首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of this investigation was to gain further insight into control strategies used for whole body reaching tasks. Subjects were requested to step and reach to remembered target locations in normal room lighting (LIGHT) and complete darkness (DARK) with their gaze directed toward or eccentric to the remembered target location. Targets were located centrally at three different heights. Eccentric anchors for gaze direction were located at target height and initial target distance, either 30° to the right or 20° to the left of target location. Control trials, where targets remained in place, and remembered target trials were randomly presented. We recorded movements of the hand, eye and head, while subjects stepped and reached to real or remembered target locations. Lateral, vertical and anterior–posterior (AP) hand errors and eye location, and gaze direction deviations were determined relative to control trials. Final hand location errors varied by target height, lighting condition and gaze eccentricity. Lower reaches in the DARK compared to the LIGHT condition were common, and when matched with a tendency to reach above the low target, help explain more accurate reaches for this target in darkness. Anchoring the gaze eccentrically reduced hand errors in the AP direction and increased errors in the lateral direction. These results could be explained by deviations in eye locations and gaze directions, which were deemed significant predictors of final reach errors, accounting for a 17–47% of final hand error variance. Results also confirmed a link between gaze deviations and hand and head displacements, suggesting that gaze direction is used as a common input for movement of the hand and body. Additional links between constant and variable eye deviations and hand errors were common for the AP direction but not for lateral or vertical directions. When combined with data regarding hand error predictions, we found that subjectsȁ9 alterations in body movement in the AP direction were associated with AP adjustments in their reach, but final hand position adjustments were associated with gaze direction alterations for movements in the vertical and horizontal directions. These results support the hypothesis that gaze direction provides a control signal for hand and body movement and that this control signal is used for movement direction and not amplitude.  相似文献   

2.
When the eye gaze of a face is congruent with the direction of an upcoming target, saccadic eye movements of the observer towards that target are generated more quickly, in comparison with eye gaze incongruent with the direction of the target. This work examined the conflict in an antisaccade task, when eye gaze points towards the target, but the saccadic eye movement should be triggered in the opposite direction. In a gaze cueing paradigm, a central face provided an attentional gaze cue towards the target or away from the target. Participants (N = 38) generated pro- and antisaccades to peripheral targets that were congruent or incongruent with the previous gaze cue. Paradoxically, facilitatory effects of a gaze cue towards the target were observed for both the pro- and antisaccade tasks. The results are consistent with the idea that eye gaze cues are processed in the task set that is compatible with the saccade programme. Thus, in an antisaccade paradigm, participants may anti-orient with respect to the gaze cue, resulting in faster saccades on trials when the gaze cue is towards the target. The results resemble a previous observation by Fischer and Weber (Exp Brain Res 109:507–512, 1996) using low-level peripheral cues. The current study extends this finding to include central socially communicative cues.  相似文献   

3.
We presented a mechanical target moving at constant velocity to awake, nontrained, head-restrained cats, in order to study how naive animals pursue objects moving at a high speed with their gaze. Eye movements were recorded while the target was moving in different directions at a constant velocity (20–80°/s) through the center of the visual field. We observed two oculomotor strategies: cats either made an interception saccade (IS) toward the target but opposite to its motion, or tracked it in the direction of motion. They used the interception strategy more frequently when the gaze position error at the onset of target motion was large, and the tracking strategy when it was small. Interception was always achieved by single saccades, which were faster than tracking saccades (TS). During tracking, cats generated sequences of two to six saccades separated by "smooth" eye movements. Tracking quality varied considerably from trial to trial. When the level of motivation was high, cats would track the target at 80°/s over up to 75% of the oculomotor range, with relatively small position errors. We compared ISs and TSs with respect to their metric properties and timing. The amplitudes of ISs positively correlated with position error existing 100 ms before saccade onset, but saccade vectors were directed to a point ahead of the target along the target's track. We conclude that, in programming the ISs, target motion is used to predict the future target position so as to assure a spatial lead of the gaze at the saccade end, instead of attempting a precise capture of the target. The amplitude of TSs did not depend on preceding position errors. TSs were usually small at the onset of the first saccade, as if cats would wait till the target arrived near the line of sight. A majority of primary TSs were initiated before the target arrived near the direction of gaze. Thus they had a direction, opposite to the position error sampled 100 ms before the saccade, but the same as the direction of target motion. Prediction of the future target position from its velocity vector should therefore contribute to the programming of TSs. In addition, we observed that TSs were faster when they were initiated with a spatial lag relative to the target and they were slower if there was a spatial lead or target velocity was reduced. Such a modulation appears to be analogous to the predictive correction of the saccade amplitude during smooth pursuit in primates. Considering strong visual motion sensitivity and motor properties of output neurons of the superior colliculus, it is likely that, in cats, the colliculus makes a major contribution to the integration of eye movement-related and target motion-related signals. Electronic Publication  相似文献   

