首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chikungunya virus (CHIKV), an emerging mosquito-borne Alphavirus, causes debilitating rheumatic disease in humans that can last for weeks to months. Starting in 2004, a CHIKV outbreak in the Indian Ocean region affected millions of people, and infected travelers introduced CHIKV to new regions. The pathogenesis of CHIKV is poorly understood, and no approved vaccines or specific therapies exist. A major challenge to the study of CHIKV disease is the lack of a small animal model that recapitulates the major outcomes of human infection. In this study, the pathogenesis of CHIKV in C57BL/6J mice was investigated using biological and molecular clones of CHIKV isolated from human serum (CHIKV SL15649). After 14-day-old mice were inoculated with CHIKV SL15649 in the footpad, they displayed reduced weight gain and swelling of the inoculated limb. Histologic analysis of hind limb sections revealed severe necrotizing myositis, mixed inflammatory cell arthritis, chronic active tenosynovitis, and multifocal vasculitis. Interestingly, these disease signs and viral RNA persisted in musculoskeletal tissues for at least 3 weeks after inoculation. This work demonstrates the development of a mouse model of CHIKV infection with clinical manifestations and histopathologic findings that are consistent with the disease signs of CHIKV-infected humans, providing a useful tool for studying viral and host factors that drive CHIKV pathogenesis and for evaluating potential therapeutics against this emerging viral disease.  相似文献   

2.
BackgroundArboviruses are important emerging viruses worldwide. The signs and symptoms of Zika virus (ZIKV) infection are similar to those presented by infections with dengue virus (DENV) and chikungunya virus (CHIKV). Furthermore, diagnosis of ZIKV infection is particularly challenging in dengue endemic regions and with co-circulation of DENV, CHIKV, and ZIKV, making diagnosis based solely on clinical and epidemiological data unreliable. As these three viral infections share similar clinical manifestations, differential diagnosis is crucial.ObjectivesIn this study, diagnoses of ZIKV, CHIKV and DENV infections were investigated in 30 patients with suspected dengue fever residing in the area of co-circulation of these three arboviruses.Study designThe study included whole blood and/or serum samples obtained from 30 patients with suspected dengue fever. All patients were tested for DENV infection as well as for CHIKV and ZIKV infections. Assays for detecting anti-DENV IgM and DENV RNA by semi-nested RT-PCR and ZIKV and CHIKV RNA by real-time RT-PCR were performed.ResultsDENV RNA was not detectable in any of the clinical samples, whereas ZIKV RNA was detectable in 17 samples (56.7%). Co-infection by ZIKV and CHIKV was documented in one case. Of the 17 ZIKV-positive individuals, 8 showed reactivity for anti-DENV IgM, which suggested recent DENV infection, cross-reactivity or co-infection.ConclusionOur findings confirm that accurate laboratory testing is of paramount importance for differential diagnosis in areas of simultaneous transmission of different arboviruses with similar clinical presentations.  相似文献   

3.
4.
5.
Chikungunya has emerged as one of the most important arboviral infection of global significance. Expansion of Chikungunya virus endemic areas can be ascribed to naive population, increasing vector population and adaptability of virus to new vector. In this study, a SYBR Green I based quantitative RT-PCR assay was developed. The assay was found to be 10-fold more sensitive than conventional RT-PCR and no cross reactivity was observed with related alphaviruses and flaviviruses. The detection efficiency of the assay was impervious to mosquitoes of different pool sizes. Vector surveillance has resulted in detection of CHIKV RNA in Aedes aegypti, confirming its vectorial potential for CHIKV in northern India. The assessment of the assay was further carried out by studying the competence of Indian Ae. aegypti for CHIKV, which revealed 100% infection rate and dissemination rate with 60% transmission rate. The replication kinetics of CHIKV in different anatomical sites of Ae. aegypti revealed highest titre at day 6 post infection in midgut and at day 10 post infection in saliva, legs and wings. The implementation of the assay in detecting lower viral load makes it a remarkable tool for surveillance of virus activity in mosquitoes.  相似文献   

6.
Chikungunya fever (CHIKF) is an acute febrile illness caused by a mosquito-borne alphavirus, chikungunya virus (CHIKV). This disease re-emerged in Kenya in 2004, and spread to the countries in and around the Indian Ocean. The re-emerging epidemics rapidly spread to regions like India and Southeast Asia, and it was subsequently identified in Europe in 2007, probably as a result of importation of chikungunya cases. On the one hand, chikungunya is one of the neglected diseases and has only attracted strong attention during large outbreaks. In 2008–2009, there was a major outbreak of chikungunya fever in Thailand, resulting in the highest number of infections in any country in the region. However, no update of CHIKV circulating in Thailand has been published since 2009. In this study, we examined the viral growth kinetics and sequences of the structural genes derived from CHIKV clinical isolates obtained from the serum specimens of CHIKF-suspected patients in Central Thailand in 2010. We identified the CHIKV harboring two mutations E1-A226V and E2-I211T, indicating that the East, Central, and South African lineage of CHIKV was continuously circulating as an indigenous population in Thailand.  相似文献   

