首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to evaluate the effect of BM-573 [N-terbutyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea], a dual thromboxane A2 synthase inhibitor and receptor antagonist, on the hemodynamic response to acute pulmonary embolism. Six anesthetized pigs were infused with placebo (placebo group) and compared with six other pigs receiving a continuous infusion of BM-573 (BM group). Pulmonary embolization with 0.3 g/kg autologous blood clots was carried out 30 min after the start of the infusion. Right ventricular pressure-volume loops were recorded using a conductance catheter, and end-systolic ventricular elastance was periodically assessed by varying right ventricular preload. Pulmonary vascular properties were studied by use of a four-element windkessel model. Hemodynamic data, including assessment of right ventricular-arterial coupling, were collected at baseline and every 30 min for 4 h. Blood samples were collected to assess gas exchange, thromboxane A2, and prostacyclin plasma levels and to evaluate platelet aggregation. Mean pulmonary arterial pressure in the placebo group increased significantly more than in the BM group, mainly because of an additional increase in pulmonary vascular resistance. Arterial and end-systolic ventricular elastances increased also more in the placebo group, whereas right ventricular efficiency decreased. BM-573 prevented both platelet aggregation induced by U-46619 (9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha) or by arachidonic acid, and thromboxane A2 overproduction, whereas prostacyclin liberation was preserved. Oxygenation, however, was not significantly improved. We conclude that in this animal model of acute pulmonary embolism, infusion of BM-573 reduced pulmonary vasoconstriction. As a result, right ventricular-vascular coupling values were maintained at a maximal efficiency level.  相似文献   

2.
The present study was undertaken to characterize the antiplatelet and antithrombotic effects of BM-573 [N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], an original combined thromboxane receptor antagonist and thromboxane synthase inhibitor in rats, and to determine its effects on mice bleeding time. Intraperitoneal injection of a single dose of 5 mg/kg BM-573 to rats inhibited U-46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F(2))-induced washed platelet aggregation 30 min and 1, 2, and 4 h after drug administration with a maximum antiplatelet effect observed after 1 and 2 h. In a rat model of thrombosis induced by ferric chloride application on the abdominal aorta, BM-573 significantly reduced the thrombus weight by 92.53, 80.20, 64.75, and 18.21% at doses of 5, 2, 0.5, and 0.2 mg/kg, respectively. Time to occlusion of abdominal aorta in the BM-573-treated group (41.50 +/- 5.21 min) was significantly prolonged compared with the vehicle-treated rats (16.16 +/- 0.79 min). Like furegrelate, seratrodast, and acetylsalicylic acid, BM-573 did not affect the tail bleeding time induced by tail transection in mice compared with vehicle-treated mice. Moreover, BM-573, a close derivative of the loop diuretic torasemide, failed to induce a significant increase in diuresis in rat and did not produce a decrease in blood glucose concentration as observed with the sulfonylurea glibenclamide. In conclusion, we have demonstrated that the nitrobenzenic sulfonylurea BM-573, an original combined thromboxane receptor antagonist and thromboxane synthase inhibitor, is a potent antithrombotic agent that does not affect bleeding time. Moreover, BM-573 lost the diuretic property of torasemide and has no impact on glycemia.  相似文献   

3.
The aim of this study was to characterize the effects of BM-573 [N-terbutyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl] urea], a novel dual thromboxane A2 receptor antagonist and thromboxane synthase inhibitor, on myocardial infarction induced by topical ferric chloride (FeCl3) application to the left anterior descending (LAD) coronary artery in anesthetized pigs. All control animals (n = 6) developed an occlusive thrombus in the LAD coronary artery. The mean infarct size, revealed by triphenyl tetrazolium chloride (TTC), and the area at risk, evidenced by Evans blue, corresponded to 35.3 +/- 2.2 and 36.9 +/- 2.1% of the left ventricular mass, respectively. In the BM-573-treated group (n = 6), a drug infusion (10 mg. kg-1. h-1) started 30 min before FeCl3 application and continued throughout the experimentation. Among the BM-573-treated group, four pigs did not develop coronary artery thrombus and their myocardium appeared healthy. Histopathological examination of FeCl3-injured coronary artery revealed an occlusive and adherent thrombus in control group, while pretreatment with BM-573 prevented thrombus formation. In infarcted zones, lack of desmin staining and muscle structure disorganization were obvious. Depletion of myocardial ATP content was observed in the myocardial necrotic region of the control group, but not in myocardial samples of BM-573-treated pigs that did not develop myocardial infarction. When BM-573 prevented LAD artery occlusion, the area under the curve of plasmatic troponin T was reduced by 77% over 6 h. These data suggest that BM-573 could be useful for the prevention of myocardial infarction.  相似文献   

