首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Coordinate expression of BMPs and their receptors and inhibitors is likely necessary for physiologic BMP regulation and activity. To characterize the expression of such factors in fetal, normal adult, and end-stage osteoarthritic articular cartilage, samples from these sources were analyzed. PCR-amplified sequences (BMPs 1-11), receptors (IA, IB, II), TGF-beta1, TGF-beta2, inhibitors noggin and follistatin, CDMP-1, COMP, and GAPDH from cDNAs generated from extracted total RNA were resolved by gel electrophoresis. Protein levels of BMPs 3, 7, and 8 were also analyzed by SDS-PAGE and Western blotting. RT-PCR revealed that BMPs 1, 2, 4-6, and 11, BMPR-IA and II, noggin, follistatin, CDMP-1, COMP, and GAPDH mRNAs were expressed in similar fashion in both fetal and adult (normal or osteoarthritic) cartilage. BMPs 9 and 10 mRNAs were not expressed in either group. BMPs 7, 8, and BMPR-IB mRNAs were consistently expressed in fetal but not in adult cartilage. BMP-3 mRNA was expressed in fetal and normal adult, but not in osteoarthritic samples. TGF-beta1 was expressed in both adult normal and osteoarthritic, but not fetal, samples. Similarly, Western blotting demonstrated BMPs 7 and 8 to be present in fetal but not in adult samples. BMP-3 protein was present in fetal and adult normal samples, to a lesser extent, but absent in osteoarthritic cartilage.  相似文献   

3.
Members of the transforming growth factor-beta (TGF-beta) family transduce signals from the cell membrane to the nucleus via specific type I and type II receptors and Smad proteins. Smad1 and Smad5 mediate intracellular signaling of bone morphogenetic protein (BMP), whereas Smad2 and Smad3 transduce TGF-beta signaling. Smad4 is a common mediator required for both pathways. Smad6 and Smad7 inhibit signaling by members of the TGF-beta superfamily. Here, we examined the expression of Smad1 to Smad7 proteins during endochondral ossification of epiphyseal plate of growing rats using immunohistochemical techniques. The expression of Smad proteins was correlated with the expression of TGF-beta1 and its receptors, and BMP-2/4 and BMP receptors. The results show that TGF-beta1 and BMP-2/4 were actively expressed in chondrocytes that are undergoing proliferation and maturation, which overlaps with expression of their corresponding type I and type II receptors. The Smads, however, exhibited a distinct expression pattern, respectively. For example, Smad1 and Smad5 were highly expressed in proliferating chondrocytes and in those chondrocytes that are undergoing maturation. The TGF-beta/activin-restricted Smads were also expressed in a nearly complementary fashion; Smad2 was strongly expressed in proliferating chondrocytes, whereas Smad3 was strongly observed in maturing chondrocytes. Smad4 was broadly expressed in all zones of epiphyseal plate. Inhibitory Smads, Smad6 and Smad7, were strongly expressed in the zone of cartilage that contained mature chondrocytes. Our findings show a colocalization of the pathway-restricted and inhibitory Smads with activating ligands or ligands whose action they antagonize and their receptors in various zones of epiphyseal growth plate, suggesting that TGF-beta superfamily Smad signaling pathways plays a morphogenic role during endochondral bone formation.  相似文献   

