首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The perirhinal cortex is a key structure involved in memory consolidation and retrieval. In spite of the extensive anatomical studies that describe the intrinsic and extrinsic associative connections of the perirhinal cortex, the activity generated within such a network has been poorly investigated. We describe here the pattern of synaptic interactions that subtend the responses evoked in area 36 of the perirhinal cortex by neocortical and local stimulation. The experiments were carried out in the in vitro isolated guinea pig brain. The synaptic perirhinal circuit was reconstructed by integrating results obtained during intracellular recordings from layer II-III neurons with simultaneous current source density analysis of laminar profiles performed with 16-channel silicon probes. Both neocortical and local stimulation of area 36 determined a brief monosynaptic excitatory potential in layer II-III neurons, followed by a biphasic synaptic inhibitory potential possibly mediated by a feed-forward inhibitory circuit at sites close to the stimulation electrode and a late excitatory postsynaptic potential (EPSP) that propagated at distance within area 36 along the rhinal sulcus. During a paired-pulse stimulation test, the inhibitory postsynaptic potential (IPSP) and the late EPSP were abolished in the second conditioned response, suggesting that they are generated by poli-synaptic circuits. Current source density analysis of the field responses demonstrated that 1) the monosynaptic activity was generated in layers II-III and 2) the sink associated to the disynaptic responses was localized within the superficial layer of area 36. We conclude that the neocortical input induces a brief monosynaptic excitation in area 36 of the perirhinal cortex, that is curtailed by a prominent inhibition and generates a recurrent excitatory associative response that travels at distance within area 36 itself. The results suggest that the perirhinal cortex network has the potentials to integrate multimodal incoming neocortical information on its way to the hippocampus.  相似文献   

2.
A previous field potential study has indicated a monosynaptic projection of fibres from the central lateral nucleus (CL) to the mid-suprasylvian gyrus (MSSG). The present study, which is based on an analysis of current source density (CSD), aims to investigate further the sites of major localized synaptic activities in different layers of the MSSG after electrical stimulation in the CL. An initial positive surface potential was evoked in the MSSG with a latency of 3-5 ms and followed by a large negative potential with a peak latency of 8-15 ms. The initial positivity was only found in the rostral part of the MSSG, which corresponds to area 5. The positivity reversed in deeper layers. The CSD analysis showed a sink at a depth from 650 to 1050 microns. A corresponding source was found more superficially at 400-600 microns. This indicates that CL fibres have an excitatory synaptic termination on the soma or proximal dendrites of neurons in layers III and IV. The surface negative potential reversed at the border between layers II and III, suggesting a superficial CL projection. The CSD analysis of potentials in superficial layers showed a sink appearing between the pial surface and a depth of 350 microns, and a source lying in layers below. This indicates a depolarization of apical dendrites of cells in layers II and III. The superficial sink appeared in a large part of the MSSG. Application of a solution of 0.5% gamma-aminobutyric acid (GABA) on the surface of the cortex blocked the superficial sink and source and revealed a prominent sink current in layers III and IV in agreement with a deep termination of CL fibres. Application of a solution of 25 mM DL-2-amino-5-phosphono-valeric acid (APV) abolished CL-evoked cortical responses indicating that N-methyl-D-aspartate (NMDA) receptors are involved in the cortical activation. The CSD analysis confirms that CL has a wide superficial projection to the MSSG. It also confirms a deeper monosynaptic projection from CL to area 5.  相似文献   