4.
Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.  相似文献   

5.
Neuropeptide S (NPS) was identified as the endogenous ligand of an orphan receptor now referred to as the NPS receptor (NPSR). In the frame of a structure-activity study performed on NPS Gly5, the NPSR ligand [D-Cys(tBu)(5)]NPS was identified. [D-Cys(tBu)(5)]NPS up to 100 microM did not stimulate calcium mobilization in human embryonic kidney (HEK) 293 cells stably expressing the mouse NPSR; however, in a concentration-dependent manner, the peptide inhibited the stimulatory effects elicited by 10 and 100 nM NPS (pK(B), 6.62). In Schild analysis experiments [D-Cys(tBu)(5)]NPS (0.1-100 microM) produced a concentration-dependent and parallel rightward shift of the concentration-response curve to NPS, showing a pA(2) value of 6.44. Ten micromolar [D-Cys(tBu)(5)]NPS did not affect signaling at seven NPSR unrelated G-protein-coupled receptors. In the mouse righting reflex (RR) recovery test, NPS given at 0.1 nmol i.c.v. reduced the percentage of animals losing the RR in response to 15 mg/kg diazepam and their sleeping time. [d-Cys(tBu)(5)]NPS (1-10 nmol) was inactive per se but dose-dependently antagonized the arousal-promoting action of NPS. Finally, NPSR-deficient mice were similarly sensitive to the hypnotic effects of diazepam as their wild-type littermates. However, the arousal-promoting action of 1 nmol NPS could be detected in wild-type but not in mutant mice. In conclusion, [D-Cys(tBu)(5)]NPS behaves both in vitro and in vivo as a pure and selective NPSR antagonist but with moderate potency. Moreover, using this tool together with receptor knockout mice studies, we demonstrated that the arousal-promoting action of NPS is because of the selective activation of the NPSR protein.  相似文献   

6.
BIIL 284 is a new LTB(4) receptor antagonist. It is a prodrug and has negligible binding to the LTB(4) receptor. However, ubiquitous esterases metabolize BIIL 284 to the active metabolites BIIL 260 and BIIL 315, the glucuronidated form of BIIL 260. Both metabolites have high affinity to the LTB(4) receptor on isolated human neutrophil cell membranes with K(i) values of 1.7 and 1.9 nM, respectively. On vital human neutrophilic granulocytes K(i) was around 1 nM. BIIL 260 and BIIL 315 interact with the LTB(4) receptor in a saturable, reversible, and competitive manner. BIIL 260 and its glucuronide BIIL 315 also potently inhibited LTB(4)-induced intracellular Ca(2+) release in human neutrophils (IC(50) values of 0.82 and 0.75 nM, respectively) as measured with Fura-2. High efficacy of BIIL 284 has been demonstrated in various in vivo models. BIIL 284 inhibited LTB(4)-induced mouse ear inflammation with ED(50) = 0.008 mg/kg p.o., LTB(4)-induced transdermal chemotaxis in guinea pigs with ED(50) = 0.03 mg/kg p.o., LTB(4)-induced neutropenia in various species (monkey: ED(50) = 0.004 mg/kg p.o.), and LTB(4)-induced Mac1-expression in monkeys (ED(50) = 0.05 mg/kg p.o. in Tylose). Full blockade of LTB(4) receptors over 24 h was achieved by 0.3 mg/kg BIIL 284 after single oral dose as measured by LTB(4)-induced neutropenia or Mac1-expression in the monkey model. BIIL 284 is an unusually potent and long-acting orally active LTB(4) antagonist, and is therefore under clinical development as a novel anti-inflammatory principle.  相似文献   