4.
目的 综述有关骨形态发生蛋白(BMPs)诱导成骨的信号传导机制,深入了解BMPs基础及应用研究的理论依据。方法 查阅近期相关文献,了解BMPs相关蛋白(Smads)及其相关转录因子在BMPs诱导成骨的信号传导中的作用。结果 BMPs的信号传导过程是:BMPs首先与Ⅱ型受体和Ⅰ型受体结合,Ⅰ型受体磷酸化Smads,Smads进入核内与转录因子相互作用影响相关蛋白的转录。Smads可分为受体调节Smads(R—Smads:Smadl、2、3、5、8和9)、共同介导者Smad(Co—SmadlSmad4)和抑制性Smads(Ⅰ—Smads:Smad6、7)。Smadl、Smad5和Smad8,可能还有Smad9涉及BMPs的信号传导。多种激酶如局部粘连激酶(FAK)、Ras-细胞外信号调节激酶(ERK)、磷脂酰肌醇3激酶(P13K)和Akt丝/苏氨酸激酶与Smads的信号传导有关。与Smadl和Smad5相关的转录因子有核心结合蛋白A1(CB-FA1)、Smad相互作用蛋白1(SIPl)、鸟氨酸脱羧酶拮抗酶(OAZ)、激活蛋白-1(AP-1)、蟾蜍腹侧形成同源框蛋白-2(Xvent-2)、生长抑素(Ski)、抗增殖蛋白(Tob)、同源结构域转录因子-8(Hoxc-8)等。CBFAI与转化生长因子-β和BMP-2信号传导有关,能与Smadl、2、3、5相互作用,在骨形成中起重要作用。锁骨、颅骨发育不良被认为是CBFAI的杂合型突变引起的。CBFAI基因敲除的小鼠缺乏膜内和软骨内成骨,软骨的成熟及分化也受到了严重干扰。结论 Smads及其相关转录因子尤其是Smadl、5、8和CBFAI在BMPs诱导成骨的信号传导中起重要作用。  相似文献   

5.
OBJECTIVE: NG2 is a transmembrane chondroitin sulfate (CS) rich proteoglycan originally identified in rats. It has recently been shown to be identical to human melanoma proteoglycan (HMPG). In rats NG2 has a limited distribution in adult tissues, being expressed predominantly by neuronal and glial cells whereas during development it is also expressed in developing mesenchyme including cartilage. NG2/HMPG has putative roles in interactions between glial and melanoma cells with extracellular matrix (ECM) molecules. This study was undertaken to assess whether NG2/HMPG was expressed by normal and osteoarthritic human articular chondrocytes. DESIGN: Cryostat sections of human fetal knee joints and normal and osteoarthritic articular cartilage were immunostained with antibodies against rat NG2 (N143.8) and HMPG (M28B5, 9.2.27). Immunoprecipitation and Western blotting was carried out on protein extracts of chondrocytes from normal and osteoarthritic cartilage. Immunofluorescence of NG2 and potential ligands was carried out in vitro on cells from normal and osteoarthritic cartilage. RESULTS: Fetal and both normal and osteoarthritic adult cartilage showed strong immunoreactivity for NG2/HMPG. Western blotting showed a smeared component of molecular weight greater than 400 kDa and a faint band at 250 kDa which became predominant upon digestion with chondroitinase ABC. Immunofluorescence of chondrocytes in vitro showed NG2 to be distributed in a punctate pattern without co-localization of actin or several ECM proteins including fibronectin and type VI collagen. CONCLUSION: NG2/HMPG is expressed by human fetal and adult chondrocytes and in adult articular chondrocytes the core protein is chondroitin sulfated. The function of this molecular in human articular cartilage remains to be defined.  相似文献   

6.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF)-beta superfamily, and some display potent osteogenic activity both in vivo and in vitro. The BMP signaling cascade involving BMP receptors at the cell membrane and intracellular messengers (Smads) has been elucidated, but the regulatory mechanisms of BMP signaling have not been clarified. We previously found that pentoxifyline (PeTx), a nonspecific inhibitor of phosphodiesterase (PDE), and rolipram, a PDE-4-specific inhibitor, enhance BMP-4-induced osteogenic differentiation of mesenchymal cells, probably through the elevation of intracellular cyclic adenosine monophosphate (cAMP) accumulation and modulation of BMP signaling pathways as enhanced BMP-4 action was reproduced by addition of dibutylyl-cAMP (dbcAMP). However, the precise mechanisms underlying the enhancing effects of those agents on BMP signaling were not completely revealed. As already reported, BMPs utilize a specific intracellular signaling cascade to target genes via R-Smads (Smad1,5,8), Co-Smad (Smad4) and I-Smads (Smad6,7). One possibility for cAMP-mediated effects on BMP signaling might be suppression of I-Smads expression since these proteins form a negative feedback loop in BMP signaling. To examine this possibility, changes in I-Smad (Smad6) expression on addition of dbcAMP or PeTx were examined in a bone-marrow-derived osteogenic cell line (ST2). Alkaline phosphatase activity in ST2 cells was consistently induced by BMP-4 treatment (300 ng/ml), and Smad6 mRNA expression was also induced by BMP-4 treatment. Although concurrent treatment of ST2 cells with BMP-4 and dbcAMP elicited further activation of alkaline phosphatase, addition of dbcAMP reduced BMP-4-induced Smad6 expression in a dose-dependent manner. Furthermore, detection of phosphorylated Smad1/5/8 on Western blotting analysis was prolonged, suggesting prolonged kinase activity of BMP receptors through suppressed expression of Smad6. Elevated intracellular cAMP might thus enhance BMP signaling by suppressing Smad6 induction and prolonging intracellular BMP signaling.  相似文献   

