首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Both positron emission tomography and single photon emission computed tomography (SPECT) studies suggest that saturation of serotonin transporters (SERT) is present during treatment with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). Selective serotonin reuptake inhibitors also appear to increase the availability of dopamine transporters (DAT). The current study measured SERT occupancy and modulation of DAT by the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine using [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane SPECT. Eight healthy subjects were administered open-label venlafaxine extended release capsules (75 mg/d for 4 days followed by 150 mg/d for 5 days). Venlafaxine significantly inhibited [123I]beta-CIT binding to SERT in the brainstem (55.4%) and the diencephalon (54.1%). In contrast, venlafaxine increased [123I]beta-CIT binding to DAT in the striatum (10.1%) after 5 days of administration of 150 mg/d. The displacement of [123I]beta-CIT from brain SERT and the increase in striatal [123I]beta-CIT binding to DAT appear similar to previous work with the SSRI citalopram (40 mg/d). A literature review of SERT occupancy by marketed SSRIs and the SNRI venlafaxine using SPECT ([123I]beta-CIT) or positron emission tomography ([11C](N, N-Dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine) imaging suggests that therapeutic doses of SNRI are associated with virtual saturation of the serotonin transporter.  相似文献   

2.
Serotonin and dopamine transporter (SERT, DAT) availabilities have prospectively been investigated using [123I]beta-CIT and single photon emission computed tomography in subjects with obsessive-compulsive disorder under treatment with the selective serotonin reuptake inhibitor citalopram. SERT availability decreased by a mean 36.5%, whereas DAT availability increased by about 40%. The data point at a citalopram induced modulation of both serotonergic and dopaminergic activity and support the notion of functional interactions of monoaminergic systems in the human brain.  相似文献   

3.
Disturbances in the serotonin (5-HT) system are associated with various neuropsychiatric disorders. The 5-HT system can be studied in vivo by measuring 5-HT transporter (SERT) densities using (123)iodine-labeled 2beta-carbomethoxy-3beta(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission computed tomography (SPECT). Validation of this technique is important because [(123)I]beta-CIT does not bind selectively to SERTs. Some studies have validated this technique in vivo in the human brain in SERT-rich areas, but the technique has not been validated yet in SERT-low cortical areas. The aim of this study was to further validate [(123)I]beta-CIT SPECT in assessing SERTs in vivo in humans in both SERT-rich and SERT-low areas. A double-blind, placebo-controlled, crossover design was used with the selective 5-HT reuptake inhibitor (SSRI) citalopram. Six male subjects underwent two [(123)I]beta-CIT SPECT sessions: one after pretreatment with citalopram and one after placebo. Scans were acquired 4 h and 22-27 h p.i., and both region-of-interest and voxel-by-voxel analyses were performed. Citalopram reduced [(123)I]beta-CIT binding ratios in SERT-rich midbrain and (hypo)thalamus. Binding ratios were also lower after citalopram in SERT-low cortical areas, but statistical significance was only reached in several cortical areas using voxel-by-voxel analysis. In addition, citalopram increased binding ratios in the DAT-rich striatum and increased absolute uptake in the cerebellum. The results show that [(123)I]beta-CIT SPECT is a valid technique to study SERT binding in vivo in human brain in SERT-rich areas. Although we provide some evidence that [(123)I]beta-CIT SPECT may be used to measure SERTs in SERT-low cortical areas, these measurements must be interpreted with caution.  相似文献   