7.
Summary— The in vitro pharmacology of UP 269-6, a novel nonpeptide angiotensin II antagonist, was examined in radioligand binding and functional isolated tissue assays. UP 269-6 bound selectively to AT1 receptors as evidenced by the inhibition of specific [125I] Sar1, Ile8-AII binding in rat adrenal membranes (IC50 = 35.8 nM) and in cultured vascular smooth muscle cells (IC50 = 23.8 nM). UP 269-6 displayed a very high selectivity for the AT1 compared to the AT2 receptor subtype (IC50 > 10,000 nM). UP 269-6 inhibited the AII-induced contraction of isolated rabbit aortic strips. The pattern of AII antagonism suggested competitive antagonism at low concentrations (10−10, 3 × 10−10, 10−9 M) of UP 269-6 and insurmountable antagonism at higher concentrations (3 × 10−9, 10−8, 3 × 10−8 M). Based on the calculated p A2 values, UP 269-6 (9.86 ± 0.25) was an angiotensin II receptor antagonist as potent as L-158,809 (9.82 ± 0.37) and much more potent than losartan (7.96 ± 0.38). UP 269-6 was devoid of affinity (IC50 > 10,000 nM) for many other receptors, ion channels and uptake sites, demonstrating its high specificity for AII receptors. Furthermore, this compound did not affect the contractile response to KCl or phenylephrine in rabbit aorta and exhibited no effect on angiotensin converting enzyme activity. These data demonstrate that UP 269-6 is a highly potent, selective and specific AT1 receptor antagonist.  相似文献   

8.
Thromboxane A2 synthase inhibitor and receptor antagonist]   总被引:4,自引:0,他引:4  
Thromboxane A2 (TxA2) plays an important role in asthma. TxA2 are newly generated after cellular activation and are produced by not only platelets but also eosinophils, basophils, alveolar macrophages, and neutrophils. Pharmacological actions of TxA2 include potent bronchoconstriction, increased microvascular leakage, impairment of mucociliary clearance, and induction of airway hyperresponsiveness. Recent study demonstrated that TxA2 receptor antagonist decreased the number of eosinophils in bronchial biopsy specimens, suggesting that this type of agent possesses anti-inflammatory actions in asthma. Furthermore, addition of TxA2 synthase inhibitor significantly increased the PEF values in the persistent asthmatic patients despite the treatment with moderate-dose of inhaled corticosteroids. Therefore, these results suggest that TxA2 synthase inhibitor and receptor antagonist are useful for the treatment with symptomatic patients who had already been treated with inhaled corticosteroids.  相似文献   

9.
The biochemical and pharmacological properties of a novel antagonist of the tachykinin neurokinin 1 (NK1) receptor, SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], were evaluated. SSR240600 inhibited the binding of radioactive substance P to tachykinin NK1 receptors in human lymphoblastic IM9 cells (K(i) = 0.0061 nM), human astrocytoma U373MG cells (K(i) = 0.10 nM), and human brain cortex (IC50 = 0.017 nM). It also showed subnanomolar affinity for guinea pig NK1 receptors but was less potent on rat and gerbil NK1 receptors. SSR240600 inhibited [Sar(9),Met(O2)(11)]substance P-induced inositol monophosphate formation in human astrocytoma U373MG cells with an IC50 value of 0.66 nM (agonist concentration of 100 nM). It also antagonized substance P-induced contractions of isolated human small bronchi with a pIC50 value of 8.6 (agonist concentration of 100 nM). The compound was >100- to 1000-fold more selective for tachykinin NK1 receptors versus tachykinin NK2 or NK3 receptors as evaluated in binding and in vitro functional assays. In vivo antagonistic activity of SSR240600 was demonstrated on tachykinin NK1 receptor-mediated hypotension in dogs (3 and 10 microg/kg i.v.), microvascular leakage (1 and 3 mg/kg i.p.), and bronchoconstriction (50 and 100 microg/kg i.v.) in guinea pigs. It also prevented citric acid-induced cough in guinea pigs (1-10 mg/kg i.p.), an animal model in which central endogenous tachykinins are suspected to play a major role. In conclusion, SSR240600 is a new, potent, and centrally active antagonist of the tachykinin NK1 receptor, able to antagonize various NK1 receptor-mediated pharmacological effects in the periphery and in the central nervous system.  相似文献   

