首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulated evidence has established that aberrant regulation of histone deacetylases (HDACs) is one of the major causes of the development of human malignancies. Among different iso-enzymes of HDAC and sirtuins grouped as the HDAC super family, little is known as to how histone deacetylase 2 (HDAC2) causes carcinogenesis in solid tumors. Here, in order to investigate the possible role of HDAC2 in gastric carcinogenesis, we analyzed the expression of HDAC2 in 71 gastric adenocarcinomas by immunohistochemistry. Moderate to strong expression of HDAC2 was found in 44 (62%) out of a total of 71 tumors. The majority of positive tumors, which were detected in the nucleus but not in normal gastric epithelium, did not express HDAC2 or showed only weak positive staining. Interestingly, we also noted that HDAC2 expression appeared to be associated with tumor aggressiveness as HDAC2 expression was observed to be statistically significant in advanced gastric cancer (P=0.0023, Chi-square test) and in positive lymph node metastasis (P=0.0713, Chi-square test). Taken together, these results suggest that HDAC2 may play an important role in the aggressiveness of gastric cancer.  相似文献   

2.
The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.  相似文献   

3.
alpha1-Proteinase inhibitor (alpha1-PI) is the main serine proteinase inhibitor in human plasma. Apart from its synthesis in the liver, this anti-inflammatory protein is also synthesized by and excreted from human intestinal epithelial cells. Antiinflammatory actions of alpha1-PI are thought to be of relevance in the pathogenesis of inflammatory bowel disease. To investigate the role of macrophage-derived cytokines on alpha1-PI secretion from intestinal epithelial cells, we cultured Caco-2 cells until differentiation (14 days in culture) on permeable filter supports. Monolayers of differentiated Caco-2 cells were then co-cultured with human peritoneal macrophages, grown on plastic in the basolateral chamber. Under these conditions, alpha1-PI secretion from Caco-2 cells was enhanced by 45%, probably by a direct action of macrophage-derived cytokines on Caco-2 cells. To extend this observation further, we treated differentiated Caco-2 cells with macrophage-derived proinflammatory cytokines (IL-1beta, IL-8, TNF-alpha), as well as with lymphocyte-derived cytokines IL-2, IL-6 and IFN-gamma. As early as after 24h treatment, IL-2 and IL-8 induced a significant and dose-dependent increase of alpha-1-PI secretion into cell culture medium; this effect was completely reversed after immunoneutralization by the antibodies against IL-2 and IL-8 alpha1-PI secretion was only slightly decreased after treatment with IFN-gamma, while IL-1beta, IL-6 and TNF-alpha had no effect. alpha1-PI secretion correlated well with the expression of this protein in differentiated Caco-2 cells after cytokine treatment, as confirmed by Western blot. Our data imply that, in vitro, alpha1-PI secretion in enterocyte-like Caco-2 cells is up-regulated by IL-2 and IL-8. Our results suggest that both lymphocyte- and macrophage-derived cytokines regulate secretion of the anti-inflammatory protein alpha1-PI in intestinal epithelial cells.  相似文献   

4.
The interaction of cells with adhesion proteins in the extracellular matrix (ECM) provides signals which affect the morphology, motility, gene expression and survival of adherent cells. In the present communication we cultured K562 cells in presence of fibronectin to study the fibronectin-integrin mediated signalling and modulation of MMP expression. Our experimental findings demonstrate that exposure of K562 cells in serum free medium in presence of fibronectin up-regulates the expression of pro-MMP-9 within 2 hrs. Phosphorylation of focal adhesion kinase (FAK), ERK, PI-3K and nuclear translocation of EGFR and NF-kB upon FN binding demonstrate possible involvement of FAK/PI-3K/ERK signalling pathways in the fibronectin-integrin mediated up regulation of MMP-9 expression.  相似文献   

5.
The unstimulated and induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), IL-3, IL-6, stem cell factor (SCF), IL-1β, tumour necrosis factor-alpha (TNF-α), TNF-β, interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) was determined after culture of blood mononuclear cells from 22 patients with severe β-thalassaemia in a regular transfusion programme, five non-regularly transfused patients with β-thalassaemia intermedia and nine normal persons. A distinct pattern of cytokine production in thalassaemic patients was detected, namely a low unstimulated production of all cytokines and a significant increase in the stimulated production of IFN-γ, TNF-α and IL-1β; these abnormalities were more pronounced in the more heavily transfused older patients. The increased production of the above cytokines, which usually characterize the acute response to infectious agents and have a negative effect on erythropoiesis, may explain the deterioration of anaemia found in thalassaemic patients during acute infections.  相似文献   