7.
OBJECTIVE: We investigated whether chondrocytes derived from osteoarthritic cartilage may lose their responsiveness to cartilage-derived morphogenetic protein-1, -2 (CDMP-1, -2) and osteogenic protein-1 (OP-1) compared with healthy cells, thus leading to an impaired maintenance of matrix integrity. DESIGN: Chondrocytes were isolated from articular cartilage from patients with and without osteoarthritic lesions. Cells were grown as monolayer cultures for 7 days in a chemically defined serum-free basal medium (BM) in the presence of recombinant CDMP-1, -2, and OP-1. Glycosaminoglycan synthesis was measured by [35S]Sulfate incorporation into newly synthesized macromolecules. Cell proliferation was investigated by [3H]Thymidine incorporation. The endogenous gene expression of CDMPs/OP-1 and their respective type I and type II receptors was examined using RT-PCR. The presence of CDMP proteins in tissue and cultured cells was detected by Western immunoblots. RESULTS: mRNAs coding for CDMPs and their respective receptors are endogenously expressed not only in healthy, but also in osteoarthritic cartilage. CDMP proteins are present in both normal and osteoarthritic articular cartilage and cultured chondrocytes. CDMP-1, CDMP-2 and OP-1 markedly increased glycosaminoglycan synthesis in both healthy (P< 0.01) and osteoarthritic (P< 0.05) human articular chondrocytes. A comparison of the glycosaminoglycan biosynthetic activity between healthy and osteoarthritic samples revealed no detectable difference, neither in stimulated nor in unstimulated cultures. [(3)H]Thymidine incorporation showed that CDMPs/OP-1 did not affect cell proliferation in vitro. CONCLUSION: CDMPs and OP-1 exert their anabolic effects on both healthy and osteoarthritic chondrocytes indicating no loss in responsiveness to these growth factors in OA. The endogenous expression of CDMPs/OP-1 and their receptors suggest an important role in cartilage homeostasis.  相似文献   

