首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charcot‐Marie‐Tooth disease type 4 C (CMT4C) is an autosomal recessive form of demyelinating peripheral neuropathy caused by mutations in SH3TC2, characterized by early onset, spine deformities, and cranial nerve involvement. We screened SH3TC2 in 50 unrelated Greek patients with suspected demyelinating Charcot‐Marie‐Tooth disease and pedigree compatible with recessive inheritance. All patients had been previously screened for PMP22, GJB1, and MPZ mutations. We found five previously identified pathogenic mutations in SH3TC2 distributed among 13 patients in homozygosity or compound heterozygosity (p. Arg954Stop, Arg1109Stop, Gln892Stop, Ala878Asp, and Arg648Trp). Although most cases had early onset and spine deformities were almost omnipresent, a wide phenotypic spectrum was observed. Particularly notable were two siblings with Roussy‐Lévy syndrome and one patient with young‐onset trigeminal neuralgia. In conclusion, mutations in SH3TC2 are responsible for 26% of Greek patients with suspected CMT4, identifying CMT4C as the most common recessive demyelinating neuropathy in the Greek population, in accordance with other Mediterranean cohorts.  相似文献   

2.
The prevalence of Charcot‐Marie‐Tooth (CMT) disease or hereditary motor and sensory neuropathy (HMSN) varies in different populations. While in some countries of Western Europe, the United States and Japan the dominant form of HMSN is the most frequent, in other countries such as those of the Mediterranean Basin, the autosomal recessive form (AR‐CMT) is more common. Autosomal recessive CMT cases are generally characterized by earlier onset, usually before the age of 2 or 3 years, and rapid clinical progression that results in severe polyneuropathy and more marked distal limb deformities such as pes equino‐varus, claw‐like hands, and often major spinal deformities. Recent clinical, morphological and molecular investigations of CMT families with autosomal recessive inheritance allowed the identification of many genes such as GDAP1, MTMR2, SBF2, NDRG1, EGR2, SH3TC2, PRX, FGD4, and FIG4, implicated in demyelinating forms (ARCMT1 or CMT4), and LMNA, MED25, HINT1, GDAP1, LRSAM1, NEFL, HSPB1 and MFN2 in axonal forms (ARCMT2). However, many patients remain without genetic diagnosis to date, prompting investigations into ARCMT families in order to help discover new genes and common pathways. This review summarizes recent advances regarding the genotypes and corresponding phenotypes of AR‐CMT.  相似文献   

3.
Charcot–Marie–Tooth (CMT) disease is a heterogeneous group of inherited peripheral motor and sensory neuropathies. The locus responsible for CMT4C was previously assigned to the chromosome 5q23 region by homozygosity mapping and mutations in the SH3TC2 (KIAA1985) gene have been subsequently identified mainly in families around the Mediterranean basin but also frequently in European Gypsies. No English families have been reported to date. To determine the frequency, phenotype and neuropathology of CMT due to SH3TC2 mutations we screened 23 English autosomal recessive (AR) demyelinating CMT families. Five families with AR demyelinating CMT and SH3TC2 mutations were identified, four families were homozygous for the R954X mutation and the fifth family was compound heterozygous for the R954X and E657K mutations. There was significant clinical variation between these families with some cases presenting with a severe childhood onset neuropathy with respiratory and cranial nerve involvement, compared to other families with mild scoliosis and foot deformity. Characteristic sural nerve neuropathology was seen in three families with frequent demyelinating fibres surrounded by excess Schwann cell lamellae forming basal lamina onion bulbs and abnormally long and attenuated Schwann cell processes. One patient homozygous for the R954X mutation had a 20-year history of an inflammatory neuropathy that was superimposed onto the hereditary form, indicating that structural alterations to the SH3TC2 gene could possibly predispose to peripheral nerve inflammation.  相似文献   

