatly upregulated in neoplasia. CD44, particularly its variants, may be useful as a diagnostic or prognostic marker of malignancy and, in at least some human cancers, it may be a potential target for cancer therapy. This review describes the structure of the CD44 gene and discusses some of its roles in physiological and pathological processes.  相似文献   

14.
CD44 cell adhesion molecules.   总被引:11,自引:0,他引:11       下载免费PDF全文
The CD44 proteins form a ubiquitously expressed family of cell surface adhesion molecules involved in cell-cell and cell-matrix interactions. The multiple protein isoforms are encoded by a single gene by alternative splicing and are further modified by a range of post-translational modifications. CD44 proteins are single chain molecules comprising an N-terminal extracellular domain, a membrane proximal region, a transmembrane domain, and a cytoplasmic tail. The CD44 gene has only been detected in higher organisms and the amino acid sequence of most of the molecule is highly conserved between mammalian species. The principal ligand of CD44 is hyaluronic acid, an integral component of the extracellular matrix. Other CD44 ligands include osteopontin, serglycin, collagens, fibronectin, and laminin. The major physiological role of CD44 is to maintain organ and tissue structure via cell-cell and cell-matrix adhesion, but certain variant isoforms can also mediate lymphocyte activation and homing, and the presentation of chemical factors and hormones. Increased interest has been directed at the characterisation of this molecule since it was observed that expression of multiple CD44 isoforms is greatly upregulated in neoplasia. CD44, particularly its variants, may be useful as a diagnostic or prognostic marker of malignancy and, in at least some human cancers, it may be a potential target for cancer therapy. This review describes the structure of the CD44 gene and discusses some of its roles in physiological and pathological processes.  相似文献   

15.
Human cytosolic thioredoxin (Trx), which is the 12-kDa protein disulfide reductase with the Cys-Gly-Pro-Cys active site and a key component of cellular redox biochemistry and regulation, acts as cocytokine upon leaderless secretion. A 10-kDa C-terminally truncated thioredoxin (Trx80) comprising the 80 or 84 N-terminal amino acids is also secreted and present in plasma, where it originally was purified and identified as eosinophilic cytotoxicity enhancing factor. Recombinant Trx80 was discovered to be a potent mitogenic cytokine that stimulates growth of resting human peripheral blood mononuclear cells (PBMC) in a synthetic medium, an effect that Trx lacks. Trx80 is very different from Trx because it is a dimer lacking reductase activity and the cytokine activity is not dependent on the Cys residues of the Trx active-site motif. The primary targets of Trx80 in PBMC are monocytes that are activated to proliferate and increase expression of CD14, CD40, CD54, and CD86. Trx80 induces secretion of interleukin (IL)-12 in CD40+ monocytes from PBMC. Trx80 and IL-2 together were strongly synergistic to induce secretion of interferon-gamma in PBMC. Trx80 is a potent cytokine for monocytes directing the immune system to a Th1 response via IL-12 production.  相似文献   

16.
Several lines of evidence suggest that an increase in aldehyde-modified proteins is associated with development of atherosclerosis. Acrolein and 4-hydroxynonenal (HNE) are reactive aldehydes generated during active inflammation as a consequence of lipid peroxidation; both react with protein thiols, including thioredoxin-1 (Trx1), a protein recently found to regulate antioxidant function in endothelial cells. The present study examined whether acrolein or HNE modification of Trx1 could potentiate monocyte adhesion to endothelial cells, an early event of atherosclerosis. We examined the function of acrolein and HNE-modified Trx1 in the regulation of the early events of atherosclerosis using cultured aortic endothelial cells as a vascular model system, for in vitro enzymatic assay, and in mass spectrometry analysis. Our data show that acrolein and HNE at 1:1 ratios with Trx1 modified Cys-73 and inhibited activity. In endothelial cells, adducts were detected at concentrations as low as 1 mumol/L including conditions in which there was no detectable change in glutathione. Acrolein and HNE modification of Trx1 was associated with increased production of reactive oxygen species. Microinjection of acrolein- and HNE-modified Trx1 into endothelial cells stimulated monocyte adhesion. Chemical modification of Trx1 by common environmental and endogenously generated reactive aldehydes can contribute to atherosclerosis development by interfering with antioxidant and redox signaling functions of Trx1.  相似文献   

17.
The expression of genes for thioredoxin isoforms Trx1 and Trx2 was studied in sensitive SKOV-3 and resistant SKVLB human ovarian carcinoma cells. The development of doxorubicin resistance was accompanied by a significant increase in the expression of TRX1 gene and less pronounced increase in TRX2 gene expression. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 144, No. 9, pp. 274–276, September, 2007  相似文献   

18.
目的 探讨何首乌饮对β 淀粉样蛋白(Aβ)诱导的大鼠原代培养海马神经元损伤保护作用及可能机制。方法 采用新生24h 内的SD大鼠进行原代培养海马神经元,将培养10d的海马神经元分为模型组、何首乌饮保护组、何首乌饮治疗组、何首乌饮对照组及空白对照组。Hoechst33258染色观察海马神经元的凋亡率;免疫组织化学、Western blotting和RT-PCR检测各组海马神经元硫氧还蛋白1(Trx1)蛋白和mRNA的表达情况。 结果 模型组细胞凋亡率增高(P<0.05),Trx1蛋白和mRNA的表达量明显减少(P<0.05);与模型组相比,何首乌饮治疗组和预防组的凋亡率明显降低(P<0.05),Trx1蛋白和mRNA的表达量明显增加(P<0.05)。 结论 何首乌饮可明显减轻Aβ诱导的海马神经元的损伤,其机制可能与增加抗氧化蛋白Trx1的表达有关。  相似文献   

19.
免疫球蛋白样转录子(ILT)家族表达于髓系和淋巴系细胞表面,包括抑制性受体和激活性受体,通过与相应的配体结合发挥抑制或激活作用.配体包括MHC-Ⅰ类分子及其相关分子.由于抑制性受体与激活性受体特征相似,但在细胞内的功能却截然相反,因而研究ILT的结构、功能及其在临床相关疾病中的作用十分重要.  相似文献   

20.
The equilibrative nucleoside transporter family,SLC29   总被引:20,自引:0,他引:20  
The human SLC29 family of proteins contains four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterised family member, hENT1. They belong to the widely-distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporters and are distantly related to a lysosomal membrane protein, CLN3, mutations in which cause neuronal ceroid lipofuscinosis. A predicted topology of 11 transmembrane helices with a cytoplasmic N-terminus and an extracellular C-terminus has been experimentally confirmed for hENT1. The best-characterised members of the family, hENT1 and hENT2, possess similar broad substrate specificities for purine and pyrimidine nucleosides, but hENT2 in addition efficiently transports nucleobases. The ENT3 and ENT4 isoforms have more recently also been shown to be genuine nucleoside transporters. All four isoforms are widely distributed in mammalian tissues, although their relative abundance varies: ENT2 is particularly abundant in skeletal muscle. In polarised cells ENT1 and ENT2 are found in the basolateral membrane and, in tandem with concentrative transporters of the SLC28 family, may play a role in transepithelial nucleoside transport. The transporters play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis, and are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. In addition, by regulating the concentration of adenosine available to cell surface receptors, they influence many physiological processes ranging from cardiovascular activity to neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号