8.
Growth plate chondrocytes integrate multiple signals during normal development. The type I BMP receptor ALK2 is expressed in cartilage and expression of constitutively active (CA) ALK2 and other activated type I BMP receptors results in maturation-independent expression of Ihh in chondrocytes in vitro and in vivo. The findings suggest that BMP signaling modulates the Ihh/PTHrP signaling pathway that regulates the rate of chondrocyte differentiation. INTRODUCTION: Bone morphogenetic proteins (BMPs) have an important role in vertebrate limb development. The expression of the BMP type I receptors BMPR-IA (ALK3) and BMPR-IB (ALK6) have been more completely characterized in skeletal development than ALK2. METHODS: ALK2 expression was examined in vitro in isolated chick chondrocytes and osteoblasts and in vivo in the developing chick limb bud. The effect of overexpression of CA ALK2 and the other type I BMP receptors on the expression of genes involved in chondrocyte maturation was determined. RESULTS: ALK2 was expressed in isolated chick osteoblasts and chondrocytes and specifically mediated BMP signaling. In the developing chick limb bud, ALK2 was highly expressed in mesenchymal soft tissues. In skeletal elements, expression was higher in less mature chondrocytes than in chondrocytes undergoing terminal differentiation. CA ALK2 misexpression in vitro enhanced chondrocyte maturation and induced Ihh. Surprisingly, although parathyroid hormone-related peptide (PTHrP) strongly inhibited CA ALK2 mediated chondrocyte differentiation, Ihh expression was minimally decreased. CA ALK2 viral infection in stage 19-23 limbs resulted in cartilage expansion with joint fusion. Enhanced periarticular expression of PTHrP and delayed maturation of the cartilage elements were observed. In the cartilage element, CA ALK2 misexpression precisely colocalized with the expression with Ihh. These findings were most evident in partially infected limbs where normal morphology was maintained. In contrast, BMP-6 had a normal pattern of differentiation-related expression. CA BMPR-IA and CA BMPR-IB overexpression similarly induced Ihh and PTHrP. CONCLUSIONS: The findings show that BMP signaling induces Ihh. Although the colocalization of the activated type I receptors and Ihh suggests a direct BMP-mediated signaling event, other indirect mechanisms may also be involved. Thus, while BMPs act directly on chondrocytes to induce maturation, this effect is counterbalanced in vivo by induction of the Ihh/PTHrP signaling loop. The findings suggest that BMPs are integrated into the Ihh/PTHrP signaling loop and that a fine balance of BMP signaling is essential for normal chondrocyte maturation and skeletal development.  相似文献   

9.
10.
Bone morphogenetic protein (BMP) signaling pathways regulate multiple aspects of endochondral bone formation. The importance of extracellular antagonists as regulators of BMP signaling has been defined. In vitro studies reveal that the intracellular regulators, inhibitory Smads 6 and 7, can regulate BMP‐mediated effects on chondrocytes. Although in vivo studies in which inhibitory Smads were overexpressed in cartilage have shown that inhibitory Smads have the potential to limit BMP signaling in vivo, the physiological relevance of inhibitory Smad activity in skeletal tissues is unknown. In this study, we have determined the role of Smad6 in endochondral bone formation. Loss of Smad6 in mice leads to defects in both axial and appendicular skeletal development. Specifically, Smad6?/? mice exhibit a posterior transformation of the seventh cervical vertebra, bilateral ossification centers in lumbar vertebrae, and bifid sternebrae due to incomplete sternal band fusion. Histological analysis of appendicular bones revealed delayed onset of hypertrophic differentiation and mineralization at midgestation in Smad6?/? mice. By late gestation, however, an expanded hypertrophic zone, associated with an increased pool of proliferating cells undergoing hypertrophy, was evident in Smad6 mutant growth plates. The mutant phenotype is attributed, at least in part, to increased BMP responsiveness in Smad6‐deficient chondrocytes. Overall, our results show that Smad6 is required to limit BMP signaling during endochondral bone formation. © 2011 American Society for Bone and Mineral Research  相似文献   

11.
OBJECTIVE: To test the hypothesis that terminal differentiation of chondrocytes in human osteoarthritic cartilage might lead to the failure of repair mechanisms and might cause progressive loss of structure and function of articular cartilage. DESIGN: Markers for terminally differentiated chondrocytes, such as alkaline phosphatase, annexin II, annexin V and type X collagen, were detected by immunohistochemical analysis of human normal and osteoarthritic knee cartilage from medial and lateral femoral condyles. Apoptosis in these specimens was detected using the TUNEL labeling. Mineralization and matrix vesicles were detected by alizarin red S staining and electron microscopic analysis. RESULTS: Alkaline phosphatase, annexin II, annexin V and type X collagen were expressed by chondrocytes in the upper zone of early stage and late stage human osteoarthritic cartilage. However, these proteins, which are typically expressed in hypertrophic and calcifying growth plate cartilage, were not detectable in the upper, middle and deep zones of healthy human articular cartilage. TUNEL labeling of normal and osteoarthritic human cartilage sections provided evidence that chondrocytes in the upper zone of late stage osteoarthritic cartilage undergo apoptotic changes. In addition, mineral deposits were detected in the upper zone of late stage osteoarthritic cartilage. Needle-like mineral crystals were often associated with matrix vesicles in these areas, as seen in calcifying growth plate cartilage. CONCLUSION: Human osteoarthritic chondrocytes adjacent to the joint space undergo terminal differentiation, release alkaline phosphatase-, annexin II- and annexin V-containing matrix vesicles, which initiate mineral formation, and eventually die by apoptosis. Thus, these cells resume phenotypic changes similar to terminal differentiation of chondrocytes in growth plate cartilage culminating in the destruction of articular cartilage in osteoarthritis.  相似文献   