4.
Charcot‐Marie‐Tooth disease type 4D (CMT4D), also known as hereditary motor and sensory neuropathy Lom type (HMSNL), is an autosomal recessive, early onset, severe demyelinating neuropathy with hearing loss, caused by N‐Myc downstream‐regulated gene 1 (NDRG1) mutations. CMT4D is rare with only three known mutations, one of which (p.Arg148Ter) is found in patients of Romani ancestry and accounts for the vast majority of cases. We report a 38‐year‐old Italian female with motor development delay, progressive neuropathy, and sensorineural deafness. Magnetic resonance imaging showed slight atrophy of cerebellum, medulla oblongata, and upper cervical spinal cord. She had a novel homozygous NDRG1 frameshift mutation (c.739delC; p.His247ThrfsTer74). The identification of this NDRG1 mutation confirms that CMT4D is not a private Romani disease and should be considered in the differential diagnosis of recessive demyelinating CMT.  相似文献   

5.
Charcot‐Marie‐Tooth (CMT) disease is a complex of peripheral nervous system disorders. CMT type 2U (CMT2U) is an autosomal dominant (AD) disease caused by mutations in the MARS gene encoding methionyl‐tRNA synthetase; this disease has thus been newly called AD‐CMTax‐MARS. A few families with mutations in the MARS gene have been reported, without detailed histopathological findings. We describe a 70‐year‐old woman who had bilateral dysesthesia of the soles since the age of 66 years. Sural nerve biopsy showed a decrease in the density of large myelinated nerve fibers. Increased clusters of regenerating myelinated nerve fibers were noted. Electron microscopic analyses revealed degeneration of unmyelinated nerves. There was no vasculitis or inflammatory cell infiltration. Genetic analysis identified a heterozygous p.P800T mutation, a reported mutation in the MARS gene. We report the detailed histopathological findings in a patient with CMT2U/AD‐CMTax‐MARS. The findings are similar to those found in CMT2D caused by mutations in the GARS gene, encoding glycyl‐tRNA synthetase.  相似文献   

6.
To describe the clinical and electrophysiological features evoking CMT4C, an autosomal recessive (AR) form of Charcot-Marie-Tooth disease (CMT) due to mutations in the SH3TC2 gene, we screened the coding sequence of SH3TC2 gene in 102 unrelated patients with a demyelinating or intermediate CMT and a family history compatible with an AR transmission. We identified among this cohort 16 patients carrying two mutations in the SH3TC2 gene, but medical records finally analyzed 14 patients. We report clinical, electrophysiological, and molecular data of 14 patients (9 men, 5 women) with CMT4C. Mean age at examination was 43.6 years (median = 42.5). Among the 14 studied cases 6 had scoliosis as the presenting sign. Cranial nerve involvement affecting either the VIIIth, VIIth, XIIth or a combination of the IXth and Xth nerves was noted in 10 patients. Remarkably, 50% of the patients had proximal limb involvement at the time of examination. The hallmark of the electrophysiological study was the presence of probable conduction block and temporal dispersion. Thus the clinical and paraclinical spectrum of CMT4C can guide the clinician to perform analysis of the SH3TC2 gene.  相似文献   

7.
The objective of this study is to assess the genetic distribution of Charcot‐Marie‐Tooth (CMT) disease in Campania, a region of Southern Italy. We analyzed a cohort of 197 index cases and reported the type and frequency of mutations for the whole CMT population and for each electrophysiological group (CMT1, CMT2, and hereditary neuropathy with susceptibility to pressure palsies [HNPP]) and for familial and isolated CMT cases. Genetic diagnosis was achieved in 148 patients (75.1%) with a higher success rate in HNPP and CMT1 than CMT2. Only four genes (PMP22, GJB1, MPZ, and GDAP1) accounted for 92% of all genetically confirmed CMT cases. In CMT1, PMP22 duplication was the most common mutation while the second gene in order of frequency was MPZ in familial and SH3TC2 in isolated cases. In CMT2, GJB1 was the most frequent mutated gene and GJB1 with GDAP1 accounted for almost 3/4 of genetically defined CMT2 patients. The first gene in order of frequency was GJB1 in familial and GDAP1 in isolated cases. In HNPP, the majority of patients harbored the PMP22 gene deletion. The novelty of our data is the relatively high frequency of SH3TC2 and GDAP1 mutations in demyelinating and axonal forms, respectively. These epidemiological data can help in panel design for our patients' population.  相似文献   