4.
Monkeys were trained to make saccades to briefly flashed targets. We presented the flash during smooth pursuit of another target, so that there was a smooth change in eye position after the flash. We could then determine whether the flash-evoked saccades compensated for the intervening smooth eye movements to point the eyes at the position of the flash in space. We defined the "retinal error" as the vector from the position of the eye at the time of the flash to the position of the target. We defined "spatial error" as the vector from the position of the eye at the time of the saccade to the position of the flashed target in space. The direction of the saccade (in polar coordinates) was more highly correlated with the direction of the retinal error than with the direction of the spatial error. Saccade amplitude was also better correlated with the amplitude of the retinal error. We obtained the same results whether the flash was presented during pursuit with the head fixed or during pursuit with combined eye-head movements. Statistical analysis demonstrated that the direction of the saccade was determined only by the retinal error in two of the three monkeys. In the third monkey saccade direction was determined primarily by retinal error but had a consistent bias toward spatial error. The bias can be attributed to this monkey's earlier practice in which the flashed target was reilluminated so he could ultimately make a saccade to the correct position in space. These data suggest that the saccade generator does not normally use nonvisual feedback about smooth changes in eye or gaze position. In two monkeys we also provided sequential target flashes during pursuit with the second flash timed so that it occurred just before the first saccade. As above, the first saccade was appropriate for the retinal error provided by the first flash. The second saccade compensated for the first and pointed the eyes at the position of the second target in space. We conclude, as others have before (12, 21), that the saccade generator receives feedback about its own output, saccades. Our results require revision of existing models of the neural network that generates saccades. We suggest two models that retain the use of internal feedback suggested by others. We favor a model that accounts for our data by assuming that internal feedback originates directly from the output of the saccade generator and reports only saccadic changes in eye position.  相似文献   

5.
Visual information is vital for fast and accurate hand movements. It has been demonstrated that allowing free eye movements results in greater accuracy than when the eyes maintain centrally fixed. Three explanations as to why free gaze improves accuracy are: shifting gaze to a target allows visual feedback in guiding the hand to the target (feedback loop), shifting gaze generates ocular-proprioception which can be used to update a movement (feedback–feedforward), or efference copy could be used to direct hand movements (feedforward). In this experiment we used a double-step task and manipulated the utility of ocular-proprioceptive feedback from eye to head position by removing the second target during the saccade. We confirm the advantage of free gaze for sequential movements with a double-step pointing task and document eye–hand lead times of approximately 200 ms for both initial movements and secondary movements. The observation that participants move gaze well ahead of the current hand target dismisses foveal feedback as a major contribution. We argue for a feedforward model based on eye movement efference as the major factor in enabling accurate hand movements. The results with the double-step target task also suggest the need for some buffering of efference and ocular-proprioceptive signals to cope with the situation where the eye has moved to a location ahead of the current target for the hand movement. We estimate that this buffer period may range between 120 and 200 ms without significant impact on hand movement accuracy.  相似文献   

6.
Summary The experiment was performed to establish the accuracy with which visual targets perceived during saccadic eye movement are localised. Subjects were presented with the task of executing saccades of 30° plus amplitude, passing through primary gaze, about the time of peak velocity a 5 ms red flash was presented at some random position (up to 30° left or right of centre) on a horizontal visual display. Subjects were required to indicate the direction in which they thought the flash was localised by fixating in that direction. Observations were made under conditions of prolonged total darkness and in the presence of a contrasting background. Measurement was made of saccade velocity and eye displacement as an index of target positions. Eye displacement was linearly scaled with respect to true target direction. Targets were localised with an average error of 5°–6° although the variance was high. No systematic differences were found between conditions or subjects. Error was unrelated to saccade velocity. It is concluded that during saccadic eye movements the appreciation of target position is maintained with an acceptable degree of accuracy.  相似文献   

