首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiresistance to antimicrobial agents is common in staphylococci and pneumococci isolates in the Western Pacific region. The activity of linezolid, a new oxazolidinone, was evaluated against a spectrum of Gram-positive species collected in the region. Eighteen laboratories from six countries in the Western Pacific examined the linezolid susceptibility of 2143 clinical isolates of Staphylococcus aureus, coagulase-negative staphylococci (CoNS) and Enterococcus spp. using broth microdilution or disc diffusion methodology. For Streptococcus pneumoniae (n = 351) and other streptococci (n = 83), Etest (AB Biodisk, Solna, Sweden) strips were used. Results were compared with other common and important antimicrobials. Linezolid-resistant strains were not detected among streptococci or staphylococci, including a significant proportion of S. aureus strains that were multiresistant. Almost all enterococci, including 14 vancomycin-resistant Enterococcus faecium, were linezolid susceptible. A small proportion of enterococci (0.8%) were intermediate to linezolid, and one strain of Enterococcus faecalis had a zone diameter of 20 mm (resistant). The linezolid MIC ranges (MIC(90)) of those strains tested by broth microdilution or Etest were: 1-4 mg/L (2 mg/L) for S. aureus, 0.5-4 mg/L (2 mg/L) for CoNS, 0.5-4 mg/L (2 mg/L) for Enterococcus spp., 0.12-2 mg/L (1 mg/L) for S. pneumoniae and 0.25-2 mg/L (1 mg/L) for Streptococcus spp. There was no difference in linezolid susceptibility between countries or between multiresistant and susceptible strains of each species monitored.  相似文献   

2.
RWJ-54428 (MC-02,479) is a new cephalosporin with a high level of activity against gram-positive bacteria. In a broth microdilution susceptibility test against methicillin-resistant Staphylococcus aureus (MRSA), RWJ-54428 was as active as vancomycin, with an MIC at which 90% of isolates are inhibited (MIC(90)) of 2 microg/ml. For coagulase-negative staphylococci, RWJ-54428 was 32 times more active than imipenem, with an MIC(90) of 2 microg/ml. RWJ-54428 was active against S. aureus, Staphylococcus epidermidis, and Staphylococcus haemolyticus isolates with reduced susceptibility to glycopeptides (RWJ-54428 MIC range, < or = 0.0625 to 1 microg/ml). RWJ-54428 was eight times more potent than methicillin and cefotaxime against methicillin-susceptible S. aureus (MIC(90), 0.5 microg/ml). For ampicillin-susceptible Enterococcus faecalis (including vancomycin-resistant and high-level aminoglycoside-resistant strains), RWJ-54428 had an MIC(90) of 0.125 microg/ml. RWJ-54428 was also active against Enterococcus faecium, including vancomycin-, gentamicin-, and ciprofloxacin-resistant strains. The potency against enterococci correlated with ampicillin susceptibility; RWJ-54428 MICs ranged between < or = 0.0625 and 1 microg/ml for ampicillin-susceptible strains and 0.125 and 8 microg/ml for ampicillin-resistant strains. RWJ-54428 was more active than penicillin G and cefotaxime against penicillin-resistant, -intermediate, and -susceptible strains of Streptococcus pneumoniae (MIC(90)s, 0.25, 0.125, and < or = 0.0625 microg/ml, respectively). RWJ-54428 was only marginally active against most gram-negative bacteria; however, significant activity was observed against Haemophilus influenzae and Moraxella catarrhalis (MIC(90)s, 0.25 and 0.5 microg/ml, respectively). This survey of the susceptibilities of more than 1,000 multidrug-resistant gram-positive isolates to RWJ-54428 indicates that this new cephalosporin has the potential to be useful in the treatment of infections due to gram-positive bacteria, including strains resistant to currently available antimicrobials.  相似文献   