7.
Zika virus (ZIKV) and chikungunya virus (CHIKV) are important human pathogens and mosquito‐borne arboviruses, which have resembling history, common vectors, circulating regions, and indistinguishable clinical symptoms. Wide geographical range that is suitable for ZIKV and CHIKV transmission underlines the concern about the impact of epidemic and endemic infections on burden of public health. In the present study, a highly sensitive and specific one‐step multiplex real‐time RT‐PCR assay was developed and evaluated for simultaneous detection and quantification of ZIKV and CHIKV. The single reaction assay employs two pairs of primers and two TaqMan probes that differentiate ZIKV and CHIKV infections. The entire viral genomic RNA in vitro transcribed from full‐length infectious clones were used to generate the standard curves for absolute quantification in subsequent tests. The detection limit of the one‐step multiplex assay was 1 and 0.5 PFU for infectious ZIKV and CHIKV, respectively. The assessment of specificity indicated this assay is highly specific to targeted viruses showing no amplification of a variety of other flaviviruses. Our assay was able to detect geographically separated and phylogenetically diverse strains of ZIKV and CHIKV. On the applicability of monitoring viral multiplication in cells and testing clinical samples, the one‐step multiplex assay provided efficient and accurate determination. The one‐step multiplex real‐time RT‐PCR assay offers a valuable tool for detection of ZIKV and CHIKV and potentially contributes to general surveillance and clinical treatment.
  相似文献   

8.
INTRODUCTION: In 2005-2006, during the Chikungunya virus outbreak in La Réunion (Indian Ocean), we urgently established the molecular and serological methods for the diagnosis of Chikungunya virus (CHIKV) from various types of samples. METHODS: CHIKV RNA was detected using a highly sensitive real-time RT PCR assay. A co-extracted and co-amplified internal control RNA was used to identify RT PCR inhibitors. Depending on their nature samples were pretreated before nucleic acid extraction. Viral loads were measured using a synthetic RNA calibrator. CHIKV immunoglobulin (Ig) G and M antibodies were detected by ELISA either from sera or from blood absorbed on filter paper. RESULTS: CHIKV RNA was found in various types of samples such as plasma, cerebrospinal fluid, and placenta, but was not found in some samples including maternal milk and synovial samples. Detection of IgG from filter paper absorbed blood is specific and sensitive. Routine data showed that maternally transferred IgG and naturally acquired IgM persist at least 12 and 18 months, respectively. DISCUSSION: The techniques enabled the diagnosis of chikungunya in known and newly described forms of the disease. They are used for routine diagnosis and large scale surveys.  相似文献   

9.
Introduction: Re-emergence of Chikungunya is a major public health problem in the southern states of India. Objectives: This study was undertaken to investigate an outbreak of Chikungunya, in June–August 2008 using PCR and determine the prevalent genotypes of Chikungunya virus (CHIKV) associated with the outbreak. Materials and Methods: Samples of blood were collected (in heparinized vacutainer tubes) from suspected patients of CHIKV infection from both Government Taluk Hospital in Kerala and a tertiary care hospital in Chennai, Tamil Nadu. A one-step RT-PCR was carried out on a block thermo-cycler targeting the E2 gene that codes for the viral envelope protein. The amplicons were verified for 305 bp size by standard agarose gel electrophoresis. The PCR products were purified, sequenced, and compared with other CHIKV strains reported from different geographical regions. A phylogenetic tree was constructed using MEGA 4. Results: Altogether 118 samples were collected from patients who presented with sudden onset of fever and/or joint pain, myalgia, and headache. CHIKV infection was confirmed by RT-PCR in 14 patients and all these cases were from Kerala. The positivity correlated with the early stage of the disease as all these patients had fever of less than seven days duration. The study isolates have been allotted the GenBank accession nos. GQ272368–GQ272381. Phylogenetic analysis of recent CHIKV isolates by partial sequencing of E2 region shows that isolates are closely related to strains from neighboring states and the African type. Conclusion: RT-PCR is a useful technique for the early detection of CHIKV infection during outbreaks. Molecular characterization of the strains indicates that majority of the strains have originated from the Central/East African strains of CHIKV.  相似文献   