7.
This study investigated whether the execution of an accurate pointing response depends on a prior saccade orientation towards the target, independent of the vision of the limb. A comparison was made between the accuracy of sequential responses (in which the starting position of the hand is known and the eye centred on the target prior to the onset of the hand pointing movement) and synergetic responses (where both hand and gaze motions are simultaneously initiated on the basis of unique peripheral retinal information). The experiments were conducted in visual closed-loop (hand visible during the pointing movement) and in visual openloop conditions (vision of hand interrupted as the hand started to move). The latter condition eliminated the possibility of a direct visual evaluation of the error between hand and target during pointing. Three main observations were derived from the present work: (a) the timing of coordinated eye-head-hand pointing at visual targets can be modified, depending on the executed task, without a deterioration in the accuracy of hand pointing; (b) mechanical constraints or instructions such as preventing eye, head or trunk motion, which limit the redundancy of degrees of freedom, lead to a decrease in accuracy; (c) the synergetic movement of eye, head and hand for pointing at a visible target is not trivially the superposition of eye and head shifts added to hand pointing. Indeed, the strategy of such a coordinated action can modify the kinematics of the head in order to make the movements of both head and hand terminate at approximately the same time. The main conclusion is that eye-head coordination is carried out optimally by a parallel processing in which both gaze and hand motor responses are initiated on the basis of a poorly defined retinal signal. The accuracy in hand pointing is not conditioned by head movement per se and does not depend on the relative timing of eye, head and hand movements (synergetic vs sequential responses). However, a decrease in the accuracy of hand pointing was observed in the synergetic condition, when target fixation was not stabilised before the target was extinguished. This suggests that when the orienting saccade reaches the target before hand movement onset, visual updating of the hand motor control signal may occur. A rapid processing of this final input allows a sharper redefinition of the hand landing point.  相似文献   

8.
Most studies of rapid orienting gaze shifts generated by combined eye and head movements have focused on an experimental condition in which gaze displacements are started with the subject's eyes in the normal straight-ahead position in the orbit. Such an experimental approach does not permit a clear identification of the input signal to the head motor system, because target offset angle is the same for both the eye and head. We have studied gaze shifts in human subjects which began with the visual axis straight ahead relative to the body (i.e., gaze or line of sight aligned with body sagittal plane) and with head offset from straight ahead at various angular positions. In our experimental conditions, the amplitude of head movement during a gaze shift was nearly equal to the angular distance between the target position and the starting head position (target-re-head), even though subjects were not specifically instructed to move their heads. This observation contrasts with other published reports in the literature showing considerable varibility amongst subjects in the amplitude of head rotation within a given task and between tasks. The difference may be related to the initial conditions which required subjects to align the eye and head on specific starting targets, since others have shown that requiring head alignment enhances head displacement. The amplitude of the saccadic eye movement was not determined by either the target's position relative to the starting eye or head positions. The value that best described the eye movement amplitude was the eye position in the orbit at the end of the saccade. This was nearly equal to target-rehead until a saturation eye position in the orbit was attained.  相似文献   

9.
 Recent neurophysiological studies of the saccadic ocular motor system have lent support to the hypothesis that this system uses a motor error signal in retinotopic coordinates to direct saccades to both visual and auditory targets. With visual targets, the coordinates of the sensory and motor error signals will be identical unless the eyes move between the time of target presentation and the time of saccade onset. However, targets from other modalities must undergo different sensory-motor transformations to access the same motor error map. Because auditory targets are initially localized in head-centered coordinates, analyzing the metrics of saccades from different starting positions allows a determination of whether the coordinates of the motor signals are those of the sensory system. We studied six human subjects who made saccades to visual or auditory targets from a central fixation point or from one at 10° to the right or left of the midline of the head. Although the latencies of saccades to visual targets increased as stimulus eccentricity increased, the latencies of saccades to auditory targets decreased as stimulus eccentricity increased. The longest auditory latencies were for the smallest values of motor error (the difference between target position and fixation eye position) or desired saccade size, regardless of the position of the auditory target relative to the head or the amplitude of the executed saccade. Similarly, differences in initial eye position did not affect the accuracy of saccades of the same desired size. When saccadic error was plotted as a function of motor error, the curves obtained at the different fixation positions overlapped completely. Thus, saccadic programs in the central nervous system compensated for eye position regardless of the modality of the saccade target, supporting the hypothesis that the saccadic ocular motor system uses motor error signals to direct saccades to auditory targets. Received: 8 September 1995 / Accepted: 22 November 1996  相似文献   