4.
Human MDMA (R,S-3,4-methylenedioxymethamphetamine) users display selective cognitive deficits after acute MDMA exposure, frequently attributed to serotonin deficits. We postulated that MDMA will compromise executive function in primates and that an inhibitor of the serotonin transporter (SERT) and the norepinephrine transporter (NET) but not the dopamine (DAT) transporter, will prevent impairment. The potencies of DAT/NET, NET and SERT inhibitors to block transport of [(3)H]MDMA and [(3)H]monoamines were compared in vitro. Subsequently, cynomolgus monkeys (Macaca fasicularis) were trained to stable performance in a reversal learning task. Effects of once-weekly oral or i.m. dose of MDMA (1.5 mg/kg, n = 4) on performance were monitored, alone or after pretreatment with inhibitors of the SERT, DAT or NET (prior to i.m. MDMA). 1) Drug potencies for blocking [(3)H]MDMA or [(3)H]monoamine transport were not consistent; 2) Oral MDMA increased error rates in a cognitive task for up to three days following exposure, whereas intramuscular MDMA prevented subjects from performing the cognitive task on the day of administration, but not on subsequent days; 3) The SERT inhibitor citalopram and the NET inhibitor desipramine, but not the DAT/NET inhibitor methylphenidate, reversed the effects of MDMA on task performance and mandibular movements induced by i.m. MDMA and 4) MDMA altered sleep latency. Oral MDMA impairs executive function in monkeys for several days, a finding of potential relevance to MDMA consumption by humans. Reversal of impaired executive function by a NET inhibitor implicates the NET and norepinephrine in MDMA-induced cognitive impairment and may be relevant to therapeutic strategies.  相似文献   

5.
2beta-Carbomethoxy-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (ZIENT) (6) and 2beta-carbomethoxy-3beta-(4'-((E)-2-iodoethenyl)phenyl)nortropane (EIENT) (10) were prepared and evaluated in vitro and in vivo for serotonin transporter (SERT) selectivity and specificity. High specific activity [(123)I]ZIENT and [(123)I]EIENT were synthesized in 45% (n = 5) and 42% (n = 4) radiochemical yield (decay-corrected to end of bombardment (EOB)), respectively, by preparation of the precursor carbomethoxy-3beta-(4'-((Z)-2-trimethylstannylethenyl)phenyl)nortropane (7) and 2beta-carbomethoxy-3beta-(4'-((E)-2-tributylstannylethenyl)phenyl)nortropane (9), respectively, followed by treatment with no carrier-added sodium [(123)I]iodide and hydrogen peroxide in ethanolic HCl. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) in nM): ZIENT (0.05) > nor-CIT (0.12) > EIENT (1.15) > fluvoxamine (1.46). The affinity of ZIENT and EIENT for DAT was 69 and 1.6-fold lower, respectively, than for SERT. In vivo biodistribution and blocking studies were performed in male rats and demonstrated that the brain uptake of [(123)I]ZIENT was selective and specific for SERT-rich regions (hypothalamus, striatum, pons, and prefrontal cortex). SPECT brain imaging studies in monkeys demonstrated high [(123)I]ZIENT uptake in the diencephalon, which resulted in diencephalon-to-cerebellum ratios of 2.12 at 190 min. [(123)I]ZIENT uptake in the diencephalon achieved transient equilibrium at 157 min. In a displacement experiment of [(123)I]ZIENT in a cynomolgus monkey, radioactivity was reduced by 39% in the diencephalon at 101 min following injection of citalopram. The high specific activity one-step radiolabeling preparation and high selectivity of [(123)I]ZIENT for SERT support its candidacy as a radioligand for mapping brain SERT sites.  相似文献   

6.
Brain monoaminergic function is involved in the pathophysiology of psychiatric disorders. The loudness dependence (LD) of the N1/P2 component of auditory evoked potentials has been proposed as a noninvasive indicator of central serotonergic function, whereas single photon emission computed tomography (SPECT) and [123I]beta-CIT can be used to visualize both serotonin (SERT) and dopamine transporters (DAT). The aim of the study was to correlate LD and SPECT measures in patients with obsessive-compulsive disorder, a condition with evidence for a serotonergic dysfunction. A total of 10 subjects received both neurophysiological and imaging investigations. Evoked potentials were recorded following the application of acoustic stimuli with increasing intensities. The LD of the relevant subcomponents (tangential dipoles) was investigated using dipole source analysis. SPECT was performed 20-24 h after injection of a mean 140 MBq [123I]beta-CIT. As a measure of brain SERT and DAT availabilities, a ratio of specific to nonspecific [123I]beta-CIT binding for the midbrain . pons region (SERT) and the striatum (DAT) was used. The LD of the right tangential dipole correlated significantly with both SERT and DAT availabilities (Pearson's correlations: rho = 0.69, p < 0.05, and rho = 0.80, p < 0.01, respectively). The correlations remained significant after controlling for the effects of age, gender, and severity of clinical symptoms. Associations between LD and both SERT and DAT availabilities further validate the use of neurophysiological approaches as noninvasive indirect measures of neurochemical brain function and point at a hypothesized interconnection of central monoaminergic systems.  相似文献   