10.
3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516) is a novel, potent, and selective cholecystokinin (CCK)1-receptor antagonist. In this study, the pharmacology of JNJ-17156516 was investigated both in vitro and in vivo, and the pharmacokinetic profile was evaluated in rats. JNJ-17156516 expressed high-affinity at the cloned human (pK(I) = 7.96 +/- 0.11), rat (pK(I) = 8.02 +/- 0.11), and canine (pK(I) = 7.98 +/- 0.04) CCK1 receptors, and it was also highly selective for the CCK1 receptor compared with the CCK2 receptor across the same species ( approximately 160-, approximately 230-, and approximately 75-fold, respectively). The high affinity of JNJ-17156516 at CCK1 receptors in vitro was confirmed in radioligand binding studies on fresh human gallbladder tissue (pK(I) = 8.22 +/- 0.05). In a functional in vitro assay of guinea pig gallbladder contraction, JNJ-17156516 behaved as a competitive antagonist, with a pK(B) value of 8.00 +/- 0.07. In vivo, JNJ-17156516 produced a parallel, rightward shift in the CCK-8S-evoked contraction of the guinea pig gallbladder. The dose required to shift the CCK-8S dose-response curve was 240 nmol kg(-1) i.v. In the anesthetized rat, JNJ-17156516 produced a dose-related decrease in the number of duodenal contractions evoked by infusion of CCK-8S, with an ED(50) = 484 nmol kg(-1). Pharmacokinetic analysis of JNJ-17156516 in rats, revealed that JNJ-17156516 had a half-life of 3.0 +/- 0.5 h and a very high bioavailability (108 +/- 10%) in this species. Overall, we have demonstrated that JNJ-17156516 is a high-affinity selective human CCK1 receptor antagonist with good pharmacokinetic properties in rats.  相似文献   

11.
12.
N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-nitrophenyl) cyclohexanecarboxamide (Rec 15/3079) was synthesized with the aim of obtaining a novel compound with 5-hydroxytryptamine (5-HT)(1A) antagonistic properties and activity in controlling bladder function at the level of the central nervous system. Rec 15/3079 showed a selective high affinity for the 5-HT(1A) receptor (K(i) = 0.2 nM). At the human recombinant 5-HT(1A) receptor, Rec 15/3079 acted as a competitive, neutral antagonist in that it did not modify basal [(35)S]guanosine-5'-O-(3-thio)triphosphate binding to HeLa cell membranes but shifted the activation isotherm to 5-HT to the right, in a parallel manner, with a pK(b) value of 10.5. Accordingly, Rec 15/3079 (i.v.) potently antagonized 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT)-induced hypothermia in mice (ID(50) = 20 microg/kg) and 8-OH-DPAT-induced forepaw treading in rats (ID(50) = 36 microg/kg). In vitro Rec 15/3079 was poorly active in antagonizing carbachol-induced bladder (pD'(2) = 5.03) and norepinephrine-induced urethral (apparent pK(b) = 6) contractions. However, in anesthetized rats, Rec 15/3079 (10-100 microg/kg i.v.) blocked isovolumic bladder contractions with no effect on their amplitude. In conscious rats and guinea pigs with bladders filled with saline, Rec 15/3079 (300-1000 microg/kg i.v.) increased bladder volume capacity (BVC) without affecting bladder contractility. In conscious rats with bladders filled with dilute acetic acid, Rec 15/3079 (300 microg/kg i.v.) reversed the decrease of BVC induced by the acid. To evaluate apparent selective effect on lower urinary tract reflexes, Rec 15/3079 was tested in experimental models for sedative, analgesic, anxiolytic, and antidepressant activity. Rec 15/3079 showed only a slight decrease in the duration of immobility in the behavioral despair test (antidepressant activity) at 1 mg/kg i.v. No anxiolytic activity was observed at 10 mg/kg i.v. No effect was observed in the hot plate test, but Rec 15/3079 increased tail-flick latencies after 3 to 10 mg/kg i.v. In conclusion, these studies demonstrate that Rec 15/3079 is endowed with favorable effects on bladder function, and it is devoid of unwanted side effects at the level of central nervous system at doses at least 10-fold higher than those active on the bladder.  相似文献   