3.
RWJ-54428 (MC-02,479) is a new cephalosporin active against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The potency of this new cephalosporin against MRSA is related to a high affinity for penicillin-binding protein 2a (PBP 2a), as assessed in a competition assay using biotinylated ampicillin as the reporter molecule. RWJ-54428 had high activity against MRSA strains COL and 67-0 (MIC of 1 micro g/ml) and also showed affinity for PBP 2a, with a 50% inhibitory concentration (IC(50)) of 0.7 micro g/ml. RWJ-54428 also displayed excellent affinity for PBP 5 from Enterococcus hirae R40, with an IC(50) of 0.8 micro g/ml and a MIC of 0.5 micro g/ml. The affinity of RWJ-54428 for PBPs of beta-lactam-susceptible S. aureus (MSSA), enterococci (E. hirae), and Streptococcus pneumoniae showed that the good affinity of RWJ-54428 for MRSA PBP 2a and E. hirae PBP 5 does not compromise its binding to susceptible PBPs. RWJ-54428 showed stability to hydrolysis by purified type A beta-lactamase isolated from S. aureus PC1. In addition, RWJ-54428 displayed low MICs against strains of S. aureus bearing the four classes of staphylococcal beta-lactamases, including beta-lactamase hyperproducers. The frequency of isolation of resistant mutants to RWJ-54428 from MRSA strains was very low. In summary, RWJ-54428 has high affinity to multiple PBPs and is stable to beta-lactamase, properties that may explain our inability to find resistance by standard methods. These data are consistent with its excellent activity against beta-lactam-resistant gram-positive bacteria.  相似文献   

4.
RWJ-54428 (MC-02,479) is a new cephalosporin with activity against resistant gram-positive organisms, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae. The in vivo efficacy of RWJ-54428 was evaluated against gram-positive bacteria in four mouse models of infection. RWJ-54428 was effective in vivo against methicillin-susceptible and -resistant S. aureus in a mouse model of sepsis, with 50% effective doses being similar to those of vancomycin. In a single-dose neutropenic mouse thigh model of infection, RWJ-54428 at 30 mg/kg of body weight showed activity similar to that of vancomycin at 30 mg/kg against a strain of methicillin-resistant S. aureus. RWJ-54428 also showed a prolonged in vivo postantibiotic effect in this model. In a mouse model of pneumonia due to a penicillin-susceptible strain of Streptococcus pneumoniae, RWJ-54428 displayed efficacy and potency superior to those of penicillin G and cefotaxime. In a mouse model of pyelonephritis due to Enterococcus faecalis, RWJ-54428 had bactericidal effects similar to those of vancomycin and ampicillin, but at two- to threefold lower total daily doses. These studies show that RWJ-54428 is active in experimental mouse models of infection against gram-positive organisms, including strains resistant to earlier cephalosporins and penicillin G.  相似文献   

5.
The in vitro activity of ABT773, a new ketolide antimicrobial agent   总被引:6,自引:0,他引:6  
The in vitro activity of ABT773, a ketolide antimicrobial agent, was investigated and compared with those of seven other antibiotics. Type strains and 733 Gram-positive, Gram-negative and anaerobic isolates of clinical origin and four CHLAMYDIA: isolates were used. The activity of ABT773 was very similar to that of telithromycin, the other ketolide tested. The MIC(90) was < or = 0.5 mg/L for all bacteria examined except methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Haemophilus influenzae and BACTEROIDES: spp. The antichlamydial activity of ABT773 was greater than that of telithromycin, erythromycin and ciprofloxacin. Neither an increase in the size of the inoculm nor the addition of human serum had any marked affect on the in vitro activity of ABT773.  相似文献   