10.
11.
RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of homologous mRNA. Short interfering RNAs (siRNAs) are the mediators of RNAi and represent powerful tools to silence gene expression in mammalian cells including genes of viral origin. In this study, we applied siRNAs targeting the VP7 gene of African horse sickness virus (AHSV) that encodes a structural protein required for stable capsid assembly. Using a VP7 expression reporter plasmid and an in vitro model of infection, we show that synthetic siRNA molecules corresponding to the AHSV VP7 gene silenced effectively VP7 protein and mRNA expression, and decreased production of infectious virus particles as evidenced by a reduction in the progeny virion titres when compared to control cells. This work establishes RNAi as a genetic tool for the study of AHSV and offers new possibilities for the analysis of viral genes important for AHSV physiology.  相似文献   

12.
The chikungunya virus (CHIKV), an arbovirus of the genus Alphavirus, family Togaviridae, is mainly transmitted by Aedes mosquitoes. It causes an acute infection, characterized by high fever, polyarthralgia and rash and was responsible for a major outbreak which started in 2005 and spread over many islands of the south western Indian Ocean before it hit the Indian subcontinent. As nucleic acid amplification can be used only during the viremic period, serological tests are most widely used for the diagnosis of CHIKV infections. CHIKV IgM and IgG antibodies can be detected as soon as 3-6 days after clinical onset, respectively. Presently only in-house ELISA and immunofluorescence tests exist for analysing the CHIKV specific immune response. The first commercial indirect immunofluorescence test (IIFT) (EUROIMMUN AG, Lüebeck, Germany) was evaluated using two sera panels of patients from La Reunion and travellers returning with CHIKV infections from the Indian Ocean region. The IgM IIFT shows a specificity of 98.3% and a sensitivity of 96.9%. The specificity and sensitivity for the IgG IIFT are 100.0% and 95.4%, respectively. This commercial IIFT is a valuable tool for the diagnosis of CHIKV infections and antibody seroprevalence studies.  相似文献   

13.
14.
Arthralgia is a hallmark of chikungunya virus (CHIKV) infection and can be very debilitating and associated with a robust local inflammatory response. Many pathophysiological aspects associated with the disease remain to be elucidated. Here, we describe a novel model of CHIKV infection in immunocompetent mice and evaluate the role of tumour necrosis factor in the pathogenesis of the disease. C57BL/6 wild type (WT) or TNF receptor 1 deficient (TNFR1−/−) mice were inoculated with 1 × 106 PFU of CHIKV in the paw. Alternatively, etanercept was used to inhibit TNF in infected WT mice. Hypernociception, inflammatory and virological analysis were performed. Inoculation of CHIKV into WT mice induced persistent hypernociception. There was significant viral replication in target organs and local production of inflammatory mediators in early time-points after infection. CHIKV infection was associated with specific humoral IgM and IgG responses. In TNFR1−/− mice, there was a decrease in the hypernociception threshold, which was associated with a milder local inflammatory response in the paw but delayed viral clearance. Local or systemic treatment with etanercept reduced CHIKV-induced hypernociception. This is the first study to describe hypernociception, a clinical correlation of arthralgia, in immunocompetent mice infected with CHIKV. It also demonstrates the dual role of TNF in contributing to viral clearance but driving tissue damage and hypernociception. Inhibition of TNF may have therapeutic benefits but its role in viral clearance suggests that viral levels must be monitored in CHIKV-infected patients and that TNF inhibitors should ideally be used in combination with anti-viral drugs.  相似文献   

15.
The incidence of arbovirus infections has increased dramatically in recent decades, affecting hundreds of millions of people each year. The Togaviridae family includes the chikungunya virus (CHIKV), which is typically transmitted by Aedes mosquitoes and causes a wide range of symptoms from flu-like fever to severe arthralgia. Although conventional diagnostic tests can provide early diagnosis of CHIKV infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop efficient, affordable, simple, rapid, and robust diagnostic tools that can be used in point-of-care settings. Early diagnosis is crucial to improve patient management and to reduce the risk of complications. A glass-fiber laser-cut microfluidic device (paper-based analytical device [PAD]) was designed and evaluated in a proof of principle context, for the analysis of 30 µL of patient serum. Biological raw materials used for the functionalization of the PAD were first screened by MAC-ELISA (IgM capture enzyme-linked immunosorbent assay) for CHIKV Immunoglobulin M (IgM) capture and then evaluated on the PAD using various human samples. Compared with viral lysate traditionally used for chikungunya (CHIK) serology, CHIKV pseudo-particles (PPs) have proven to be powerful antigens for specific IgM capture. The PAD was able to detect CHIKV IgM in human sera in less than 10 minutes. Results obtained in patient sera showed a sensitivity of 70.6% and a specificity of around 98%. The PAD showed few cross-reactions with other tropical viral diseases. The PAD could help health workers in the early diagnosis of tropical diseases such as CHIK, which require specific management protocols in at-risk populations.  相似文献   