6.
7.
Summary Histamine is a well-recognized modulator of vascular inflammation. We have shown that histamine, acting via H1 receptors (H1R), synergizes lipopolysaccharide (LPS)-induced production of prostaglandin I(2) (PGI(2)), PGE(2) and interleukin-6 (IL-6) by endothelial cells. The synergy between histamine and LPS was partly attributed to histamine -induced expression of Toll-like receptor 4 (TLR4). In this study, we examined whether LPS stimulates the H1R expression in human coronary artery endothelial cells (HCAEC) with resultant enhancement of histamine responsiveness. Incubation of HCAEC with LPS (10-1000 ng/ml) resulted in two-fold to fourfold increases in H1R mRNA expression in a time-dependent and concentration-dependent fashion. In contrast, LPS treatment did not affect H2R mRNA expression. The LPS-induced H1R mRNA expression peaked by 4 hr after LPS treatment and remained elevated above the basal level for 20-24 hr. Flow cytometric and Western blot analyses revealed increased expression of H1R protein in LPS-treated cells. The specific binding of [(3)H]pyrilamine to H1R in membrane proteins from LPS-treated HCAEC was threefold higher than the untreated cells. The LPS-induced H1R expression was mediated through TLR4 as gene silencing by TLR4-siRNA and treatment with a TLR4 antagonist inhibited the LPS effect. When HCAEC were pre-treated with LPS for 24 hr, washed and challenged with histamine, 17-, 10- and 15-fold increases in PGI(2), PGE(2) and IL-6 production, respectively, were noted. Histamine-induced enhancement of the synthesis of PGI(2), PGE(2) and IL-6 by LPS-primed HCAEC was completely blocked by an H1R antagonist. The results demonstrate that LPS, through TLR4 activation, up-regulates the expression and function of H1R and amplifies histamine-induced inflammatory responses in HCAEC.  相似文献   

8.
9.
The regulation mechanism of interferon (IFN) and IFN-stimulated genes is a very complex procedure and is dependent on cell types and virus species. We observed molecular changes related to anti-viral responses in endothelial cells during Hantaan virus (HTNV) infection. We found that there are two patterns of gene expression, the first pattern of gene expression being characterized by early induction and short action, as in that of type I IFNs,' and the other being characterized by delayed induction and long duration, as those of IRF-7, MxA, and TAP-1/2. Even though there are significant differences in their induction folds, we found that all of IFN-alpha/beta, IRF- 3/7, MxA, and TAP-1/2 mRNA expressions reached the peak when the viral replication was most active, which took place 3 days of post infection (d.p.i.). In addition, an interesting phenomenon was observed; only one gene was highly expressed in paired genes such as IFN-alpha/beta' (3/277-folds), IRF-3/7 (2.2/29.4-folds), and TAP- 1/2 (26.2/6.1-folds). Therefore, IFN-beta, IRF-7, and TAP-1 seem to be more important for the anti-viral response in HTNV infection. MxA was increased to 296-folds at 3 d.p.i. and kept continuing 207-folds until 7 d.p.i.. The above results indicate that IFN-beta works for an early anti-viral response, while IRF7, MxA, and TAP-1 work for prolonged anti-viral response in HTNV infection.  相似文献   

10.
11.
 目的 探讨马兜铃酸(AA)是否通过ERK1/2信号传导途径诱导人脐静脉血管内皮细胞(HUVECs)凋亡。方法 通过MTT法检测细胞增殖能力;通过Hoechst 33258荧光染色观察细胞凋亡的形态学改变;通过Annexin V-FITC/PI染色采用流式细胞仪检测细胞凋亡率;通过Western blotting法测定细胞内p-ERK1/2的水平。结果 马兜铃酸呈浓度和时间依赖方式抑制了内皮细胞增殖。马兜铃酸可引起内皮细胞出现凋亡形态学改变,且呈浓度依赖方式增加了内皮细胞凋亡率。同时,马兜铃酸可降低内皮细胞内p-ERK1/2的水平。应用ERK1/2抑制剂PD98095预处理后,细胞内p-ERK1/2的水平与AA (10 mg/L)组相比显著增加,马兜铃酸诱导的内皮细胞凋亡率亦被明显抑制。结论 马兜铃酸可诱导血管内皮细胞凋亡,其机制可能是通过抑制ERK1/2信号传导途径。  相似文献   