6.
Antibiotic resistance was prevalent in Gram-positive pathogens collected from 40 sites in 15 European countries during 2000-2001. Among Staphylococcus aureus, 27.3% of all isolates submitted were resistant to oxacillin and ranged from 0% of isolates from the Netherlands to 36.9% of isolates from Portugal. The overall prevalence of vancomycin-resistant Enterococcus faecium was 25.1%, with Italy submitting the largest percentage of resistant isolates (60.6%). For Streptococcus pneumoniae, 9.4% of all isolates collected were resistant to penicillin with variation by country from 0% in the Netherlands to 20.7% in Portugal. Multidrug resistance (MDR), defined as concurrent resistance to three or more antimicrobials of different chemical classes, was observed in 24.6% of S. aureus, 19.6% of E. faecium and 3.6% of S. pneumoniae. The directed spectrum agents daptomycin, linezolid and quinupristin-dalfopristin were active in vitro against all isolates regardless of their resistance to other agents. Daptomycin and quinupristin-dalfopristin (MIC(90)s 0.5 mg/L) were equally active against oxacillin-resistant S. aureus compared with linezolid (MIC(90) 2 mg/L). The activities of daptomycin, quinupristin-dalfopristin and linezolid were not affected by resistance to vancomycin in E. faecium (MIC(90)s of 4, 2 and 2 mg/L, respectively). Daptomycin was more active against penicillin-resistant S. pneumoniae (MIC(90) 0.25 mg/L) than was quinupristin-dalfopristin (MIC(90) 0.5 mg/L) or linezolid (MIC(90) 2 mg/L). Daptomycin was highly active against clinically important Gram-positive pathogens, including those that were multiply resistant to currently available agents. The results of this study provide a benchmark of the activity of daptomycin against contemporary European isolates and will serve as a baseline to monitor future changes in the susceptibility of these organisms to daptomycin.  相似文献   

7.
The in vitro activities of two new ketolides, HMR 3647 and HMR 3004, were tested by the agar dilution method against 280 strains of gram-positive bacteria with different antibiotic susceptibility profiles, including Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus spp. (group A streptococci, group B streptococci, Streptococcus pneumoniae, and alpha-hemolytic streptococci). Seventeen erythromycin-susceptible (EMs), methicillin-susceptible S. aureus strains were found to have HMR 3647 and HMR 3004 MICs 4- to 16-fold lower than those of erythromycin (MIC at which 50% of isolates were inhibited [MIC50] [HMR 3647 and HMR 3004], 0.03 microgram/ml; range, 0.03 to 0.06 microgram/ml; MIC50 [erythromycin], 0.25 microgram/ml; range, 0.25 to 0.5 microgram/ml). All methicillin-resistant S. aureus strains tested were resistant to erythromycin and had HMR 3647 and HMR 3004 MICs of > 64 micrograms/ml. The ketolides were slightly more active against E. faecalis than against E. faecium, and MICs for individual strains varied with erythromycin susceptibility. The MIC50s of HMR 3647 and HMR 3004 against Ems enterococci (MIC < or = 0.5 microgram/ml) and those enterococcal isolates with erythromycin MICs of 1 to 16 micrograms/ml were 0.015 microgram/ml. E. faecalis strains that had erythromycin MICs of 128 to > 512 micrograms/ml showed HMR 3647 MICs in the range of 0.03 to 16 micrograms/ml and HMR 3004 MICs in the range of 0.03 to 64 micrograms/ml. In the group of E. faecium strains for which MICs of erythromycin were > or = 512 micrograms/ml, MICs of both ketolides were in the range of 1 to 64 micrograms/ml, with almost all isolates showing ketolide MICs of < or = 16 micrograms/ml. The ketolides were also more active than erythromycin against group A streptococci, group B streptococci, S. pneumoniae, rhodococci, leuconostocs, pediococci, lactobacilli, and diphtheroids. Time-kill studies showed bactericidal activity against one strain of S. aureus among the four strains tested. The increased activity of ketolides against gram-positive bacteria suggests that further study of these agents for possible efficacy against infections caused by these bacteria is warranted.  相似文献   

8.
BACKGROUND: Increasing antimicrobial resistance among bacterial pathogens has prompted attempts to develop new antimicrobial agents active against multidrug-resistant Gram-positive pathogens. OBJECTIVES: To evaluate the in vitro activity of daptomycin against a worldwide collection of clinical bacterial isolates. METHODS: Daptomycin is a novel cyclic lipopeptide recently approved by the United States Food and Drug Administration. Daptomycin and selected comparators were tested against 6737 clinical Gram-positive strains from more than 70 centres located in Europe, North America and South America. RESULTS: The overall distribution of daptomycin MIC values were in the range < or = 0.12-8 mg/L and 99.4% of all strains were inhibited at < or = 2 mg/L. Despite resistances to other antimicrobial agents, >99.9% of staphylococcal isolates were inhibited at < or = 1 mg/L of daptomycin (MIC90 0.5 mg/L for staphylococci). Streptococcal isolates were very susceptible to daptomycin independent of their susceptibility to penicillin. MIC50/90 values were < or = 0.12 and 0.25 mg/L, respectively. Enterococci showed the highest daptomycin MIC values, but all isolates tested were inhibited at < or = 4 mg/L (except for one Enterococcus faecium isolate which showed a daptomycin MIC of 8 mg/L). CONCLUSIONS: Daptomycin exhibited excellent in vitro activity against a wide spectrum of Gram-positive organisms and may represent a therapeutic option for infections caused by multidrug-resistant pathogens worldwide.  相似文献   