3.
A number of sensory modalities most likely converge in the rat perirhinal cortex. The perirhinal cortex also interconnects with the amygdala, which plays an important role in various motivational and emotional behaviors. The neural pathway from the perirhinal cortex to the entorhinal cortex is considered one of the main paths into the entorhinal-hippocampal network, which has a crucial role in memory processes. To investigate the potential associative function of the perirhinal cortex with respect to sensory and motivational stimuli and the influence of the association on the perirhinal-entorhinal-hippocampal neurocircuit, we prepared rat brain slices including the perirhinal cortex, entorhinal cortex, hippocampal formation, and amygdala. We used an optical imaging technique with a voltage-sensitive dye to analyze 1) the spatial and functional distribution of inputs from the lateral nucleus of the amygdala to the perirhinal cortex; 2) the spread of neural activity in the perirhinal cortex after layers II/III stimulation, which mimics sensory input to the perirhinal cortex; and 3) the effect of associative inputs to the perirhinal cortex from both the lateral amygdaloid nucleus and layers II/III of the perirhinal cortex on the perirhinal-entorhinal-hippocampal neurocircuit. Following stimulation in the superficial layers of the perirhinal cortex, electrical activity only propagated into the entorhinal cortex when sufficient activation occurred in the deep layers of perirhinal area 35. We observed that single stimulation of either the perirhinal cortex or amygdala did not result in sufficient neural activation of the deep layers of areas 35 to provoke activity propagation into the entorhinal cortex. However, the deep layers of area 35 were depolarized much more strongly when the two stimuli were applied simultaneously, resulting in spreading activation in the entorhinal cortex. Our observations suggest that a functional neural basis for the association of higher-order sensory inputs and emotion-related inputs exists in the perirhinal cortex and that transfer of sensory information to the entorhinal-hippocampal circuitry might be affected by the association of that information with incoming information from the amygdala.  相似文献   

4.
Although a major output of the hippocampal formation is from the subiculum to the deep layers of the entorhinal cortex, the parasubiculum projects to the superficial layers of the entorhinal cortex and may therefore modulate how the entorhinal cortex responds to sensory inputs from other cortical regions. Recordings at multiple depths in the entorhinal cortex were first used to characterize field potentials evoked by stimulation of the parasubiculum in urethan-anesthetized rats. Current source density analysis showed that a prominent surface-negative field potential component is generated by synaptic activation in layer II. The surface-negative field potential was also observed in rats with chronically implanted electrodes. The response was maintained during short stimulation trains of < or =125 Hz, suggesting that it is generated by activation of monosynaptic inputs to the entorhinal cortex. The piriform cortex also projects to layer II of the entorhinal cortex, and interactions between parasubicular and piriform cortex inputs were investigated using double-site stimulation tests. Simultaneous activation of parasubicular and piriform cortex inputs with high-intensity pulses resulted in smaller synaptic potentials than were expected on the basis of summing the individual responses, consistent with the termination of both pathways onto a common population of neurons. Paired-pulse tests were then used to assess the effect of parasubicular stimulation on responses to piriform cortex stimulation. Responses of the entorhinal cortex to piriform cortex inputs were inhibited when the parasubiculum was stimulated 5 ms earlier and were enhanced when the parasubiculum was stimulated 20-150 ms earlier. These results indicate that excitatory inputs to the entorhinal cortex from the parasubiculum may enhance the propagation of neuronal activation patterns into the hippocampal circuit by increasing the responsiveness of the entorhinal cortex to appropriately timed inputs.  相似文献   

5.
The perirhinal cortex is crucially important in several forms of memory. Whilst it is important to understand the underlying mechanisms of this role in memory, little is known about the synaptic physiology or plasticity of this region of transitional cortex. In this study, we recorded evoked field potentials in superficial layers (approximately layer I) of the perirhinal cortex in vitro. One stimulating electrode was placed on the temporal side and the other on the entorhinal side of the rhinal sulcus in either the superficial or intermediate layers (approximately layers II/III). Paired stimuli resulted in depression of the second response. Paired-pulse depression was maximal at a 200-ms interpulse interval. Low-frequency stimulation resulted in synaptic depression, which returned to baseline within 60 min. The magnitude of both paired-pulse depression and low-frequency stimulation-induced depression was significantly greater at synapses activated from the temporal intermediate pathway than the other three pathways. Long-term potentiation, stable for at least 60 min, was induced by high-frequency stimulation of intermediate but not superficial pathways. Long-lasting depression (depotentiation) was induced by low-frequency stimulation following the induction of long-term potentiation. The induction of both long-term potentiation and depotentiation was N-methyl-D-aspartate receptor dependent. The group I/II metabotropic glutamate receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine was without effect on either of these forms of plasticity. Thus, both long- and short-lasting forms of synaptic plasticity exist at synapses in the perirhinal cortex, and these may mediate the changes in neuronal responses associated with visual recognition memory.  相似文献   