12.
We investigated the levels of TCR-γδ T cells and their subpopulations Vδ1 and Vδ2 in the peripheral blood lymphocytes (PBL) of 28 heart transplant (HTx) patients. Patients (n = 10) receiving cyclosporin A (CsA) for treatment of a nephrotic syndrome (NS) and 10 healthy individuals served as controls. There was no difference in levels of TCR-γδ T cells between the different groups. However, an elevated proportion of Vδ1+γδ T cells was found in the PBL of HTx patients, especially when these cells were present in their graft-infiltrating lymphocyte (GIL) cultures. Vδ1+γδ T cells of HTx patients showed normal expression of CD45RO and lacked the activation markers CD25 and HLA-DR. After expanding in IL-2-containing medium, PBL cultures of HTx patients more often were dominated by Vδ1 cells than PBL cultures of controls, in which Vδ2 cells were predominantly grown. The aberrant composition of the TCR-γδ population in HTx patients was not a result of immunosuppressive medication, since the proportion Vδ1+γδ T cells was normal in the PBL of the NS patients receiving a similar dose of CsA. It is postulated that long-term antigenic stimulation by the graft, at low level, might be responsible for the altered composition of the γδ pool in the HTx patients. Since no donor HLA-specific γδ T cells have been detected, other ligands, such as heat shock proteins, may be involved.  相似文献   

13.
14.
目的:探讨葡萄糖神经酰胺合成酶(GCS)是否通过MEK/ERK信号通路调控凋亡相关基因bcl-2的表达,从而诱导人白血病K562/A02细胞多药耐药。方法:用小干扰RNA(siRNA)靶向干扰K562/A02细胞中GCS的表达,real-time PCR、Western blotting检测Bcl-2、磷酸化及总ERK水平;用MEK特异性化学抑制剂U0126抑制MEK/ERK信号通路的活化,real-time PCR与Western blotting技术分别检测Bcl-2 mRNA与蛋白水平;CCK-8试剂盒检测细胞存活情况。结果:与阴性对照组比较,GCS siRNA明显抑制K562/A02细胞GCS和Bcl-2的表达,并抑制MEK/ERK信号通路的活化;U0126使Bcl-2 mRNA及蛋白水平呈浓度依赖性下降,并使K562/A02细胞ADM敏感性增加。结论:GCS通过MEK/ERK信号通路调控K562/A02细胞株中凋亡相关基因bcl-2的表达,从而诱导白血病细胞多药耐药。  相似文献   

15.
Toll-like receptors (TLRs) play an important role in innate immunity while, beta(2)-adrenergic receptors (beta(2)AR) provide the key linkages for the sympathetic nervous system to regulate the immune system. However, their role in macrophages remains uncertain. Here, we demonstrate the cross-talk between beta(2)AR and TLR signalling pathways. Expression of beta(2)AR was down-regulated by TLR4 ligand lipopolysaccharide (LPS) stimulation. To investigate the physiological consequence of this down-regulation RAW264 cells, a macrophage cell line, were transfected with a beta(2)AR expression vector (RAWar). Both LPS-stimulated inducible nitric oxide synthase (NOS II) expression and NO production were markedly suppressed in the RAWar cells. The activation of nuclear factor-kappaB (NF-kappaB) and degradation of the inhibitor of NF-kappaB (IkappaBalpha) in response to LPS were markedly decreased in these cells. The level of beta-arrestin 2, which regulates beta(2)AR signalling, was also reduced in RAW264 cells after stimulation with LPS, but not in RAWar cells. Overexpression of beta-arrestin 2 (RAWarr2) also inhibited NO production and NOS II expression. Furthermore, we demonstrated that beta-arrestin 2 interacted with cytosolic IkappaBalpha and that the level of IkappaBalpha coimmunoprecipitated by anti-beta-arrestin 2 antibodies was decreased in the RAW264 cells but not in RAWar or RAWarr2 cells. These findings suggest that LPS-stimulated signals suppress beta(2)AR expression, leading to down-regulation of beta-arrestin 2 expression, which stabilizes cytosolic IkappaBalpha and inhibits the NF-kappaB activation essential for NOS II expression, probably to ensure rapid and sufficient production of NO in response to microbial attack.  相似文献   

