首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammatory bowel diseases (IBDs), like many other chronic diseases, feature multiple cellular stress responses including endoplasmic reticulum (ER) unfolded protein response (UPR). Maintaining protein homeostasis is indispensable for cell survival and, consequently, distinct signaling pathways have evolved to transmit organelle stress. While the ER UPR, aiming to restore ER homeostasis after challenges to ER function, has been extensively studied in the context of chronic diseases, only recently the related mitochondrial UPR (mtUPR), induced by disturbances of mitochondrial proteostasis, has drawn some attention. ER and mitochondria are in close contact and interact physically and functionally. Accumulating data have placed mitochondria at the center of diverse cellular functions and suggest mitochondria as integrators of signaling pathways such as autophagy and inflammation. Consequently, it is likely that mitochondrial stress and ER stress cannot be regarded separately and that mitochondrial stress, as well as ER stress, participates in the pathology of IBD. Protein homeostasis is particularly sensitive toward infections, oxidative stress, and energy deficiency. Thus, environmental disturbances impacting organelle function lead to the concerted activation of distinct UPRs. The metabolic status might therefore serve as an innate mechanism to sense the epithelial environment, including luminal-derived and host-derived factors. This review highlights mtUPR and its interrelation with ER UPR, focuses on recent studies identifying mitochondria as integrators of cellular danger signaling, and, furthermore, illustrates the importance ER UPR and mitochondrial dysfunction in IBD.  相似文献   

2.
The unfolded protein response (UPR) is an evolutionarily conserved cell signaling pathway that is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed from increased client protein load or the accumulation of unfolded or malfolded proteins. Once activated, this signaling pathway can either result in the recovery of homeostasis or can activate a cascade of events that ultimately result in cell death. The UPR/endoplasmic reticulum (ER) stress response spectrum and its interplay with other cellular organelles play an important role in the pathogenesis of disease in secretory cells rich in ER, such as hepatocytes. Over the past 2 decades, the contribution of ER stress to various forms of liver diseases has been examined. Robust support for a contributing, as opposed to a secondary role, for ER stress response is seen in the nonalcoholic steatohepatitis, alcoholic liver disease, ischemia/reperfusion injury, and cholestatic models of liver disease. The exact direction of the cause and effect relationship between modes of cell injury and ER stress remains elusive. It is apparent that a complex interplay exists between ER stress response, conditions that promote it, and those that result from it. A vicious cycle in which ER stress promotes inflammation, cell injury, and steatosis and in which steatogenesis, inflammation, and cell injury aggravate ER stress seems to be at play. It is perhaps the nature of such a vicious cycle that is the key pathophysiologic concept. Therapeutic approaches aimed at interrupting the cycle may dampen the stress response and the ensuing injury.  相似文献   

3.
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re‐establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy‐ and apoptosis‐related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti‐inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.  相似文献   

4.
内质网(ER)是真核细胞最主要的膜性结构,是细胞内重要生理过程发生的关键细胞器。在多种内外因素的作用下,ER的稳态受到破坏,导致蛋白质加工运输受阻,未折叠蛋白或错误折叠蛋白在ER腔内聚集,形成内质网应激(ERS),并触发未折叠蛋白反应(UPR)。适度的ERS通过UPR信号通路减少蛋白质合成、促进蛋白质降解、增加协助蛋白质折叠的分子伴侣,最终缓解ER压力。但是,如果ERS过强或持续时间过长,超过细胞的自身调节能力时,UPR可启动细胞凋亡,亦可导致疾病。大量研究表明,ERS与多种心血管疾病(CVD)的发生发展密切相关。该综述主要阐述UPR在几种常见CVD中的研究进展和靶向UPR作为CVD的潜在治疗方法。  相似文献   

5.
6.
7.
Cardiovascular disease constitutes a major and increasing health burden in developed countries. Although treatments have progressed, the development of novel treatments for patients with cardiovascular diseases remains a major research goal. The endoplasmic reticulum (ER) is the cellular organelle in which protein folding, calcium homeostasis, and lipid biosynthesis occur. Stimuli such as oxidative stress, ischemic insult, disturbances in calcium homeostasis, and enhanced expression of normal and/or folding-defective proteins lead to the accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers the unfolded protein response (UPR) to maintain ER homeostasis. The UPR involves a group of signal transduction pathways that ameliorate the accumulation of unfolded protein by increasing ER-resident chaperones, inhibiting protein translation and accelerating the degradation of unfolded proteins. The UPR is initially an adaptive response but, if unresolved, can lead to apoptotic cell death. Thus, the ER is now recognized as an important organelle in deciding cell life and death. There is compelling evidence that the adaptive and proapoptotic pathways of UPR play fundamental roles in the development and progression of cardiovascular diseases, including heart failure, ischemic heart diseases, and atherosclerosis. Thus, therapeutic interventions that target molecules of the UPR component and reduce ER stress will be promising strategies to treat cardiovascular diseases. In this review, we summarize the recent progress in understanding UPR signaling in cardiovascular disease and its related therapeutic potential. Future studies may clarify the most promising molecules to be investigated as targets for cardiovascular diseases.  相似文献   