13.
JTE-907 [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] was evaluated in vitro and in vivo as a novel selective ligand for cannabinoid receptor of peripheral type (CB2). The compound binds with high affinity to human CB2 or mouse CB2 expressed on CHO cell membrane and to rat CB2 on splenocytes. The K(i) affinities for human, mouse, and rat CB2 were 35.9, 1.55, and 0.38 nM, respectively. The selectivity ratio for the CB2 receptors compared with central nervous type receptors (CB1) of human (expressed on CHO cells), and mouse and rat CB1 on cerebellum were 66, 684, and 2760, respectively. JTE-907 showed concentration-dependent increase of forskolin-stimulated cAMP production in CHO cells expressing human and mouse CB2 in vitro, i.e., JTE-907 behaved as an inverse agonist, which is in contrast to Win55212-2 that reduces cAMP as an agonist. JTE-907 dosed orally inhibited carrageenin-induced mouse paw edema dose dependently. The same in vivo effect was observed with other cannabinoid receptor ligands such as SR144528, Delta(9)-tetrahydrocannabinol (THC), and Win55212-2. This is the first report that a CB2-selective inverse agonist, JTE-907, has an anti-inflammatory effect in vivo, and how the inverse agonist showed the same effect as Win55212-2 and Delta(9)-THC is discussed.  相似文献   

14.
Transient receptor potential vanilloid 1 (TRPV1) activation in peripheral sensory nerve is known to be associated with various pain-related diseases, thus TRPV1 has been the focus as a target for drug discovery. In this study, we characterized the pharmacological profiles of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel TRPV1 antagonist. JTS-653 displaced [(3)H]resiniferatoxin binding to human and rat TRPV1. JTS-653 competitively antagonized the capsaicin-induced activation of human TRPV1 with pA(2) values of 10.1. JTS-653 also inhibited proton-induced activation of human and rat TRPV1 with IC(50) values of 0.320 and 0.347 nM, respectively. Electrophysiological studies indicated that JTS-653 blocked heat-induced inward currents in rat TRPV1 with IC(50) values of 1.4 nM. JTS-653 showed weak or no inhibitory effects on other TRP channels, receptors, and enzymes. JTS-653 significantly prevented capsaicin-induced mechanical hyperalgesia at 1 mg/kg p.o. and attenuated carrageenan-induced mechanical hyperalgesia at 0.3 mg/kg p.o. JTS-653 significantly attenuated carrageenan-induced thermal hyperalgesia at 0.1 mg/kg p.o. and fully reversed at 0.3 mg/kg p.o. without affecting the volume of the carrageenan-treated paw. JTS-653 showed a transient increase of body temperature at 0.3 mg/kg p.o. These results indicated that JTS-653 is a highly potent and selective TRPV1 antagonist in vitro and in vivo and suggested that JTS-653 is one of the most potent TRPV1 antagonists. The profiles of JTS-653, high potency in vivo and transient hyperthermia, seem to be associated with polymodal inhibition of TRPV1 activation.  相似文献   

15.
EP2306 [2-(4-biphenyl)-4-methyl-octahydro-1,4-benzoxazin-2-ol, hydrobromide] inhibits squalene synthase and lipid biosynthesis and possesses antioxidant properties. We hypothesized that EP2306 can effectively modify circulating lipids and reduce atherosclerosis in the cholesterol-fed rabbit. Animals were fed a high-cholesterol diet for 4 weeks followed by 4 (phase 1 and 2) or 12 weeks (phase 3) of drug treatment while on high-cholesterol diet. In phase 1, the dose-effect relationship of EP2306 on lipids and atherosclerosis was established, and its most effective dose was determined (2 mg/kg). This dose reduced significantly total cholesterol (512 +/- 96 mg/dl before versus 320 +/- 124 mg/dl after treatment, p < 0.05) and atherosclerotic lesions compared with control animals. In phase 2, the effects of 2 mg/kg EP2306, 2.5 mg/kg simvastatin, and their combination were assessed. Although no significant effect on lipid parameters was observed, there was a significant reduction (35 +/- 5%, p < 0.05) of atherosclerotic lesions in animals treated with EP2306, a similar reduction with simvastatin, and a further reduction (48 +/- 7%, p < 0.05) when the two agents were combined. In animals treated for 12 weeks with the drugs (phase 3), only EP2306 significantly reduced atherosclerotic lesions by more than 50%, whereas simvastatin alone or in combination with EP2306 had no effect. Treatment with EP2306 did not adversely affect liver transaminases or cause any histopathological changes on various organs of the animals. In conclusion, we have shown that EP2306 inhibits atherosclerosis in vivo, indicating potential as a novel therapeutic agent for coronary artery disease and other atherosclerosis-related disorders.  相似文献   