6.
The lateral and medial regions of the entorhinal cortex differ substantially in terms of connectivity and pattern of activation. With regard to olfactory input, a detailed and extensive physiological map of the olfactory projection to the entorhinal cortex is missing, even if anatomic studies suggest that the olfactory afferents are confined to the lateral and rostral entorhinal region. We studied the contribution of the medial and lateral entorhinal areas to olfactory processing by analyzing the responses induced by lateral olfactory tract stimulation in different entorhinal subfields of the in vitro isolated guinea pig brain. The pattern of synaptic activation of the medial and lateral entorhinal regions was reconstructed either by performing simultaneous multisite recordings or by applying current source density analysis on field potential laminar profiles obtained with 16-channel silicon probes. Current source density analysis demonstrated the existence of a direct monosynaptic olfactory input into the superficial 300 microm of the most rostral part of the lateral entorhinal cortex exclusively, whereas disynaptic sinks mediated by associative fibers arising from the piriform cortex were observed at 100-350 microm depth in the entire lateral aspect of the cortex. No local field responses were recorded in the medial entorhinal region unless a large population spike was generated in the hippocampus (dentate gyrus and CA1 region) by a stimulus 3-5x the intensity necessary to obtain a maximal monosynaptic response in the piriform cortex. In these conditions, a late sink was recorded at a depth of 600-1000 microm in the medial entorhinal area (layers III-V) 10.6 +/- 0.9 (SD) msec after a population spike was simultaneously recorded in CA1. Diffuse activation of the medial entorhinal region was also obtained by repetitive low-intensity stimulation of the lateral olfactory tract at 2-8 Hz. Higher or lower stimulation frequencies did not induce hippocampal-medial entorhinal cortex activation. These results suggest that the medial and the lateral entorhinal regions have substantially different roles in processing olfactory sensory inputs.  相似文献   

7.
1. The piriform cortex of the opossum was studied by current source-density (CSD) analysis of field potentials to determine the laminar and temporal distribution of synaptic currents evoked by lateral olfactory tract (LOT) stimulation. 2. Extracellular conductivity was measured as a function of depth at high resolution and incorporated into CSD computations. Inclusion of the conductivity term resulted in relatively subtle changes in the shapes of CSD profiles. Resolution and accuracy of CSD computations was further improved by use of a new smoothing approach and averaging of multiple potential profiles obtained at the same site. 3. The CSD depth profile resulting from LOT stimulation revealed six major synaptic events that were consistently present at anterior, middle, and posterior sites: one during the first (A1) peak of the initial surface negative dichrotic field potential component, three during the second (B1) peak, one during the surface positive field potential component (period 2), and one during the second surface negative component (period 3). In addition, CSD profiles were computed for the population spike generated by synchronous discharge of action potentials. Depths of the net inward and outward membrane currents underlying these events were correlated with the cortical lamination as determined histologically by placement of small dye marks. 4. In agreement with previous reports it is concluded that the large inward membrane current in layer Ia during the A1 wave underlies a monosynaptic EPSP evoked in distal apical dendritic segments of pyramidal cells by afferent fibers. This EPSP displays a marked paired shock facilitation. 5. Based on anatomic and physiological considerations it is concluded that the three spatially and temporally distinct inward membrane currents (sinks) that were observed in layers III, superficial Ib, and mid- to deep-Ib during the B1 wave, underlie disynaptic EPSPs resulting from direct synaptic interactions between pyramidal cells. It is postulated that the layer III sink is generated in basal dendrites largely via local axon collaterals, the superficial layer Ib sink in intermediate apical dendritic segments by association fibers originating in the anterior piriform cortex, and the deep Ib sink in proximal apical segments by association fibers originating largely in the posterior piriform cortex. 6. The latencies of the layer Ia and superficial layer Ib sinks (presumed mono- and large disynaptic EPSPs, respectively) increased from anterior to posterior. Amplitude of the superficial Ib sink relative to the Ia sink increased from anterior to posterior.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The rhinal cortices play a critical role in high-order perceptual/mnemonic functions and constitute the main route for impulse traffic to and from the hippocampus. However, previous work has revealed that neocortical stimuli that activate a large proportion of perirhinal neurons are unable to discharge entorhinal cells. In search of mechanisms that might facilitate impulse transfer from the neocortex to the entorhinal cortex, we have examined changes in excitability produced by activation of the lateral amygdala (LA) in isoflurane-anesthetized animals. LA stimulation activated a large proportion of peri- and entorhinal neurons. However, conditioning LA stimuli did not increase the ability of neocortical inputs to activate entorhinal cells even though such pairing produced marked increases in neocortically evoked field potentials and orthodromic firing in the perirhinal cortex. Moreover, increased neocortically evoked perirhinal field potentials and unit responses persisted when the conditioning LA shock was replaced by another neocortical stimulus at the same or at a different site as the testing shock. This perirhinal paired-pulse facilitation (PPF) was maximal with interstimulus intervals of approximately 100 ms. Intracellular recordings of perirhinal neurons revealed that the PPF was generally associated with a rapid shift in the balance between inhibition and excitation, leading to an overall increase in perirhinal responsiveness. The significance of these findings for the role of the perirhinal cortex is discussed.  相似文献   