8.
Achard CS  Laybutt DR 《Endocrinology》2012,153(5):2164-2177
Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.  相似文献   

9.
ER stress: can the liver cope?   总被引:6,自引:0,他引:6  
Hepatocytes contain abundant endoplasmic reticulum (ER) which is essential for protein metabolism and stress signaling. Hepatic viral infections, metabolic disorders, mutations of genes encoding ER-resident proteins, and abuse of alcohol or drugs can induce ER stress. Liver cells cope with ER stress by an adaptive protective response termed unfolded protein response (UPR), which includes enhancing protein folding and degradation in the ER and down-regulating overall protein synthesis. When the UPR adaptation to ER stress is insufficient, the ER stress response unleashes pathological consequences including hepatic fat accumulation, inflammation and cell death which can lead to liver disease or worsen underlying causes of liver injury, such as viral or diabetes-obesity-related liver disease.  相似文献   

10.
When cells are subjected to stress by changes in their extracellular environment, unfolded proteins accumulate in the endoplasmic reticulum (ER), causing ER stress. This initiates the unfolded protein response (UPR), a signal transduction cascade aiming at restoring cellular homeostasis. The UPR and angiogenesis are involved in the pathogenesis of many diseases such as cancer, pulmonary diseases and chronic liver diseases (CLDs) including alcoholic liver disease, non‐alcoholic steatohepatitis and hepatitis B. This review summarizes the upcoming knowledge of the interaction between the UPR and angiogenesis in physiological angiogenesis and in different CLDs and other diseases.  相似文献   

11.
The endoplasmic reticulum (ER) is a eukaryotic organelle that plays important roles in protein synthesis, folding and trafficking, calcium homoeostasis and lipid and steroid synthesis. It is the major protein synthesis compartment for secreted, plasma membrane and organelle proteins. Perturbations of ER homeostasis such as the accumulation of unfolded or misfolded proteins cause ER stress. To alleviate this stress, ER triggers an evolutionarily conserved signalling cascade called the unfolded protein response (UPR). As an initial response, the UPR aims at adapting and restoring ER function by translational attenuation, upregulation of ER chaperones and degradation of unfolded proteins. However, if the ER function is severely impaired because of excessive or prolonged exposure to stress, then the inflicted cells may undergo programmed cell death. During ER stress, unstable or partially folded mutant proteins are prevented from trafficking to their proper subcellular localizations and usually rapidly degraded. The small molecules named chemical chaperones help to stabilize these mutant proteins and facilitate their folding and proper trafficking from the ER to their final destinations. Because increasing number of studies suggest that ER stress is involved in a number of disease pathogenesis including neurodegenerative diseases, cancer, obesity, diabetes and atherosclerosis, promoting ER folding capacity through chemical chaperones emerges as a novel therapeutic approach. In this review, we provide insight into the many important functions of chemical chaperones during ER stress, their impact on the ER-stress-related pathologies and their potential as a new drug targets, especially in the context of metabolic disorders.  相似文献   

12.
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle supporting many processes required by virtually every mammalian cell, including cardiomyocytes. It performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, posttranslational modification including N-linked glycosylation, and synthesis of phospholipids and steroids on the cytoplasmic side of the ER membrane, and regulation of Ca(2+) homeostasis. Perturbation of ER-associated functions results in ER stress via the activation of complex cytoplasmic and nuclear signaling pathways, collectively termed the unfolded protein response (UPR) (also known as misfolded protein response), leading to upregulation of expression of ER resident chaperones, inhibition of protein synthesis and activation of protein degradation. The UPR has been associated with numerous human pathologies, and it may play an important role in the pathophysiology of the heart. ER stress responses, ER Ca(2+) buffering, and protein and lipid turnover impact many cardiac functions, including energy metabolism, cardiogenesis, ischemic/reperfusion, cardiomyopathies, and heart failure. ER proteins and ER stress-associated pathways may play a role in the development of novel UPR-targeted therapies for cardiovascular diseases.  相似文献   

13.
The unfolded protein response (UPR) is an intracellular stress-signaling pathway that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Because defects in ER protein folding are associated with many pathological states, including metabolic, neurologic, genetic, and inflammatory diseases, it is important to understand how the UPR maintains ER protein-folding homeostasis. All metazoans have conserved the fundamental UPR transducers IRE1, ATF6, and PERK. In Caenorhabditis elegans, the UPR is required to prevent larval lethality and intestinal degeneration. Although ire-1-null worms are viable, they are particularly sensitive to ER stress. To identify genes that are required for development of ire-1-null worms, we performed a comprehensive RNA interference screen to find 10 genes that exhibit synthetic growth and intestinal defects with the ire-1(v33) mutant but not with atf-6(tm1153) or pek-1(ok275) mutants. The expression of two of these genes, exos-3 and F48E8.6, was induced by ER stress, and their knockdown in a wild-type strain caused ER stress. Because these genes encode subunits of the exosome complex that functions in mRNA surveillance, we analyzed other gene products required for nonsense-mediated mRNA decay (NMD). Our results demonstrate that defects in smg-1, smg-4, and smg-6 in C. elegans and SMG6 in mammalian cells cause ER stress and sensitize to the lethal effects of ER stress. Although ER stress did not activate mRNA surveillance complex assembly, ER stress did induce SMG6 expression, and NMD regulators were constitutively localized to the ER. Importantly, the findings demonstrate a unique and fundamental interaction where NMD-mediated mRNA quality control is required to prevent ER stress.  相似文献   