9.
The in vitro activity of BMS-284756 (previously T-3811ME), a des-fluoro(6) quinolone, was investigated and compared with those of six other antimicrobial agents. Susceptibility tests were performed on 919 Gram-positive, Gram-negative (including nine quinolone-resistant Escherichia coli) and anaerobic bacteria, three Chlamydia isolates and four Mycobacteria spp. BMS-284756 was marginally less active against the Enterobacteriaceae, but was the most active quinolone against staphylococci, enterococci and peptostreptococci. Against Streptococcus pneumoniae, BMS-284756 and gemifloxacin were more active than other quinolones. The MIC(90) of BMS-284756 was > or = 2 mg/L for the following bacteria: E. coli (MIC(90) 16 mg/L), Acinetobacter spp. (8 mg/L), Pseudomonas aeruginosa (64 mg/L) and Enterococcus faecium (4 mg/L). The MIC of BMS-284756 for Mycobacterium spp. was within one dilution of the MIC of ciprofloxacin. BMS-284756 was markedly more active than ciprofloxacin against the Chlamydia isolates tested.  相似文献   

10.
OBJECTIVES: To analyse the in vitro antimicrobial effects of synthetic HE2alpha peptide against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. METHODS: The HE2alpha peptide was synthesized based on the C-terminal sequence of the HE2alpha protein. The bacterial strains tested included two antibiotic-susceptible strains of N. gonorrhoeae and four antibiotic-resistant clinical isolates, as well as S. aureus ATCC 29213 and E. faecalis ATCC 29212. Susceptibility determinations were carried out either in 0.7% casamino acids for N. gonorrhoeae isolates or in 10 mM phosphate buffer for S. aureus and E. faecalis strains. Antibacterial effects were measured in a dose- and time-dependent manner. After exposure to the peptide in solution, the number of viable cells was determined by counting colony forming units (cfu). RESULTS: The HE2alpha peptide exhibited time- and dose-dependent antibacterial effects on all N. gonorrhoeae isolates tested. S. aureus and E. faecalis strains were also susceptible to the peptide. All strains tested were susceptible to the peptide at high concentrations (50 or 100 mg/L) and some strains were susceptible to a peptide concentration of 25 mg/L. CONCLUSIONS: The peptide HE2alpha, which is derived from the male urogenital tract, exhibits antibacterial activity against both gram-positive and gram-negative pathogens in vitro. The peptide is active against both antibiotic-susceptible and -resistant N. gonorrhoeae isolates. Further investigation of the antimicrobial properties of the peptide is warranted.  相似文献   

11.
LTX-109 and eight other antimicrobial agents were evaluated against 155 methicillin-resistant Staphylococcus aureus (MRSA) isolates, including strains resistant to vancomycin and strains with decreased susceptibility to daptomycin and linezolid, by microdilution tests to determine MICs. Time-kill assays were performed against representative MRSA, vancomycin-intermediate S. aureus (VISA), and vancomycin-resistant S. aureus (VRSA) isolates. LTX-109 demonstrated a MIC range of 2 to 4 μg/ml and dose-dependent rapid bactericidal activity against S. aureus. This activity was not influenced by resistance to other antistaphylococcal agents.  相似文献   