16.
17.
Based on binding, functional, and pharmacological data, this study introduces SR147778 [5-(4-bromophenyl)-1-(2,4-dichloro-phenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide] as a highly potent, selective, and orally active antagonist for the CB1 receptor. This compound displays nanomolar affinity (Ki = 0.56 and 3.5 nM) for both the rat brain and human CB1 recombinant receptors, respectively. It has low affinity (Ki = 400 nM) for both the rat spleen and human CB2 receptors. Furthermore, it shows no affinity for any of the over 100 targets investigated (IC50 > 1 microM). In vitro, SR147778 antagonizes the inhibitory effects of CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol] on both the mouse vas deferens contractions (pA2 value = 8.1) and on forskolin-stimulated adenylyl cyclase activity in the U373 MG cell lines (pA2 value = 8.2) but not in Chinese hamster ovary (CHO) cells permanently expressing the human peripheral cannabinoid receptor (hCB2). SR147778 is able to block the mitogen-activated protein kinase activity induced by CP 55,940 in the CHO cell line expressing human brain cannabinoid receptor (IC50 = 9.6 nM) but was inactive in cells expressing hCB2. After oral administration, SR147778 displaced the ex vivo [3H]-CP 55,940 binding to mouse brain membranes (ED50 = 3.8 mg/kg) with a long duration of action, whereas it did not interact with the CB2 receptor expressed in the mouse spleen. Using different routes of administration, SR147778 (0.3-3 mg/kg) is shown to antagonize pharmacological effects (hypothermia, analgesia, and gastrointestinal transit) induced by R-(+)-(2,3-dihydro-5-methyl-3-[[4-morpholinyl]methyl] pyrol [1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone in mice. Finally, per se, SR147778 (0.3-10 mg/kg) is able to reduce ethanol or sucrose consumption in mice and rats and food intake in fasted and nondeprived rats.  相似文献   

18.
JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide] is a representative of a new chemical class of competitive antagonists of cholecystokinin 2 (CCK2) receptors. In this study, the primary in vitro pharmacology of JNJ-26070109 was evaluated along with the pharmacokinetic and pharmacodynamic properties of this compound in rat and canine models of gastric acid secretion. JNJ-26070109 expressed high affinity for human (pK(I) = 8.49 ± 0.13), rat (pK(I) = 7.99 ± 0.08), and dog (pK(I) = 7.70 ± 0.14) CCK2 receptors. The selectivity of JNJ-26070109 at the CCK2 receptor versus the CCK1 receptor was species-dependent, with the greatest degree of selectivity (>1200-fold) measured at the human isoforms of the CCK1 receptor (selectivity at CCK2 versus CCK1 receptors: human, ~1222-fold; rat, ~324-fold; dog ~336-fold). JNJ-26070109 behaved as a surmountable, competitive, antagonist of human CCK2 receptors in a calcium mobilization assay (pK(B) = 8.53 ± 0.05) and in pentagastrin-stimulated gastric acid secretion in the isolated, lumen-perfused, mouse stomach assay (pK(B) = 8.19 ± 0.13). The pharmacokinetic profile of this compound was determined in vivo in rats and dogs. JNJ-26070109 was shown to have high oral bioavailability (%F rat = 73 ± 16; %F dog = 92 ± 12) with half lives of 1.8 ± 0.3 and 1.2 ± 0.1 h in rat and dog, respectively. The pharmacodynamic properties of this compound were investigated using two in vivo models. In conscious rat and dog chronic gastric fistula models of pentagastrin-stimulated acid secretion, JNJ-26070109 had oral EC(50) values of 1.5 and 0.26 μM, respectively. Overall, we have demonstrated that JNJ-26070109 is a high-affinity, selective CCK2 receptor antagonist with good pharmacokinetic properties.  相似文献   