10.
 We investigated whether and how adaptive changes in saccadic amplitudes (short-term saccadic adaptation) modify hand movements when subjects are involved in a pointing task to visual targets without vision of the hand. An experiment consisted of the pre-adaptation test of hand pointing (placing the finger tip on a LED position), a period of adaptation, and a post-adaptation test of hand pointing. In a basic task (transfer paradigm A), the pre- and post-adaptation trials were performed without accompanying eye and head movements: in the double-step gaze adaptation task, subjects had to fixate a single, suddenly displaced visual target by moving eyes and head in a natural way. Two experimental sessions were run with the visual target jumping during the saccades, either backwards (from 30 to 20°, gaze saccade shortening) or onwards (30 to 40°, gaze saccade lengthening). Following gaze-shortening adaptation (level of adaptation 79±10%, mean and s.d.), we found a statistically significant shift (t-test, error level P<0.05) in the final hand-movement points, possibly due to adaptation transfer, representing 15.2% of the respective gaze adaptation. After gaze-lengthening adaptation (level of adaptation 92±17%), a non-significant shift occurred in the opposite direction to that expected from adaptation transfer. The applied computations were also performed on some data of an earlier transfer paradigm (B, three target displacements at a time) with gain shortening. They revealed a significant transfer relative to the amount of adaptation of 18.5±17.5% (P<0.05). In the coupling paradigm (C), we studied the influence of gaze saccade adaptation of hand-pointing movements with concomitant orienting gaze shifts. The adaptation levels achieved were 59±20% (shortening) and 61±27% (lengthening). Shifts in the final fingertip positions were congruent with internal coupling between gaze and hand, representing 53% of the respective gaze-amplitude changes in the shortening session and 6% in the lengthening session. With an adaptation transfer of less than 20% (paradigm A and B), we concluded that saccadic adaptation does not ”automatically” produce a functionally meaningful change in the skeleto-motor system controlling hand-pointing movements. In tasks with concomitant gaze saccades (coupling paradigm C), the modification of hand pointing by the adapted gaze comes out more clearly, but only in the shortening session. Received: 9 February 1998 / Accepted: 18 August 1998  相似文献   

11.
Saccades are used by the visual system to explore visual space with the high accuracy of the fovea. The visual error after the saccade is used to adapt the control of subsequent eye movements of the same amplitude and direction in order to keep saccades accurate. Saccadic adaptation is thus specific to saccade amplitude and direction. In the present study we show that saccadic adaptation is also specific to the initial position of the eye in the orbit. This is useful, because saccades are normally accompanied by head movements and the control of combined head and eye movements depends on eye position. Many parts of the saccadic system contain eye position information. Using the intrasaccadic target step paradigm, we adaptively reduced the amplitude of reactive saccades to a suddenly appearing target at a selective position of the eyes in the orbitae and tested the resulting amplitude changes for the same saccade vector at other starting positions. For central adaptation positions the saccade amplitude reduction transferred completely to eccentric starting positions. However, for adaptation at eccentric starting positions, there was a reduced transfer to saccades from central starting positions or from eccentric starting positions in the opposite hemifield. Thus eye position information modifies the transfer of saccadic amplitude changes in the adaptation of reactive saccades. A gain field mechanism may explain the eye position dependence found.  相似文献   

12.
Summary Tight coupling between eye and head movements has been observed in response to a single visual target offset. On this basis, when the visual stimulus consists of two successive steps in the same (horizontal) direction, either increasing in eccentricity (staircase) or decreasing in eccentricity (pulse-step) gaze should be due to concomitant eye and head angular displacement. That is, the eyes and head should aim at each target displacement so that their combined movement matches target offset. We have tested this hypothesis in five healthy subjects. The measured variables were head and gaze offset, the interval between two consecutive saccades from onset to onset (I) and the response delay between onset of the second step and onset of the first gaze saccade (D). With both staircase and pulse-step stimuli, the eye saccade preceded the head movement, and the gaze response either had the stimulus profile pattern or consisted of one gaze saccade to the final target offset. In response to staircase stimuli, I decreased concomitantly with an increase in D; with pulse-step stimuli, as D increased, I decreased slightly in three subjects and decreased markedly in two subjects. Dissociation between the eye and head movements could clearly be demonstrated with pulse-step stimuli: the first gaze saccade to the target pulse displacement was accompanied by a head movement to the target step offset. We also observed cases in which the gaze saccade to the target step displacement was made simultaneously with the head movement to the target pulse offset. Our study extends previous observations in head fixed condition and illustrates that in the majority of cases, when the head is free and a visual pulse step stimulus is presented, both the saccadic and head systems have the ability to modify or cancel the initial neural command to move to the first target displacement. When this modification takes place in only one system, eye and head movements are dissociated.On leave from the Occupational Health and Rehabilitation Institute at Loewenstein Hospital, P.O. Box 3, Raanana 43 100, Israel  相似文献   