12.
The in vitro activity of PD127,391, a new 4-quinolone, was compared to that of ciprofloxacin against common clinical bacterial isolates from patients with cancer. PD127,391 was found to have a broad antimicrobial spectrum with excellent activity against gram-positive isolates (including multidrug-resistant organism such as Corynebacterium jeikeium, Enterococcus faecalis, Enterococcus faecium, methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp.). It was also extremely active against gram-negative bacilli including Pseudomonas aeruginosa. Against organisms such as Achromobacter xylosoxidans, Acinetobacter spp. and Xanthomonas maltophilia, which are frequently resistant to a variety of antimicrobial agents, PD127,391 exhibited good activity, inhibiting all such isolates at a concentration of 0.5 micrograms/ml. Overall, PD127,391 was far more potent than ciprofloxacin against gram-positive isolates and slightly more active against gram-negative isolates. No bacterium that we examined needed more than 2 micrograms/ml of PD127,391 for inhibition.  相似文献   

13.
OBJECTIVES: To evaluate the spectrum of activity and potency of LBM415, the first of the peptide deformylase inhibitor (PDFI) class to be developed for treatment of community-acquired respiratory tract infections and uncomplicated skin and soft tissue infections (uSSTI), against a large, contemporary international collection of targeted pathogens collected during 2003-2004. METHODS: A total of 21,636 isolates were tested by reference broth microdilution methods as part of a longitudinal international antimicrobial resistance surveillance study. Characteristics of the organism collection included resistance to oxacillin among 35.0% of Staphylococcus aureus and 76.0% of coagulase-negative staphylococci (CoNS); resistance to penicillin (MIC > or = 2 mg/L) among 18.0% of Streptococcus pneumoniae; vancomycin resistance among 20.0% of Enterococcus spp. and ampicillin resistance among 22.0% of Haemophilus influenzae. RESULTS: LBM415 displayed potent activity against staphylococci, streptococci, Enterococcus faecium and Moraxella catarrhalis, with > or = 99.0% of strains being inhibited at < or = 4 mg/L; 97.0% of Enterococcus faecalis isolates and 92.0% of H. influenzae isolates were also inhibited at this concentration. Seventy-seven percent of Burkholderia cepacia and 82.0% of Stenotrophomonas maltophilia were inhibited at < or = 8 mg/L. No differences in LBM415 activity against S. aureus, CoNS, S. pneumoniae, Enterococcus spp. and H. influenzae were detected for subsets susceptible or resistant to antimicrobials such as oxacillin, penicillin, ampicillin, macrolides, vancomycin and fluoroquinolones. While regional differences were apparent with some comparator agents, sensitivity to LBM415 did not vary significantly among strains from the various geographic areas sampled. One isolate of S. aureus displayed high-level resistance to LBM415 owing to multiple sequence changes in resistance phenotype genes (defB and fmt), despite the absence of the compound in clinical practice. This isolate remained susceptible to all other antimicrobials tested except for penicillin. CONCLUSIONS: With few differences detected among strains from various geographic regions, the first PDFI class agent to enter clinical development has consistently demonstrated a broad spectrum of activity against commonly isolated pathogens associated with uncomplicated respiratory and cutaneous infections. These compounds represent a significant therapeutic advance owing to their novel mechanism of action and antibacterial spectrum, including activity against resistant organisms, should pharmacokinetic and pharmacodynamic parameters support their continued development. Given the detection of a pre-existing PDFI-resistant isolate of S. aureus as demonstrated here, surveillance for resistance among the PDFI-targeted pathogens following introduction of this class of agent into clinical usage will be an important component of future studies.  相似文献   