12.
OBJECTIVE: To establish whether chondrocytes from normal and osteoarthritic human articular cartilage recognize and respond to pressure induced mechanical strain in a similar manner.DESIGN: Chondrocytes, extracted from macroscopically normal and osteoarthritic human articular cartilage obtained from knee joints at autopsy, were grown in monolayer culture and subjected to cyclical pressure-induced strain (PIS) in the absence or presence of anti-integrin antibodies, agents known to block ion channels and inhibitors of key molecules involved in the integrin-associated signalling pathways. The response of the cells to mechanical stimulation was assessed by measuring changes in membrane potential. RESULTS: Unlike chondrocytes from normal articular cartilage, which showed a membrane hyperpolarization response to PIS, chondrocytes from osteoarthritic cartilage responded by membrane depolarization. The mechanotransduction pathway involves alpha5beta1 integrins, stretch-activated ion channels, tyrosine kinases and phospholipase C but the actin cytoskeleton and protein kinase C, which are important in the membrane hyperpolarization response in normal chondrocytes, are not necessary for membrane depolarization in osteoarthritic chondrocytes in response to PIS. CONCLUSION: Chondrocytes derived from osteoarthritic cartilage show a different signalling pathway via alpha5beta1 integrin in response to mechanical stimulation which may be of importance in the production of phenotypic changes recognized to be present in diseased cartilage.  相似文献   

13.
OBJECTIVES: To examine the localization of bone morphogenetic protein (BMP)-2 mRNA and protein in human osteoarthritic (OA) articular cartilage and osteophyte. DESIGN: Five normal, four growing and 14 OA human cartilage samples, graded histomorphologically by Mankin Score, were studied by in situ hybridization and immunohistochemistry for the expression of BMP-2. RESULTS: BMP-2 mRNA was present in chondrocytes in neonatal growing articular cartilage, but was scarcely present in normal adult articular cartilage. In OA articular cartilage, BMP-2 mRNA and protein were detected in both clustering and individual chondrocytes in moderately or severely damaged OA cartilage. In moderately damaged OA cartilage, BMP-2 mRNA was localized in both upper and middle zone chondrocytes, but was not detected in deep layer chondrocytes. In severely damaged OA cartilage, cellular localization of BMP-2 mRNA was extended to the deep zone. In the area of osteophyte formation, BMP-2 mRNA was intensely localized in fibroblastic mesenchymal cells, fibrochondrocytes, chondrocytes and osteoblasts in newly formed osteophytic tissue. The pattern of BMP-2/4 immunolocalization was associated with that of mRNA localization. CONCLUSIONS: BMP-2 mRNA and BMP-2/4 were detected in cells appearing in OA tissues. BMP-2 was localized in cells of degenerating cartilage as well as osteophytic tissue. Given the negative localization of BMP-2 in normal adult articular cartilage, BMP-2 might be involved in the regenerating and anabolic activities of OA cells, which respond to cartilage damage occurring in osteoarthritis.  相似文献   