13.
Eye-head coordination in cats   总被引:1,自引:0,他引:1  
Gaze is the position of the visual axis in space and is the sum of the eye movement relative to the head plus head movement relative to space. In monkeys, a gaze shift is programmed with a single saccade that will, by itself, take the eye to a target, irrespective of whether the head moves. If the head turns simultaneously, the saccade is correctly reduced in size (to prevent gaze overshoot) by the vestibuloocular reflex (VOR). Cats have an oculomotor range (OMR) of only about +/- 25 degrees, but their field of view extends to about +/- 70 degrees. The use of the monkey's motor strategy to acquire targets lying beyond +/- 25 degrees requires the programming of saccades that cannot be physically made. We have studied, in cats, rapid horizontal gaze shifts to visual targets within and beyond the OMR. Heads were either totally unrestrained or attached to an apparatus that permitted short unexpected perturbations of the head trajectory. Qualitatively, similar rapid gaze shifts of all sizes up to at least 70 degrees could be accomplished with the classic single-eye saccade and a saccade-like head movement. For gaze shifts greater than 30 degrees, this classic pattern frequently was not observed, and gaze shifts were accomplished with a series of rapid eye movements whose time separation decreased, frequently until they blended into each other, as head velocity increased. Between discrete rapid eye movements, gaze continued in constant velocity ramps, controlled by signals added to the VOR-induced compensatory phase that followed a saccade. When the head was braked just prior to its onset in a 10 degrees gaze shift, the eye attained the target. This motor strategy is the same as that reported for monkeys. However, for larger target eccentricities (e.g., 50 degrees), the gaze shift was interrupted by the brake and the average saccade amplitude was 12-15 degrees, well short of the target and the OMR. Gaze shifts were completed by vestibularly driven eye movements when the head was released. Braking the head during either quick phases driven by passive head displacements or visually triggered saccades resulted in an acceleration of the eye, thereby implying interaction between the VOR and these rapid-eye-movement signals. Head movements possessed a characteristic but task-dependent relationship between maximum velocity and amplitude. Head movements terminated with the head on target. The eye saccade usually lagged the head displacement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. In natural conditions, gaze (i.e., eye + head) orientation is a complex behavior involving simultaneously the eye and head motor systems. Thus one of the key problems of gaze control is whether or not the vestibuloocular reflex (VOR) elicited by head rotation and saccadic eye movement linearly add. 2. Kinematics of human gaze saccades within the oculomotor range (OMR) were quantified under different conditions of head motion. Saccades were visually triggered while the head was fixed or passively moving at a constant velocity (200 deg/s) either in the same direction as, or opposite to, the saccade. Active eye-head coordination was also studied in a session in which subjects were trained to actively rotate their head at a nearly constant velocity during the saccade and, in another session, during natural gaze responses. 3. When the head was passively rotated toward the visual target, both maximum and mean gaze velocities increased with respect to control responses with the head fixed; these effects increased with gaze saccade amplitude. In addition, saccade duration was reduced so that corresponding gaze accuracy, although poorer than for control responses, was not dramatically affected by head motion. 4. The same effects on gaze velocity were present during active head motion when a constant head velocity was maintained throughout saccade duration, and gaze saccades were as accurate as with the head fixed. 5. During natural gaze responses, an increased gaze velocity and a decreased saccade duration with respect to control responses became significant only for gaze displacement larger than 30 degrees, due to the negligible contribution of head motion for smaller responses. 6. When the head was passively rotated in the opposite direction to target step, gaze saccades were slower than those obtained with the head fixed; but their average accuracy was still maintained. 7. These results confirm a VOR inhibition during saccadic eye movements within the OMR. This inhibition, present in all 16 subjects studied, ranged from 40 to 96% (for a 40 degree target step) between subjects and increased almost linearly with target step amplitude. Furthermore, the systematic difference between instantaneous VOR gain estimated at the time of maximum gaze velocity and mean VOR gain estimated over the whole saccadic duration indicates a decay of VOR inhibition during the ongoing saccade. 8. A simplified model is proposed with a varying VOR inhibition during the saccade. It suggests that VOR inhibition is not directly controlled by the saccadic pulse generator.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In addition to many other symptoms, Huntington’s Disease (HD) also causes an impairment of oculomotor functions. In particular, saccadic eye movements become progressively slower and more difficult to initiate; ultimately, patients are forced to recur to large head thrusts as means to initiate gaze shifts. We wondered whether, as a precursor of this condition, head movements would facilitate gaze shifts already in early stages of the disease. We studied horizontal head movements and eye–head coordination in 29 early stage HD patients (Ps) and 24 age matched controls (Cs). Subjects tracked random horizontal steps of visual or auditory targets while their heads were either stabilised (saccade amplitudes ≤40°) or free to move (amplitudes ≤160°). Subjects were to react either immediately (reactive mode), or wait until a go signal was sounded (delayed mode), or by antisaccades. Ps’ head velocity was found to depend on the age of disease onset in a similar way as their saccadic eye velocity does, being clearly reduced in early affected Ps, but increasing to normal levels in lately affected Ps. Yet, saccade and head velocity were only loosely correlated although both exhibited a negative correlation with the severity of Ps’ genetic condition (number of Ps’ CAG repeats). Eye–head coordination turned out to be identical in Ps and Cs except for quantitative differences caused by the lower saccade and head velocities of Ps. Specifically, the timing between head and eyes and the head contribution to gaze shifts were similar in both groups. Moreover, preventing head movements did not affect the saccade latency or accuracy of Ps. Although Ps made more small involuntary head movements in this condition than Cs, these movements were not instrumental in generating saccades since they occurred only late after saccade onset. Thus, the head manoeuvres of severely affected patients must be considered a late adaptive behaviour. Finally, the ability of both Ps and Cs to suppress immediate reactions in the delayed and antisaccade conditions diminished as target distance decreased, with failure rates in Ps being much larger than in Cs. Unlike eye and head velocity, these failure rates were not correlated with age and, by the same token, neither with the variations in head and eye velocity nor with the number of CAG repeats. Hence, the pattern of brain areas prominently affected by HD is likely to vary significantly among individuals.  相似文献   