9.
The perirhinal cortex is crucially involved in various forms of learning and memory. Decrements in neuronal responsiveness occur in the perirhinal cortex with stimulus repetition during visual recognition performance. However, very little is known concerning the underlying mechanisms of synaptic transmission and plasticity in this cortical region. In this study, we provide evidence demonstrating the presence of functional group I, II and III metabotropic glutamate receptors in the rat perirhinal cortex in vitro. Furthermore, the results demonstrate long-lasting synaptic depression in the perirhinal cortex. Extracellular synaptic responses were recorded from superficial layers of the perirhinal cortex directly below the rhinal sulcus, in response to electrical stimuli delivered in the superficial or intermediate layers to the entorhinal or temporal cortex sides of the rhinal sulcus. Evoked synaptic potentials were depressed during bath perfusion of each of the following: the broad-spectrum metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, the selective group I agonist (R,S)-3,5-dihydroxyphenylglycine, the group II agonist (2S,1'R,2'R,3'R)-(2',3'-dicarboxycyclopropyl)glycine and the group III agonist (S)-2-amino-4-phosphonobutanoate. Furthermore, there was a long-lasting depression of synaptic transmission following washout of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, (R,S)-3,5-dihydroxyphenylglycine or (2S,1'R,2'R,3'R)-(2',3'-dicarboxy-cyclopropyl)glycine. Activation of group III metabotropic glutamate receptors by (S)-2-amino-4-phosphonobutanoate did not result in long-lasting changes in synaptic transmission. Thus, the pharmacological activation of metabotropic glutamate receptors can produce short- or long-term changes in synaptic transmission in the perirhinal cortex. It is possible therefore, that metabotropic glutamate receptors are involved in the decrement in neuronal responsiveness associated with visual recognition in the perirhinal cortex.  相似文献   