14.
骨关节炎软骨细胞凋亡调控基因的研究   总被引:7,自引:0,他引:7  
Hu J  Huang G  Huang S  Yang L 《中华外科杂志》2000,38(4):266-268
目的 比较分析正常人及老年性骨关节炎患者软骨细胞bax和bcl 2的表达及细胞凋亡状况。 方法 取 9例骨关节炎患者的关节软骨做实验标本 ,以 6例无骨关节炎病史的意外死亡者关节软骨作为正常对照 ;采用逆转录 /聚合酶链反应 (RT PCR)方法检测bax和bcl 2mRNA表达 ,免疫组化检测bax和bcl 2蛋白 ;应用TUNEL方法进行凋亡细胞原位检测。 结果 骨关节炎患者和正常对照软骨细胞都能表达bax和bcl 2mRNA ;骨关节炎关节软骨细胞baxmRNA表达量较正常对照显著增高 (P <0 0 1) ,bcl 2mRNA表达量也高于正常对照组 (P <0 0 5 ) ,两组间bax/bcl 2表达量的比值差异无显著性意义 (P >0 0 5 ) ;免疫组化可检测到相应表达水平的蛋白 ;骨关节炎软骨细胞凋亡 (4%~ 14% )多于正常对照 (0~ 2 % )。 结论 软骨细胞凋亡受bax和bcl 2共同调节 ;bax和bcl 2的共同调节结果可能是OA患者软骨细胞凋亡增加 ,但凋亡率不高、病理过程进展缓慢的一个重要的原因  相似文献   

15.
Many studies have shown increased anabolic activity in osteoarthritic cartilage and have suggested changes in the cellular phenotypes of articular chondrocytes. Most of these studies relied on non-quantitative technologies, which did not allow the estimation of the relative importance of the different differentiation phenomena. In the present study, we developed and used quantitative PCR assays for collagen types I, II(total), IIA, III, and X as marker genes indicating cellular synthetic activity (collagen type II) as well as differentiation pattern of chondrocytes (collagen types I, IIA, III, and X) and quantified these genes in normal, early degenerative, and late stage osteoarthritic cartilage in parallel.At first sight, our results confirmed previously published data showing hardly any expression of collagen genes in normal and significantly enhanced expression in osteoarthritic cartilage. This included collagen types II, III, and IIA, but also collagen types I(alpha1) and X. However, if one considers the ratios of the various markers of chondrocytic differentiation in comparison to collagen type II, the main synthetic product of differentiated chondrocytes, no shift in the cellular phenotype was detectable. In fact, expression ratios remained constant or were even decreased in osteoarthritic cartilage.Our results confirm that normal adult human articular chondrocytes display hardly any expression activity of the collagen types investigated, whereas osteoarthritic chondrocytes show very increased synthetic activity. The largely unchanged ratios of collagen subtypes investigated indicate that no general shift in the cellular phenotype does occur in osteoarthritic cartilage as suggested by previous investigations.  相似文献   

16.
BMP signaling components are expressed in human fracture callus   总被引:3,自引:0,他引:3  
Of the various growth factors involved in the healing response after a fracture, bone morphogenetic proteins (BMPs) are emerging as key modulators. BMPs exert their effects by binding to a complex of type I and type II receptors leading to the phosphorylation of specific downstream effector proteins called Smads. The current study examined the presence of BMP signaling components in human callus obtained from five nascent malunions undergoing fracture fixation. These callus samples represented various stages of bone healing and a mixture of endochondral and intramembraneous bone healing. We performed immunohistochemistry on the callus, using antibodies for BMP (BMP-2,-3,-4,-7), their receptors (BMPR-IA, -IB, -II), and phosphorylated BMP receptor-regulated Smads (pBMP-R-Smads). Active osteoblasts showed fairly consistent positive staining for all BMPs that were examined, with the immunoreactivity most intense for BMP-7 and BMP-3. Immunostaining for BMPs in osteoblasts appeared to colocalize with the expression of BMPR-IA, -IB, and -II. Positive immunostaining for pBMP-R-Smads suggests that the BMP receptors expressed in these cells are activated. Staining for BMPs in cartilage cells was variable. The immunostaining appeared stronger in more mature cells, whereas staining for BMP receptors in cartilage cells was less ubiquitous. However, the expression of pBMP-R-Smads in cartilage cells suggests active signal transduction. Fibroblast-like cells also had a variable staining pattern. Overall, our findings indicate the presence of BMPs, their various receptors, and activated forms of receptor-regulated Smads in human fracture callus. To the best of our knowledge, this is the first study that documents the expression of these proteins in human fracture tissue. Complete elucidation of the roles of BMP in bone formation will hopefully lead to improved fracture healing care.  相似文献   