16.
Gaze shifts vary in the extent of eye and head contribution; a large amplitude and/or an eccentric ocular orbital starting position alter the participation of head movement in the shift. The interval between eye onset and head onset determines compensatory counterrolling before and after the shift and the extent of vestibular ocular reflex reduction during the shift. The latency of eye saccades in the head-fixed condition was measured with respect to target amplitude and orbital position in order to establish base-line operations of these two variables as they apply to the headfree condition. Eye movements were measured during single-step saccades in nine young adult humans. The target step, hereafter called a jump, started from three possible fixation lights; e.g., rightward saccades started from the midline (0°) or from -20 or -40° left of the midline, with a maximum amplitude of 80°. The latency of saccades starting from the primary position increased with jump amplitude (amplitude-latency relation). When the eye started eccentrically, the latency was decreased (orbital position-latency relation), with the largest jump amplitudes most affected. These changes can be related to active eye-head coordination. Thus, with a leftward maximal orbital eccentricity, compensatory eye rotation would be impossible with a rightward head movement; however, incorporating the orbital position-latency relation, the forward ocular saccade is expedited by 90 ms. Conversely, with a primary starting position, the ocular component of an 80° gaze saccade could be slowed 125 ms by incorporating the amplitude-latency relation, thus facilitating a head contribution to the gaze shift. The orbital position and amplitude-latency relations were prominent in those subjects with habitually large head contributions to the gaze shift and minimal in individuals with typically small head contributions.  相似文献   