10.
Hippocampal formation plays a prominent role in episodic memory formation and consolidation. It is likely that episodic memory representations are constructed from cortical information that is mostly funnelled through the entorhinal cortex to the hippocampus. The entorhinal cortex returns processed information to the neocortex. Retrograde tracing studies have shown that neocortical afferents to the entorhinal cortex originate almost exclusively in polymodal association cortical areas. However, the use of retrograde studies does not address the question of the laminar and topographical distribution of cortical projections within the entorhinal cortex. We examined material from 60 Macaca fascicularis monkeys in which cortical deposits of either (3)H-amino acids or biotinylated dextran-amine as anterograde tracers were made into different cortical areas (the frontal, cingulate, temporal and parietal cortices). The various cortical inputs to the entorhinal cortex present a heterogeneous topographical distribution. Some projections terminate throughout the entorhinal cortex (afferents from medial area 13 and posterior parahippocampal cortex), while others have more limited termination, with emphasis either rostrally (lateral orbitofrontal cortex, agranular insular cortex, anterior cingulate cortex, perirhinal cortex, unimodal visual association cortex), intermediate (upper bank of the superior temporal sulcus, unimodal auditory association cortex) or caudally (parietal and retrosplenial cortices). Many of these inputs overlap, particularly within the rostrolateral portion of the entorhinal cortex. Some projections were directed mainly to superficial layers (I-III) while others were heavier to deep layers (V-VI) although areas of dense projections typically spanned all layers. A primary report will provide a detailed analysis of the regional and laminar organization of these projections. Here we provide a general overview of these projections in relation to the known neuroanatomy of the entorhinal cortex.  相似文献   

11.
Evoked field potentials and extracellular unitary activity were recorded from entorhinal lateral and subicular ventral cortices under conditions of amygdala stimulation in equithesin-anesthetized rats. The stimulation of the lateral and basolateral nuclei of the amygdaloid complex evoked field potentials consisting of negative-positive waves in layers III-VI and positive-negative deflections in the superficial layers of the ventral subdivision of the entorhinal cortex. The stimulation of the lateral nucleus evoked similar potentials in the dorsal subdivision of this cortex. And the stimulation of the lateral and basolateral nuclei of the amygdala evoked negative-positive field potentials in layer III of the subicular cortex. Cellular activity of the entorhinal and subicular cells evoked by stimulation of the lateral and basolateral nuclei consisted of an excitatory response followed by a prolonged suppression period. This activation coincided with the negative potential recorded in the deeper layers of these cortices. Such observations provide support for amygdaloid projection to the entorhinal and subicular cortices as recent anatomical findings suggested. The functional significance of these observations indicate an amygdaloid influence on entorhinal-hippocampal neurotransmission as well as on the ventral subiculum which provides the major output from the hippocampus.  相似文献   

12.
One model of episodic memory posits that during slow-wave sleep (SWS), the synchronized discharges of hippocampal neurons in relation to sharp waves "replay" activity patterns that occurred during the waking state, facilitating synaptic plasticity in the neocortex. Although evidence of replay was found in the hippocampus in relation to sharp waves, it was never shown that this activity reached the neocortex. Instead, it was assumed that the rhinal cortices faithfully transmit information from the hippocampus to the neocortex and reciprocally. Here, we tested this idea using 3 different approaches. 1) Stimulating electrodes were inserted in the entorhinal cortex and temporal neocortex and evoked unit responses were recorded in between them, in the intervening rhinal cortices. In these conditions, impulse transfer occurred with an extremely low probability, in both directions. 2) To rule out the possibility that this unreliable transmission resulted from the artificial nature of electrical stimuli, crosscorrelation analyses of spontaneous neocortical, perirhinal, and entorhinal firing were performed in unanesthetized animals during the states of waking and SWS. Again, little evidence of propagation could be obtained in either state. 3) To test the idea that propagation occurs only when large groups of neurons are activated within a narrow time window, we computed perievent histograms of neocortical, perirhinal, and entorhinal neuronal discharges around large-amplitude sharp waves. However, these synchronized entorhinal discharges also failed to propagate across the perirhinal cortex. These findings suggest that the rhinal cortices are more than a relay between the neocortex and hippocampus, but rather a gate whose properties remain to be identified.  相似文献   