14.
The antimicrobial activity of human beta-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.  相似文献   

15.
The antibacterial activity of DQ-113, formerly D61-1113, was compared with those of antibacterial agents currently available. MICs at which 90% of the isolates tested are inhibited (MIC90s) of DQ-113 against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and methicillin-susceptible and -resistant coagulase-negative staphylococci were 0.03, 0.008, 0.03, and 0.06 microg/ml, respectively. Moreover, DQ-113 showed the most potent activity against ofloxacin-resistant and methicillin-resistant S. aureus, with a MIC90 of 0.25microg/ml. DQ-113 inhibited the growth of all strains of Streptococcus pneumoniae, including penicillin-resistant strains, and Streptococcus pyogenes at 0.06 microg/ml, and DQ-113 was more active than the other quinolones tested against Enterococcus faecalis and Enterococcus faecium with MIC90s of 0.25 and 2 microg/ml, respectively. Against vancomycin-resistant enterococci, DQ-113 showed the highest activity among the reference compounds, with a MIC range from 0.25 to 2 microg/ml. DQ-113 also showed a potent activity against Haemophilus influenzae, including ampicillin-resistant strains (MIC90, 0.015 microg/ml), and Moraxella catarrhalis (MIC90, 0.03 microg/ml). The activity of DQ-113 was roughly comparable to that of levofloxacin against all species of ENTEROBACTERIACEAE: The MICs of DQ-113 against ofloxacin-susceptible Pseudomonas aeruginosa ranged from 0.25 to 2 microg/ml, which were four times higher than those of ciprofloxacin. From these results, DQ-113 showed the most potent activity against gram-positive pathogens among antibacterial agents tested.  相似文献   

16.
The activity of daptomycin was assessed by using 6,973 gram-positive bacteria isolated at 50 United States hospitals in 2000 and 2001. Among the isolates of Streptococcus pneumoniae (n = 1,163) collected, the rate of penicillin resistance was 16.1%; rates of oxacillin resistance among Staphylococcus aureus isolates (n = 1,018) and vancomycin resistance among Enterococcus faecium isolates (n = 368) were 30.0 and 59.5%, respectively. Multidrug-resistant (MDR) phenotypes (isolates resistant to three or more different chemical classes of antimicrobial agents) accounted for 14.2% of S. pneumoniae isolates, 27.1% of S. aureus isolates, and 58.4% of E. faecium isolates. For all gram-positive species tested, MICs at which 90% of the isolates tested were inhibited (MIC(90)s) and MIC ranges for directed-spectrum agents (daptomycin, quinupristin-dalfopristin, and linezolid) were identical or highly similar for isolates susceptible or resistant to other agents or MDR. Daptomycin had a MIC(90) of 0.12 micro g/ml for both penicillin-susceptible and -resistant isolates of S. pneumoniae. Against oxacillin-resistant S. aureus daptomycin had a MIC(90) of 0.5 micro g/ml, and it had a MIC(90) of 4 micro g/ml against both vancomycin-susceptible and -resistant E. faecium. The MIC(90)s for daptomycin and other directed-spectrum agents were unaffected by the regional or anatomical origin of isolates or patient demographic parameters (patient age, gender, and inpatient or outpatient care). Our results confirm the gram-positive spectrum of activity of daptomycin and that its activity is independent of susceptibility or resistance to commonly prescribed and tested antimicrobial agents. This study may serve as a baseline to monitor future changes in the susceptibility of gram-positive species to daptomycin following its introduction into clinical use.  相似文献   

17.
The in vitro activity of decaplanin (formerly M86-1410), a novel glycopeptide antimicrobial agent, was tested against 169 gram-positive bloodstream isolates from patients at the University of Iowa Hospitals and Clinics and 12 selected vancomycin-resistant strains. Enterococcus faecalis, E. faecium, Staphylococcus aureus, streptococci, bacilli, corynebacteria, and listeria were inhibited by decaplanin (MICs for 90% of the strains tested [MIC90s], 0.12 to 4 micrograms/ml). However, some rarely isolated and selected Enterococcus sp. populations had a MIC90 of 16 micrograms/ml, and S. haemolyticus strains had a MIC90 of 8 micrograms/ml. These in vitro results suggest that decaplanin may be useful against most gram-positive strains, even though some Enterococcus species and coagulase-negative staphylococci were potentially resistant (MICs, greater than or equal to 8 micrograms/ml).  相似文献   