8.
Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot‐Marie‐Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2‐deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2‐deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.  相似文献   

9.
Heterozygous mutations in the inverted formin‐2 (INF2) gene provoke focal segmental glomerulosclerosis (FSGS) and intermediate Charcot‐Marie‐Tooth (CMT) disease with FSGS. Here, we report four patients from a three‐generation family with a new cryptic splicing INF2 mutation causing autosomal dominant intermediate CMT with minimal glomerular dysfunction. Three males and one female with a mean age of 51 years (26‐87) presented with a slowly progressive sensorimotor polyneuropathy, pes cavus, and kyphoscoliosis. Mean age at CMT disease onset was 11.5 years (3‐17), and electrophysiological studies showed demyelinating and axonal features consistent with intermediate CMT. Plasma albumin and creatinine were normal in all four cases, and urine protein was normal in one case and mildly raised in three patients (mean: 0.32 g/L [0.18‐0.44], N < 0.14). Genetic analysis found a c.271C > G (p. Arg91Gly) variation in INF2 exon 2, and in vitro splicing assays showed the deletion of the last 120 nucleotides of INF2 exon 2 leading to a 40 amino acids in‐frame deletion (p. Arg91_p. Gln130del). This report expands the genetic spectrum of INF2‐associated disorders and demonstrates that INF2 mutations may provoke isolated CMT with no clinically relevant kidney involvement. Consequently, INF2 mutation analysis should not be restricted to individuals with coincident neuropathy and renal disease.  相似文献   

10.
Mutations in the NEFH gene encoding the heavy neurofilament protein are usually associated with neuronal damage and susceptibility to amyotrophic lateral sclerosis (ALS). Recently, frameshift variants in NEFH (p.Asp1004Glnfs*58 and p.Pro1008Alafs*56) have been reported to be the underlying cause of axonal Charcot‐Marie‐Tooth disease type 2CC (CMT2CC). The frameshift mutation resulted in a stop loss and translation of a cryptic amyloidogenic element (CAE) encoded by the 3′ untranslated region (UTR). This study also identified a de novo c.3015_3027dup frameshift mutation predicting p.Lys1010Glnfs*57 in NEFH from a CMT2 family with an atypical clinical symptom of prominent proximal weakness. This mutation is located near the previously reported frameshift mutations, suggesting a mutational hotspot. Lower limb magnetic resonance imaging (MRI) revealed marked hyperintense signal changes in the thigh muscles compared with those in the calf muscles. Therefore, this study suggests that the stop loss and translational elongations by the 3′ UTR of the NEFH mutations may be a relatively frequent genetic cause of axonal peripheral neuropathy with the specific characteristics of proximal dominant weakness.  相似文献   

11.
Mutations in the gene encoding inverted formin FH2 and WH2 domain‐containing protein (INF2), a Cdc42 effector involved in the regulation of actin dynamics, cause focal segmental glomerulosclerosis (FSGS) and intermediate Charcot‐Marie‐Tooth neuropathy combined with FSGS (FSGS–CMT). Here, we report on six patients from four families with sensorimotor polyneuropathy and FSGS. Nerve conduction velocities were moderately slowed, and amplitudes of sensory and motor potentials were decreased. One patient had internal hydrocephalus and was intellectually disabled. Molecular genetic testing revealed two known and two novel missense mutations in the second and fourth exons of the INF2 gene. Investigations of one nerve biopsy confirmed the diagnosis of intermediate‐type CMT and revealed occasional abnormal in‐ and outfoldings of myelin sheaths and expansions of the endoplasmic reticulum in axons and Schwann cells. While earlier reports suggested that mutations causing FSGS‐CMT are restricted to exons 2 and 3 of the INF2 gene, we found one CMT‐FSGS causing mutation (p.Glu184Lys) in exon 4 extending the critical region of INF2 for rapid CMT‐FSGS molecular genetic diagnosis. Study of a nerve biopsy showed abnormalities that might be related to the known role of the INF2‐binding partner CDC42 in myelination.  相似文献   