19.
Ethyl-4-[trans-4-[((2S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl)amino] phenoxy]propyl) amino]cyclohexyl]benzoate hydrochloride (SAR150640) was characterized as a new potent and selective beta(3)-adrenoceptor agonist for the treatment of preterm labor. SAR150640 and its major metabolite, the corresponding acid 4-[trans-4-[((2S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl) amino] phenoxy]propyl)amino]cyclohexyl]benzoic acid (SSR500400), showed high affinity for beta(3)-adrenoceptors (K(i) = 73 and 358 nM) and greater potency than (-)-isoproterenol in increasing cAMP production in membrane preparations from human neuroblastoma cells (SKNMC), which express native beta(3)-adrenoceptors (pEC(50) = 6.5, 6.2, and 5.1, respectively). SAR150640 and SSR500400 also increased cAMP production in membrane preparations from human uterine smooth muscle cells (UtSMC), which also express native beta(3)-adrenoceptors (pEC(50) = 7.7 and 7.7, respectively). In these cells, SAR150640 dose-dependently inhibited oxytocin-induced intracellular Ca(2+) mobilization and extracellular signal-regulated kinase 1/2 phosphorylation. SAR150640 and SSR500400 had no beta(1)- or beta(2)-agonist or antagonist activity in guinea pig atrium and trachea, or in human isolated atrium and bronchus preparations. Both compounds concentration-dependently inhibited spontaneous contractions in human near-term myometrial strips, with greater potency than salbutamol and 4-[3-[(1,1-dimethylethyl)-amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP12177) (pIC(50) = 6.4, 6.8, 5.9, and 5.8, respectively), but with similar potency to (-)-isoproterenol and atosiban (oxytocin/vasopressin V(1)a receptor antagonist). SAR150640 also inhibited the contractions induced by oxytocin and prostaglandin F(2alpha). In vivo, after intravenous administration, SAR150640 (1 and 6 mg/kg), but not atosiban (6 mg/kg), dose-dependently inhibited myometrial contractions in conscious unrestrained female cynomolgus monkeys, with no significant effects on heart rate or blood pressure. In contrast, salbutamol (50 and 250 microg/kg) had no inhibitory effect on uterine contractions, but it dose-dependently increased heart rate. These findings indicate a potential for the therapeutic use of SAR150640 in mammals during preterm labor.  相似文献   

20.
SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], a new nonpeptide tachykinin neurokinin 1 (NK1) receptor antagonist, was evaluated against the neurochemical, electrophysiological, and behavioral effects provoked by direct activation of brain tachykinin NK1 receptors or by stress in guinea pigs. SSR240600 (0.1-10 mg/kg i.p. or p.o.) antagonized the excitatory effect of i.c.v. infusion of [Sar(9),Met(O2)(11)]substance P (SP) on the release of acetylcholine in the striatum of anesthetized and awake guinea pigs. This antagonistic action was still observed after repeated administration of SSR240600 (5 days, 10 mg/kg p.o., once a day). SSR240600 (10 mg/kg i.p.) inhibited the phosphorylation of the cAMP response element-binding protein in various brain regions induced by i.c.v. administration of [Sar9,Met(O2)(11)]SP. In slice preparations, neuronal firing of the locus coeruleus (LC) neurons elicited by the application of [Sar9,Met(O2)(11)]SP was suppressed by SSR240600 at 100 nM. Norepinephrine release in the prefrontal cortex, elicited either by an intra-LC application of [Sar9,Met(O2)(11)]SP or by an i.c.v administration of corticotropin-releasing factor, was reduced by SSR240600 (0.3-1 mg/kg and 1-10 mg/kg i.p., respectively). SSR240600 (1-10 mg/kg i.p.) inhibited vocalizations induced in adult guinea pigs by an i.c.v. administration of the NK1 receptor agonist, GR73632 [D-Ala-[L-Pro9,Me-Leu8]substance P(7-11)]. Furthermore, SSR240600 (1-10 mg/kg i.p.) inhibited distress vocalizations produced in guinea pig pups by maternal separation. SSR240600 also reduced maternal separation-induced increase in the number of neurons displaying NK1 receptor internalization in the amygdala. Finally, SSR240600 counteracted the increase in body temperature induced by isolation stress. In conclusion, SSR240600 is able to antagonize various NK1 receptor-mediated as well as stress-mediated effects in the guinea pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号