16.
Chikungunya is a re‐emerging arthropod‐borne viral disease caused by Chikungunya virus (CHIKV) belonging to the Togaviridae family of genus Alphavirus. It is a virus with a single stranded, positive sense RNA, as its genome. It is maintained in a sylvatic and urban cycle involving humans and the mosquito species Aedes aegypti and Aedes albopictus. It has garnered the attention of scientists in the past 5–6 years due to the massive outbreaks in the Indian Ocean region in 2005–2006. It has a major health impact on humans as it causes fever, rashes, arthralgia and myalgia. Polyarthralgia is the most important feature of CHIKV infection which primarily affects the small joints of the wrists and fingers along with the large joints like shoulders and knees. Currently, there are no vaccines or treatment regimens available for CHIKV infection. The molecular mechanism underlying the chronic polyarthralgia observed in patients is not well understood. In this review we have summarized the CHIKV organization, replication, epidemiology, clinical manifestations and pathogenesis with emphasis on the arthralgia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Chikungunya virus (CHIKV) has recently re‐emerged causing millions of infections in countries around the Indian Ocean. While CHIKV has a broad host cell range and productively infects a number of different cell types, macrophages have been identified as a potential viral reservoir serving to increase the duration of symptoms. To date no CHIKV interacting protein has been characterized and this study sought to identify CHIKV binding proteins expressed on target cell membranes. Two‐dimensional virus overlay identified prohibitin (PHB) as a microglial cell expressed CHIKV binding protein. Co‐localization, co‐immunoprecipitation as well as antibody and siRNA mediated infection inhibition studies all confirmed a role for PHB in mediating internalization of CHIKV into microglial cells. PHB is the first identified CHIKV receptor protein, and this study is evidence that PHB may play a role in the internalization of multiple viruses. J. Med. Virol. 84:1757–1770, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
BackgroundChikungunya virus (CHIKV) of the Central/East African genotype has caused large outbreaks worldwide in recent years. In Malaysia, limited CHIKV outbreaks of the endemic Asian and imported Central/East African genotypes were reported in 1998 and 2006. Since April 2008, an unprecedented nationwide outbreak has affected Malaysia.ObjectiveTo study the molecular epidemiology of the current Malaysian CHIKV outbreak, and to evaluate cross-neutralisation activity of serum from infected patients against isolates of Asian and Central/East African genotypes.Study designSerum samples were collected from 83 patients presenting in 2008, and tested with PCR for the E1 gene, virus isolation, and for IgM. Phylogenetic analysis was performed on partial E1 gene sequences of 837 bp length. Convalescent serum from the current outbreak and Bagan Panchor outbreak (Asian genotype, 2006) were tested for cross-neutralising activity against representative strains from each outbreak.ResultsCHIKV was confirmed in 34 patients (41.0%). The current outbreak strain has the A226V mutation in the E1 structural protein, and grouped with Central/East African isolates from recent global outbreaks. Serum cross-neutralisation activity against both Central/East African and Asian genotypes was observed at titres from 40 to 1280.ConclusionsThe CHIKV strain causing the largest Malaysian outbreak is of the Central/East African genotype. The presence of the A226V mutation, which enhances transmissibility of CHIKV by Aedes albopictus, may explain the extensive spread especially in rural areas. Serum cross-neutralisation of different genotypes may aid potential vaccines and limit the effect of future outbreaks.  相似文献   

20.
In this study, the complete genomic nucleotide sequence of Chikungunya virus (CHIKV) strain S27 African prototype was determined and three 21 nucleotides repeated sequence elements (RSEs) at positions 11398–11418, 11533–11553, and 11620–11640 in the 3′ untranslated region (3′UTR) were confirmed. In addition, the 3′UTRs of all CHIKV strains deposited in GenBank were analyzed. The results displayed that the majority of the CHIKV strains consisted of the three 21 nucleotides RSEs in the 3′UTRs, and the third RSE was the most conservative. The conservation of the three RSEs of 21 nucleotides within the 3′UTR of CHIKV genome may play an important role on the virus replication cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号