12.
Peripheral myelin protein 2 (PMP2) is a small protein located on the cytoplasmic side of compact myelin, involved in the lipids transport and in the myelination process. In the last years few families affected with demyelinating Charcot‐Marie‐Tooth neuropathy (CMT1), caused by PMP2 mutations, have been identified. In this study we describe the first case of a PMP2 in‐frame deletion. PMP2 was analyzed by direct sequencing after exclusion of the most frequent CMT‐associated genes by using a next generation sequencing (NGS) genes panel. Sanger sequencing was used for family's segregation analysis. Molecular modeling analysis was used to evaluate the mutation impact on the protein structure. A novel PMP2: p.I50del has been identified in a child with early onset CMT1 and in three affected family members. All family members show an early onset demyelinating neuropathy without other distinguish features. Molecular modeling analysis and in silico evaluations do not suggest a strong impact on the overall protein structure, but a most likely altered protein function. This study suggests the importance to add PMP2 in CMT NGS genes panels or, at most, to test it after major CMT1 genes exclusion, due to the lack of diagnostic‐addressing additional features.  相似文献   

13.
14.
15.
We report a severe phenotype of Charcot‐Marie‐Tooth (CMT) disease type 1E caused by a novel p.Phe84Leufs*24 PMP22 point mutation. Ultrastructural examination of a nerve biopsy showed non‐ or partly myelinated axons which were surrounded by “onion bulb” formations mainly composed of concentric basement membranes and characterized by the presence of prominent concentric or longitudinal collagen fibrils interspersed with basement membranes. PMP22 point mutations are rare and responsible for polyneuropathies often demyelinating with onion bulb formations composed of concentric and redundant basement membranes. Entrapment of prominent collagen fibrils within onion bulb formations is unusual, even in the large spectrum of CMT disease with long duration and severe damage.  相似文献   

16.
Mutations in the gap junction protein beta 1 gene (GJB1) cause X‐linked Charcot‐Marie‐Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high‐arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.  相似文献   

17.
Charcot‐Marie‐Tooth disease 2A (CMT2A), caused by mutations in the mitofusin 2 gene (MFN2), is the most common CMT2 subtype. The aim of our study is to assess the frequency and summarize the genetic and clinical characteristics of Chinese CMT2A patients. A total of 17 coding exons of MFN2 were detected by direct sequencing in 82 unrelated Chinese families diagnosed as CMT2. Clinical evaluations were analyzed among CMT2A patients. We identified 14 missense variants in 9 sporadic and 6 familial cases, including four novel mutations (T129A, S249F, Q367P, and Q674L), 4 known mutations (R94W, R94Q, T105M, C132Y, M376V and Q751X), and 4 rare missense variants (K120E, C217F, K307E and T356S). A total of 23 patients had early‐onset phenotype. Two patients had a CMTNS score of 0 to 10; 16 had a score of 11 to 20; and 7 had a score greater than 20. Five patients were confirmed a de novo origin. Six of 14 variants were located or closed to the GTPase domain. We report four novel mutations and four rare missense variants. MFN2 mutations account for 18% of CMT2 families in mainland China. The common characteristics of Chinese pedigree are early disease onset and moderate phenotypes.  相似文献   