13.
Ablation of entorhinal/perirhinal cortices prevents learning associations between visual stimuli used as cues in reward schedules and the schedule state. Single neurons in perirhinal cortex are sensitive to associations between the cues and the reward schedules. To investigate whether neurons in the entorhinal cortex have similar sensitivities, we recorded single neuronal activity from two rhesus monkeys while the monkeys performed a visually cued reward schedule task. When the cue was related to the reward schedules, the monkeys made progressively fewer errors as the schedule state became closer to the reward state, showing that the monkeys were sensitive to the cue and the schedule state. Of 75 neurons recorded in the entorhinal cortex during task performance, about 30% responded. About half of these responded after cue presentation. When the relation of the cue to the reward schedules was random, the cue-related responses disappeared or lost their selectivity for schedule states. The responses of the entorhinal cortex neurons are similar to responses of perirhinal cortex neurons in that they are selective for the associative relationships between cues and reward schedules. However, they are particularly selective for the first trial of a new schedule, in contrast to perirhinal cortex where responsivity to all schedule states is seen. A different subpopulation of entorhinal neurons responded to the reward, unlike perirhinal neurons which respond solely to the cue. These results indicate that the entorhinal signals carry associative relationships between the visual cues and reward schedules, and between rewards and reward schedules that are not simply derived from perirhinal cortex by feed-forward serial processing.  相似文献   

14.
The cortical afferentation of the nucleus accumbens in the cat was studied with the aid of retrograde tracing techniques. Retrograde experiments were carried out with horseradish peroxidase or one of the fluorescent tracers Bisbenzimid, Nuclear Yellow and Fast Blue. In the anterograde experiments [3H]leucine and [35S]methionine were used as tracers.Following injections in the nucleus accumbens, retrogradely-labelled cells were found in the medial frontal cortex, the anterior olfactory nucleus, the posterior part of the insular cortex, the endopiriform nucleus, the amygdalo-hippocampal area, the entorhinal and perirhinal cortices and the subiculum of the hippocampal formation. In the medial frontal cortex most of the labelled cells were found in layers III and V of the prelimbic area (area 32 of Brodmann), but retrogradely-filled neurons were also present in the infralimbic area and in the caudoventral part of the lateral bank of the proreal gyrus. Retrogradely-labelled cells in the entorhinal and perirhinal cortices were located in the deep cellular layers. Following large injections in the nucleus accumbens, retrograde labelling in the subiculum extended from the most dorsal, septal pole to the most ventral, temporal pole.Injections of anterograde tracers were placed in the frontal cortex, the entorhinal and perirhinal cortices and the hippocampal formation. The prelimbic area was found to project via the internal capsule to mainly the rostral half of the nucleus accumbens, whereas in the caudal half of the nucleus only a lateral region receives frontal cortical fibres. Following injections in the infralimbic area only fibres passing through the nucleus accumbens were labelled. Afferents from the entorhinal and perirhinal cortices reach the nucleus accumbens by way of the external capsule and terminate mainly in a ventral zone of the nucleus accumbens.Afferents from the entorhinal area are distributed to the entire accumbens, whereas the termination field of the perirhinal afferents is largely restricted to the lateral part of the nucleus accumbens. Both the frontal cortex and the entorhinal and perirhinal cortices appear to project also to the nucleus caudatus and the tuberculum olfactorium. These cortical areas also project to the contralateral striatum.Both anterograde and retrograde tracing experiments demonstrated a topographical relationship between the subiculum and the nucleus accumbens. The ventral pole of the subiculum projects via the fornix to the medial part of the caudal half of the nucleus accumbens and to a small dorsomedial area in its rostral half. Successively more dorsal portions in the subiculum project to successively more ventrolateral parts in the rostral nucleus accumbens. The projection from the hippocampus was found to extend also to the tuberculum olfactorium. The results of the present study do not provide unambiguous criteria for the delimitation of the nucleus accumbens in the cat.  相似文献   