18.
RWJ-54428 (also known as MC-02,479) is a new cephalosporin with promising activity against gram-positive bacteria. The pharmacodynamics (PDs) of RWJ-54428 against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis were studied in a neutropenic mouse thigh infection model. The RWJ-54428 MICs ranged from 0.25 to 1 mg/liter. Mice with ca. 10(6) CFU/thigh at the initiation of therapy were treated intraperitoneally with RWJ-54428 at doses that ranged from 3 to 1,200 mg/kg of body weight/day (in 2, 3, 4, 6, or 12 divided doses) for 24 h. The maximal reductions in bacterial counts in thigh tissues at 24 h for the methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and E. faecalis strains were -2.8, -3.8, and -1.7 log10 CFU/thigh, respectively. The percentage of a 24-h dosing interval that the unbound serum RWJ-54428 concentrations exceeded the MIC (fT>MIC) was the pharmacokinetic (PK)-PD parameter that best described the efficacy of RWJ-54428. The fT>MICs for a bacteriostatic effect (no net change in the numbers of CFU/thigh over 24 h) ranged from 14 to 20% for staphylococci and streptococci; for maximal reductions in the numbers of CFU/thigh, the fT>MICs ranged from 22 to 36% for these strains. For E. faecalis, the ranges of fT>MICs for static and maximal effects were 30 to 46% and 55 to 60%, respectively. These data show that treatment with RWJ-54428 results in marked antibacterial effects in vivo, with the PK-PD parameters for efficacy being comparable to those for the efficacy of penicillins and carbapenems active against staphylococci and pneumococci.  相似文献   

19.
OBJECTIVES: Emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. In this study, the in vitro antibacterial activity of para-guanidinoethylcalix[4]arene was evaluated and compared with that of its constitutive monomer, para-guanidinoethylphenol. Hexamidine, a widely used antiseptic, and synthalin A, an old antidiabetic and anti-trypanosomal compound, were chosen as references. METHODS: MIC and MBC were determined for five reference strains (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and ATCC 29213, Enterococcus faecalis ATCC 29212 and Pseudomonas aeruginosa ATCC 27853), as well as five antibiotic-resistant clinical isolates. Toxicity on MRC-5 and HaCaT eukaryotic cell lines was also evaluated by MTT and Neutral Red assays. RESULTS: No antibacterial activity was observed for para-guanidinoethylphenol (MIC >or= 512 mg/L) and synthalin A (MIC >or= 64 mg/L). Conversely, para-guanidinoethylcalix[4]arene and hexamidine: (i) showed a broad antibacterial spectrum, both on Gram-positive and on Gram-negative bacteria (MIC = 4 mg/L against E. coli and 8 mg/L against S. aureus for para-guanidinoethylcalix[4]arene), to a lesser degree against E. faecalis and P. aeruginosa (MIC = 32 mg/L); (ii) were bacteriostatic (MBC >or= 256 mg/L); and (iii) MICs and MBCs obtained for clinical isolates were similar to those obtained with reference strains. Both compounds, the monomer and the calixarene, showed no apparent cytotoxicity, whereas hexamidine and synthalin A had significant toxic effects that increased with time and concentration and in a range of 100-1000 times that for calixarene. CONCLUSIONS: In conclusion, results confirm para-guanidinoethylcalix[4]arene as a broad-spectrum new agent or an auxiliary in antimicrobial chemotherapy.  相似文献   

20.
The in vitro activity of moxifloxacin, formerly BAY 12-8039, against gram-positive bacteria was tested by the agar dilution method. A total of 189 isolates that included Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, streptococci, rhodococci, leuconostocs, pediococci, lactobacilli, and diphtheroids were tested. Moxifloxacin showed greater potency than ciprofloxacin against S. aureus, streptococci, and enterococci, having Minimal Inhibitory Concentrations (MICs) lower than those of ciprofloxacin by 2- to 64-fold. This improved activity was most prominent for S. aureus. Moxifloxacin was active against Leuconostoc and Rhodococcus species. Time-kill studies using moxifloxacin at a concentration of 3 micrograms/mL against one isolate each of methicillin-resistant S. aureus (MSSA) (MIC, 0.031 microgram/mL), MRSA (MIC, 1 microgram/mL), two isolates of E. faecalis (MICs, 0.25 and 2 micrograms/mL), and two isolates of vancomycin-resistant E. faecium (MICs, 0.25 and 2 micrograms/mL) revealed an average decrease in colony forming unit (CFU) by 3.8, 0.4, 4.0, 2.0, 4.2, and 1.8 log10 CFU/mL at 24 h, respectively. Moxifloxacin is a new 8-methoxyquinolone with improved in vitro activity against gram-positive bacteria. Further studies of the in vivo activity of this compound appear warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号