18.
Charcot‐Marie‐Tooth (CMT) is a heterogeneous group of progressive disorders, characterized by chronic motor and sensory polyneuropathy. This hereditary disorder is related to numerous genes and varying inheritance patterns. Thus, many patients do not reach a final genetic diagnosis. We describe a 13‐year‐old girl presenting with progressive bilateral leg weakness and gait instability. Extensive laboratory studies and spinal magnetic resonance imaging scan were normal. Nerve conduction studies revealed severe lower limb peripheral neuropathy with prominent demyelinative component. Following presumptive diagnosis of chronic inflammatory demyelinating polyneuropathy, the patient received treatment with steroids and intravenous immunoglobulins courses for several months, with no apparent improvement. Whole‐exome sequencing revealed a novel heterozygous c.2209C>T (p.Arg737Trp) mutation in the MARS gene (OMIM 156560). This gene has recently been related to CMT type 2U. In‐silico prediction programs classified this mutation as a probable cause for protein malfunction. Allele frequency data reported this variant in 0.003% of representative Caucasian population. Family segregation analysis study revealed that the patient had inherited the variant from her 60‐years old mother, reported as healthy. Neurologic examination of the mother demonstrated decreased tendon reflexes, while nerve conduction studies were consistent with demyelinative and axonal sensory‐motor polyneuropathy. Our report highlights the importance of next‐generation sequencing approach to facilitate the proper molecular diagnosis of highly heterogeneous neurologic disorders. Amongst other numerous benefits, this approach might prevent unnecessary diagnostic testing and potentially harmful medical treatment.  相似文献   

19.
Heat shock protein B3 (HSPB3) gene encodes a small heat‐shock protein 27‐like protein which has a high sequence homology with HSPB1. A mutation in the HSPB3 was reported as the putative underlying cause of distal hereditary motor neuropathy 2C (dHMN2C) in 2010. We identified a heterozygous mutation (c.352T>C, p.Tyr118His) in the HSPB3 from a Charcot‐Marie‐Tooth disease type 2 (CMT2) family by the method of targeted next generation sequencing. The mutation was located in the well conserved alpha‐crystalline domain, and several in silico predictions indicated a pathogenic effect of the mutation. Clinical and electrophysiological features of the patients indicated the axonal type of CMT. Clinical symptoms without sensory involvements were similar between the present family and the previous family. Mutations in the HSPB1 and HSPB8 genes have been reported to be relevant with both types of CMT2 and dHMN. Our findings will help in the molecular diagnosis of CMT2 by expanding the phenotypic range due to the HSPB3 mutations.  相似文献   

20.
Charcot‐Marie‐Tooth disease (CMT) is a common hereditary motor and sensory neuropathy. Epidemiological data for Chinese CMT patients are few. This study aimed to analyze the electrophysiological and genetic characteristics of Chinese Han patients. A total of 106 unrelated patients with the clinical diagnosis of CMT were included. Clinical examination, nerve conduction studies (NCS), next‐generation sequencing (NGS), and bioinformatic analyses were performed. Genetic testing was performed for 82 patients; 27 (33%) patients carried known CMT‐associated gene mutations. PMP22 duplication was detected in 10 (12%) patients and GJB1 mutations in 9 (11%) patients. The mutation rate was higher in patients with a positive family history than in the sporadic cases (50% vs. 27%, p < 0.05). Six novel CMT‐associated gene mutations including BSCL2 (c.461C>T), LITAF (c.32C>G), MFN2 (c.497C>T), GARS (c.794C>T), NEFL (c.280C>T), and MPZ (c.440T>C) were discovered. All except the LITAF (c.32C>G) mutation were identified as “disease causing” via bioinformatic analyses. In this Chinese Han population, the frequency of PMP22 gene duplication in those with CMT1 was slightly (50% vs. 70%–80%) less than in Western/Caucasian populations. The novel CMT‐associated gene mutations broaden the mutation diversity of CMT1. NGS should be considered for genetic analyses in CMT patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号