14.
Cigarette smoking exposes the respiratory epithelium to highly toxic, reactive oxygen nitrogen species which damage lung proteins in the endoplasmic reticulum (ER), the cell organelle in which all secreted and membrane proteins are processed. Accumulation of damaged or misfolded proteins in the ER, a condition termed ER stress, activates a complex cellular process termed the unfolded protein responses (UPR). The UPR acts to restore cellular protein homeostasis by regulating all aspects of protein metabolism including: protein translation and syntheses; protein folding; and protein degradation. However, activation of the UPR may also induce signaling pathways which induce inflammation and cell apoptosis. This review discusses the role of UPR in the respiratory epithelial cell response to cigarette smoke and the pathogenesis of lung diseases like COPD.  相似文献   

15.
16.
Susceptibility to ankylosing spondylitis is highly genetic, with a heritability greater than 90 %. Presence of the HLA-B27 MHC class I allele remains the greatest genetic risk factor identified to date. Beyond its nominal role in antigen presentation, HLA-B27 displays interesting and possibly unique biochemical characteristics which may contribute to disease pathogenesis. During its biosynthesis in the endoplasmic reticulum (ER), HLA-B27 folds very slowly and misfolds, inducing ER stress. Herein, we describe a major outcome of ER stress, the unfolded protein response (UPR), as well as consequences of the UPR for inflammation and autophagy. The ability of the UPR to augment inflammatory cytokine production is particularly intriguing given the centrality of cytokines in spondyloarthritis. Evidence for the relevance of an HLA-B27-related UPR to spondyloarthritis pathogenesis in animal models and human subjects will be reviewed. As greater pharmacologic capacity to modulate ER stress becomes available, improved understanding of the role of the UPR in spondyloarthritis may yield new therapeutic targets.  相似文献   

17.
杨琼  吴永全 《心脏杂志》2015,27(1):99-101
内质网(endoplasmic reticulum,ER)是细胞内蛋白质折叠、Ca2+储存和脂质生物合成的重要部位。氧化应激、缺血、Ca2+稳态的失衡都可以引起ER内非折叠蛋白的聚集,通过ER内的分子伴侣激活非折叠蛋白反应(unfolded protein response,UPR)可促进细胞的生存,但是过度ER应激(endoplasmic reticulum stress,ERS)可以诱导凋亡信号起始,通过线粒体依赖或者非线粒体依赖途径导致细胞死亡。因此,近年来ER被认为是决定细胞生存与凋亡的重要器官。最近研究提示,ERS在多种心血管疾病的病生理机制中起着重要作用,包括心功能不全及缺血性心脏疾病等。对这些疾病分子机制的进一步认识,将有助于开发新的靶向药物并治疗疾病。本文将对ERS和其与心血管疾病的关系进行综述。  相似文献   

18.
内质网应激与缺血性脑损伤   总被引:1,自引:0,他引:1  
内质网应激是内质网内未折叠或错误折叠蛋白积聚所致。作为对内质网应激的响应,细胞形成了一条称为未折叠蛋白反应(UPR)的自我保护信号转导通路。然而,如果脑缺血诱导的内质网应激严重且持续时间长,UPR最终会启动细胞凋亡通路,导致神经元死亡。文章对脑缺血再灌注诱导内质网应激和UPR的研究进展做了综述。  相似文献   

19.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the protein folding capacity of the ER according to need. If homeostasis in the ER protein folding environment cannot be reestablished, cells commit to apoptosis. The ER-resident transmembrane kinase-endoribonuclease inositol-requiring enzyme 1 (IRE1) is the best characterized UPR signal transduction molecule. In yeast, Ire1 oligomerizes upon activation in response to an accumulation of misfolded proteins in the ER. Here we show that the salient mechanistic features of IRE1 activation are conserved: mammalian IRE1 oligomerizes in the ER membrane and oligomerization correlates with the onset of IRE1 phosphorylation and RNase activity. Moreover, the kinase/RNase module of human IRE1 activates cooperatively in vitro, indicating that formation of oligomers larger than four IRE1 molecules takes place upon activation. High-order IRE1 oligomerization thus emerges as a conserved mechanism of IRE1 signaling. IRE1 signaling attenuates after prolonged ER stress. IRE1 then enters a refractive state even if ER stress remains unmitigated. Attenuation includes dissolution of IRE1 clusters, IRE1 dephosphorylation, and decline in endoribonuclease activity. Thus IRE1 activity is governed by a timer that may be important in switching the UPR from the initially cytoprotective phase to the apoptotic mode.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号