15.
Uva L  de Curtis M 《Neuroscience》2003,122(3):843-851
Anatomical studies demonstrated that neurons located in the superficial layers of the medial and lateral aspects of the rat entorhinal cortex (EC) project to temporal and septal portions of both the dentate gyrus (DG) and the CA1 region of the hippocampus, respectively. In the present study we investigated with electrophysiological techniques the propagation pattern of different EC subfields to the DG of the in vitro isolated brain of the guinea-pig. Laminar field potential profiles from different portions of the DG were recorded with multi-channel silicon probes following direct stimulation of the ipsilateral EC surface performed in different positions under direct visual control. Current source density analysis of laminar profiles demonstrated that i) stimulation of the rostral-medial EC induced monosynaptic responses exclusively in the temporal pole of the DG, ii) stimulation of both the lateral and the caudal portions of the EC determined a diffuse monosynaptic activation of both the intermediate and septal DG. The regions of the EC that project to different sectors of the DG in the guinea-pig do not correlate to the EC subfields identified on the basis of cytoarchitectonic criteria. The EC-evoked monosynaptic DG potentials were followed by disynaptic responses coupled with sinks located in the inner molecular layer, proximal to the EC-induced sink, where intra-DG associative synapses were demonstrated by anatomical studies. The present detailed topographical study of the EC connections with the DG in the guinea-pig demonstrates with an electrophysiological approach a projection pattern similar, even if not identical, to that described with tracer techniques in the rat. This report is essential for future studies of the dynamic parahippocampal-hippocampal interactions in the guinea-pig, and in particular in the isolated guinea-pig brain preparation.  相似文献   

16.
Summary It has previously been shown that the temporal and entorhinal cortices may be critically involved in memory. In Experiment 1, rats with either damage to the temporal cortex (TC), lateral entorhinal cortex (LEC), or the medial entorhinal cortex (MEC) were tested for retention of a preoperatively acquired simultaneous brightness discrimination task. TC and LEC lesions impaired retention, whereas MEC lesions were without mnemonic effect. In Experiment 2, rats with either disruptions of the anterior neural connections of TC (TC/Ant), posterior connections of TC (TC/Post), or conjoint disruptions (Ant/Post) were tested for retention of the visual discrimination task. TC/Ant and Post/Ant lesions resulted in relatively mild, but significant memory impairment, whereas a profound effect was seen after TC/Post lesions. The results are discussed in terms of a very important role for LEC and its connections with TC in mnemonic function.  相似文献   

17.
1. The development of excitatory activation in the visual cortex was studied in fetal and neonatal cats. During fetal and neonatal life, the immature cerebral cortex (the cortical plate) is sandwiched between two synaptic zones: the marginal zone above, and an area just below the cortical plate, the subplate. The subplate is transient and disappears by approximately 2 mo postnatal. Here we have investigated whether the subplate and the cortical plate receive functional synaptic inputs in the fetus, and when the adultlike pattern of excitatory synaptic input to the cortical plate appears during development. 2. Extracellular field potential recording to electrical stimulation of the optic radiation was performed in slices of cerebral cortex maintained in vitro. Laminar profiles of field potentials were converted by the current-source density (CSD) method to identify the spatial and temporal distribution of neuronal excitation within the subplate and the cortical plate. 3. Between embryonic day 47 (E47) and postnatal day 28 (P28; birth, E65), age-related changes occur in the pattern of synaptic activation of neurons in the cortical plate and the subplate. Early in development, at E47, E57, and P0, short-latency (probably monosynaptic) excitation is most obvious in the subplate, and longer latency (presumably polysynaptic) excitation can be seen in the cortical plate. Synaptic excitation in the subplate is no longer apparent at P21 and P28, a time when cell migration is finally complete and the cortical layers have formed. By contrast, excitation in the cortical plate is prominent in postnatal animals, and the temporal and spatial pattern has changed. 4. The adultlike sequence of synaptic activation in the different cortical layers can be seen by P28. It differs from earlier ages in several respects. First, short-latency (probably monosynaptic) excitation can be detected in cortical layer 4. Second, multisynaptic, long-lasting activation is present in layers 2/3 and 5. 5. Our results show that the subplate zone, known from anatomic studies to be a synaptic neurophil during development, receives functional excitatory inputs from axons that course in the developing white matter. Because the only mature neurons present in this zone are the subplate neurons, we conclude that subplate neurons are the principal, if not the exclusive, recipients of this input. The results suggest further that the excitation in the subplate in turn is relayed to neurons of the cortical plate via axon collaterals of subplate neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The primate rhinal cortex, consisting of areas 36 and 35 of the perirhinal cortex and the entorhinal cortex (area 28), plays a crucial role in perception and memory. We investigated the expression of messenger RNAs for brain-derived neurotrophic factor and neurotrophin-3, as well as those for their respective tyrosine kinase receptors, TrkB and TrkC, in the monkey rhinal cortex. Results from in situ hybridization revealed that each of these messenger RNAs was expressed in neurons with distinct laminar and areal patterns of distribution. Brain-derived neurotrophic factor messenger RNA was principally detected in layers V/ VI of area 36, and layers II/III and V of the entorhinal cortex. Some of the messenger RNA-positive cells in the deep layers of the rhinal cortex were confirmed to exhibit a pyramidal cell-like morphology. Neurotrophin-3 messenger RNA expression was confined to layers II/III of the entorhinal cortex. In contrast, trkB and trkC messenger RNAs were expressed rather homogeneously and abundantly throughout the rhinal cortex. The laminar and cellular distributions of brain-derived neurotrophic factor and neurotrophin-3 messenger RNAs indicate the predominant expression of these neurotrophins in projection neurons. These results suggest that brain-derived neurotrophic factor and neurotrophin-3 regulate neuronal connectivities of forward and backward projections from the rhinal cortex and contribute to functional reorganization underlying the formation and maintenance of long-term memory in primates.  相似文献   