16.
Bacteroides fragilis produces an approximately 20-kDa heat-labile toxin (B. fragilis enterotoxin, BFT) which is known to be associated with diarrhea. To determine whether cyclooxygenase (COX)-2, via NF-kappaB activation, can contribute to BFT-induced diarrhea, the relationship between COX-2 expression and fluid secretion in BFT-stimulated human intestinal epithelial cells was examined. BFT stimulation increased the expression of COX-2, but not COX-1, in human intestinal epithelial cells. Suppression of the NF-kappaB signal significantly decreased COX-2 expression in response to BFT stimulation. Prostaglandin E2 (PGE2) levels were increased in parallel with COX-2 expression, and, conversely, PGE2 production was significantly inhibited when COX-2 or NF-kappaB activities were suppressed using COX-2 small interfering RNA (siRNA), p65 NF-kappaB subunit siRNA, or a retrovirus encoding the IkappaBalpha superrepressor. In addition, a selective COX-2 inhibitor, NS-398, significantly inhibited the increased cAMP level induced by BFT stimulation. Furthermore, a selective COX-2 inhibitor prevented BFT-induced PGE2 production and ileal fluid secretion in a mouse ileal loop model. These results suggest that the secretory response to BFT stimulation may be mediated by the production of PGE2, through NF-kappaB activation and the up-regulation of COX-2 in intestinal epithelial cells.  相似文献   

17.
Double minute chromosomes (DMs) are extrachromosomal cytogenetic structures found in tumour cells. As hallmarks of gene amplification, DMs often carry oncogenes and drug‐resistance genes and play important roles in malignant tumour progression and drug resistance. The mitogen‐activated protein kinase (MAPK) signalling pathway is frequently dysregulated in human malignant tumours, which induces genomic instability, but it remains unclear whether a close relationship exists between MAPK signalling and DMs. In the present study, we focused on three major components of MAPK signalling, ERK1/2, JNK1/2/3 and p38, to investigate the relationship between MAPK and DM production in tumour cells. We found that the constitutive phosphorylation of ERK1/2, but not JNK1/2/3 and p38, was closely associated with DMs in tumour cells. Inhibition of ERK1/2 activation in DM‐containing and ERK1/2 constitutively phosphorylated tumour cells was able to markedly decrease the number of DMs, as well as the degree of amplification and expression of DM‐carried genes. The mechanism was found to be an increasing tendency of DM DNA to break, become enveloped into micronuclei (MNs) and excluded from the tumour cells during the S/G2 phases of the cell cycle, events that accompanied the reversion of malignant behaviour. Our study reveals a linkage between ERK1/2 activation and DM stability in tumour cells. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

18.
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.  相似文献   

19.
Bone cells produce multiple growth factors and cytokines that have effects on bone metabolism and can be incorporated into the bone matrix. The present study was designed to extend these observations by examining the interactions between transforming growth factor-β (TGF-β) or interleukin-1β (IL-1β) and bone cells in a rat long bone culture model. IL-1β regulates several activities of the osteoblast cells derived from rat long bone explants in vitro. IL-1β stimulated cellular proliferation and the synthesis of prostaglandin E2 and plasminogen activator activity in the cultured cells in a dose-dependent manner. TGF-β is present in the bone matrix and potentially can be released during bone resorption. TGF-β reduced basal bone resorption and inhibited vitamin D3 [1,25(OH)2D3]-induced bone resorption in rat long bone cells. These studies support the role of IL-1β in the pathological modulation of bone cell metabolism, with regard to implication in the pathogenesis of osteoporosis by IL-1β, and that TGF-β is positively inhibiting the bone resorption.  相似文献   

20.
The ability of somatic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that keep stem cell-specific genes active and key differentiation factors repressed but poised for activation. The epigenetic factors that provide this type of regulation remain ill-defined. Here we provide the first evidence that the SNF2-like ATPase Mi-2beta of the Nucleosome Remodeling Deacetylase (NuRD) complex is required for maintenance of and multilineage differentiation in the early hematopoietic hierarchy. Shortly after conditional inactivation of Mi-2beta, there is an increase in cycling and a decrease in quiescence in an HSC (hematopoietic stem cell)-enriched bone marrow population. These cycling mutant cells readily differentiate into the erythroid lineage but not into the myeloid and lymphoid lineages. Together, these effects result in an initial expansion of mutant HSC and erythroid progenitors that are later depleted as more differentiated proerythroblasts accumulate at hematopoietic sites exhibiting features of erythroid leukemia. Examination of gene expression in the mutant HSC reveals changes in the expression of genes associated with self-renewal and lineage priming and a pivotal role of Mi-2beta in their regulation. Thus, Mi-2beta provides the hematopoietic system with immune cell capabilities as well as with an extensive regenerative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号