17.
Position sense asymmetry   总被引:1,自引:1,他引:0  
Asymmetries in upper limb position sense have been explained in the context of a left limb advantage derived from differences in hemispheric specialization in the processing of kinesthetic information. However, it is not clearly understood how the comparison of perceptual information associated with passive limb displacement and the corresponding matching movement resulting from the execution of a motor command contributes to these differences. In the present study, upper limb position sense was investigated in 12 right-hand-dominant young adults performing wrist position matching tasks which varied in terms of interhemispheric transfer, memory retrieval and whether the reference position was provided by the same or opposite limb. Right and left hand absolute matching errors were similar when the reference and matching positions were produced by the same hand but were 36% greater when matching the reference position with the opposite hand. When examining the constant errors generated from matching movements made with the same hand that provided the reference, the right and left hand matching errors (≈3°) were similar. However, when matching with the opposite limb, a large overshoot (P < 0.05) characterized the error when the right hand matched the left hand reference while a large undershoot (P < 0.05) characterized the error when the left hand matched the right hand reference. The overshoot and undershoot were of similar magnitude (≈4°). Although asymmetries in the central processing of proprioceptive information such as interhemispheric transfer may exist, the present study suggests that asymmetries in position sense predominantly result from a difference in the “gain of the respective proprioceptive sensory-motor loops”. This new hypothesis is strongly supported by a dual-linear model representing the right and left hand sensory-motor systems as well as morphological and physiological data.  相似文献   

18.
Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit—in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.  相似文献   

19.
Gaze, the direction of the visual axis in space, is the sum of the eye position relative to the head (E) plus head position relative to space (H). In the old explanation, which we call the oculocentric motor strategy, of how a rapid orienting gaze shift is controlled, it is assumed that 1) a saccadic eye movement is programmed with an amplitude equal to the target's offset angle, 2) this eye movement is programmed without reference to whether a head movement is planned, 3) if the head turns simultaneously the saccade is reduced in size by an amount equal to the head's contribution, and 4) the saccade is attenuated by the vestibuloocular reflex (VOR) slow phase. Humans have an oculomotor range (OMR) of about +/- 55 degrees. The use of the oculocentric motor strategy to acquire targets lying beyond the OMR requires programming saccades that cannot be made physically. We have studied in normal human subjects rapid horizontal gaze shifts to visible and remembered targets situated within and beyond the OMR at offsets ranging from 30 to 160 degrees. Heads were attached to an apparatus that permitted short unexpected perturbations of the head trajectory. The acceleration and deceleration phases of the head perturbation could be timed to occur at different points in the eye movement. 4. Single-step rapid gaze shifts of all sizes up to at least 160 degrees (the limit studied) could be accomplished with the classic single-eye saccade and an accompanying saccadelike head movement. In gaze shifts less than approximately 45 degrees, when head motion was prevented totally by the brake, the eye attained the target. For larger target eccentricities the gaze shift was interrupted by the brake and the average eye saccade amplitude was approximately 45 degrees, well short of the OMR. Thus saccadic eye movement amplitude was neurally, not mechanically, limited. When the head's motion was not perturbed by the brake, the eye saccade amplitude was a function of head velocity: for a given target offset, the faster the head the smaller the saccade. For gaze shifts to targets beyond the OMR and when head velocity was low, the eye frequently attained the 45 degrees position limit and remained there, immobile, until gaze attained the target.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Changing the direction of the line of sight (gaze) can involve coordinated movements of the eyes and head. During gaze shifts directed along the horizontal meridian, the contribution of the eyes and head depends upon the position of the eyes in the orbits; the contribution of the head to accomplishing the overall shift in gaze declines as the eyes increasingly are deviated away from the direction of the ensuing gaze shift. Also during horizontal gaze shifts, changes in the metrics and kinematics of the saccadic (eye movement) portion of coordinated movements, are correlated with the amplitude and velocity of the concurrent head movement. With increasing head contributions, saccade peak velocities decline, durations increase and velocity profiles develop two peaks. It remains unknown whether the interaction between head and eyes observed during horizontal gaze shifts also occurs during vertical gaze shifts. Yet, a full understanding of the neural control of eye–head coordination will depend upon the correlation of neural activity and features of vertical as well as horizontal movements. This report describes the metrics and kinematics of vertical gaze shifts made by head-unrestrained rhesus monkeys. Key observations include: (1) during vertical gaze shifts of a particular amplitude, relative eye and head contributions depend upon the initial vertical positions of the eyes in the orbits; (2) as head contribution increases, peak eye velocities decline, durations increase and vertical velocity profiles develop two peaks; (3) head movement metrics and kinematics are accurately predictable given knowledge only of head movement amplitude. In these ways, vertical gaze shifts were found to be qualitatively similar to horizontal gaze shifts. It seems probable that similar mechanisms mediate head–eye interactions during both horizontal and vertical movements. These observations are consistent with the hypothesis that a signal proportional to vertical head velocity reduces the gain of the vertical saccade burst generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号