19.
Dopaminergic modulation of neuronal function has been extensively studied in the prefrontal cortex, but much less is known about its effects on glutamate-mediated synaptic transmission in the entorhinal cortex. The mesocortical dopamine system innervates the superficial layers of the lateral entorhinal cortex and may therefore modulate sensory inputs to this area. In awake rats, systemic administration of the dopamine reuptake inhibitor GBR12909 (10 mg/kg, ip) enhanced extracellular dopamine levels in the entorhinal cortex and significantly facilitated field excitatory postsynaptic potentials (fEPSPs) in layer II evoked by piriform cortex stimulation. An analysis of the receptor subtypes involved in the facilitation of evoked fEPSPs was conducted using horizontal slices of lateral entorhinal cortex in vitro. The effects of 15-min bath application of dopamine on synaptic responses were bidirectional and concentration dependent. Synaptic responses were enhanced by 10 microM dopamine and suppressed by concentrations of 50 and 100 microM. The D(1)-receptor antagonist SCH23390 (50 microM) blocked the significant facilitation of synaptic responses induced by 10 microM dopamine and the D(2)-receptor antagonist sulpiride (50 microM) prevented the suppression of fEPSPs observed with higher concentrations of dopamine. We propose here that dopamine release in the lateral entorhinal cortex, acting through D(1) receptors, can lead to an enhancement of the salience of sensory representations carried to this region from adjacent sensory cortices.  相似文献   

20.
Slow (<1 Hz) periodic activity is a distinctive discharge pattern observed in different cortical and sub-cortical structures during sleep and anesthesia. By performing field and cellular recordings, we demonstrated that slow periodic events (0.02-0.4 Hz) are spontaneously generated in the entorhinal cortex of the in vitro isolated whole brain of the guinea pig. These events were characterized by gradually developing runs of low-amplitude (50-300 microV), high-frequency (25-70 Hz) oscillations superimposed on a slow potential that lasted 1-3 s. Both slow and fast components showed a phase reversal in the superficial layers. In layer II-III entorhinal neurons, the slow periodic events correlated to a slowly developing depolarizing envelope capped by subthreshold membrane potential oscillations and action potential discharge. Slow periodic field events propagated tangentially across the entorhinal cortex and could be triggered by stimulation of superficial associative fibers, suggesting that they were generated by and propagated via network interactions in the superficial layers. Slow periodic events were reversibly abolished by muscarinic excitation elicited by carbachol (50 microM) that promoted intracellular membrane potential depolarization associated with continuous fast oscillatory activity in the gamma frequency range. These results suggest that, as proposed in vivo, activity changes in the entorhinal cortex of the in vitro isolated guinea-pig brain reflect different activation states that are under cholinergic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号