17.
OBJECTIVE: In normal articular cartilage cells, the IGFRI/insulin-like growth factor 1 (IGF-1) autocrine pathway was shown to overrule the catabolic effects of the IL-1/IL-1RI pathway by up-regulation of the IL-1RII decoy receptor. The activity of the IGF-1/IGFR1 and IL-1/IL-1R pathways, and of the IL-1RII control mechanism in the synthesis and turnover of the extracellular matrix (ECM) by chondrocytes from normal and osteoarthritic (OA) articular cartilage was compared in order to identify possible therapeutic targets of this disease. METHODS: Phenotypically stable human articular cartilage cells were obtained from normal and OA cartilage of the same knee showing focal OA. The cells were cultured in alginate beads over 1 week to re-establish the intracellular cytokine and growth factors, to reexpress the respective plasma membrane receptors and to reach equilibrium in accumulated cell-associated matrix (CAM) compounds. Following liberation of the cells from the alginate beads, the levels of cell-associated matrix (CAM) aggrecan, type II collagen and fibronectin, of intracellular IGF-1, IL-1alpha and beta and of their respective plasma membrane-bound receptors, IGFR1, IL-1RI and the decoy receptor IL-1RII, were assayed using flow cytometry. RESULTS: Coordinated production and accumulation of CAM aggrecan and type II collagen under the effect of the IGFR1/IGF-1 autocrine pathway-as documented for chondrocytes from healthy controls-was absent when the chondrocytes had been obtained from OA joints. When compared with cells obtained from normal tissues, chondrocytes from fibrillated OA cartilage expressed significantly higher intracellular IGF-1 levels and plasma membrane-bound IGFR1. At the same time, significantly higher intracellular IL-1alpha and beta levels and upregulated plasma membrane-bound IL-1RI were observed. Plasma membrane-bound IL-1RII decoy receptor was downregulated in OA chondrocytes. The levels of CAM aggrecan, type II collagen and fibronectin were significantly reduced in the chondrocytes obtained from pathological tissue. CONCLUSION: Paired analysis of normal and OA chondrocytes from the same knee joint has shown an enhanced capacity of chondrocytes from OA cartilage to produce ECM macromolecules. However, the same cells have increased catabolic signalling pathways. As a consequence of this increased IL-1 activity and the reduced amounts of IL-1RII decoy receptor, less of the produced ECM macromolecules may persist in the CAM of the OA chondrocytes.  相似文献   

18.
OP-1/BMP-7 in cartilage repair   总被引:2,自引:2,他引:0       下载免费PDF全文
Three years ago we published a book chapter on the role of bone morphogenetic proteins (BMPs) in cartilage repair. Since that time our understanding of the function of osteogenic protein-1 (OP-1) or BMP-7 in cartilage homeostasis and repair has substantially improved and therefore we decided to devote a current review solely to this BMP. Here we summarise the information accumulated on OP-1 from in vitro and ex vivo studies with cartilage cells and tissues as well as from in vivo studies of cartilage repair in various animal models. The primary focus is on articular chondrocytes and cartilage, but data will also be presented on nonarticular cartilage, particularly from the intervertebral disc. The data show that OP-1 is a unique growth factor which, unlike other members of the same BMP family, exhibits in addition to its strong pro-anabolic activity very prominent anti-catabolic properties. Animal studies have demonstrated that OP-1 has the ability to repair cartilage in vivo in various models of articular cartilage degradation, including focal osteochondral and chondral defects and osteoarthritis, as well as models of degeneration in intervertebral disc cartilage. Together our findings indicate a significant promise for OP-1 as therapeutic in cartilage repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号