7.
N, N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (38), substituted on ring A, was reported to display high binding affinity and selectivity to the human brain serotonin transporter (SERT). In an attempt to explore the potential of compounds substituted on ring B of the phenylthiophenyl core structure, three derivatives of 38 were synthesized: N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-fluorobenzylamine (35), N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-bromobenzylamine (36), and N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-iodobenzylamine (37). The in vitro binding studies in cells transfected with human SERT, norepinephrine transporter (NET), and dopamine transporter (DAT) showed that 35, 36, and 37 exhibited high SERT affinity with K is (SERT) = 1.26, 0.29, and 0.31 nM (vs [(3)H]citalopram), respectively. [(11)C]-(35), [(11)C]-(36), and [(11)C]-( 37) were prepared by methylation of their monomethyl precursors 16, 17, and 18, with [(11)C]iodomethane in 28, 11, and 14% radiochemical yields, respectively. The microPET images of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) showed high uptake in the monkey brain regions rich in SERT with peak midbrain to cerebellum ratios of 3.41, 3.24, and 3.00 at 85 min post-injection, respectively. In vivo bindings of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) were shown to be specific to the SERT as displacement with citalopram (a potent SERT ligand) reduced radioactivity in SERT-rich regions to the cerebellum level. These results suggest that [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) could be potential agents for mapping human SERT by PET and radiolabeling 37 with iodine-123, which could afford the first SPECT SERT imaging agent exhibiting fast kinetics.  相似文献   

8.
Background Escitalopram is a dual serotonin reuptake inhibitor (SSRI) approved for the treatment of depression and anxiety disorders. It is the S-enantiomer of citalopram, and is responsible for the serotonin reuptake activity, and thus for its pharmacological effects. Previous studies pointed out that clinically efficacious doses of other SSRIs produce an occupancy of the serotonin reuptake transporter (SERT) of about 80% or more. The novel radioligand [123I]ADAM and single photon emission computer tomography (SPECT) were used to measure midbrain SERT occupancies for different doses of escitalopram and citalopram.Methods Twenty-five healthy subjects received a single dose of escitalopram [5 mg (n=5), 10 mg (n=5), and 20 mg (n=5)] or citalopram [(10 mg (n=5) and 20 mg (n=5)]. Midbrain SERT binding was measured with [123I]ADAM and SPECT on two study days, once without study drug and once 6 h after single dose administration of the study drug. The ratio of midbrain-cerebellum/cerebellum was the outcome measure (V3”) for specific binding to SERT in midbrain. Subsequently, SERT occupancy levels were calculated using the untreated baseline level for each subject. An E max model was used to describe the relationship between S-citalopram concentrations and SERT occupancy values. Additionally, four subjects received placebo to determine test–retest variability.Results Single doses of 5, 10, or 20 mg escitalopram led to a mean SERT occupancy of 60±6, 64±6, and 75±5%, respectively. SERT occupancies for subjects treated with single doses of 10 and 20 mg citalopram were 65±10 and 70±6%, respectively. A statistically significant difference was found between SERT occupancies after application of 10 and 20 mg escitalopram, but not for 10 and 20 mg citalopram. There was no statistically significant difference between the SERT occupancies of either 10 mg citalopram or 10 mg escitalopram, or between 20 mg citalopram and 20 mg escitalopram. E max was slightly higher after administration of citalopram (84%) than escitalopram (79%). In the test–retest study, a mean SERT “occupancy” of 4% was found after administration of placebo, the intraclass correlation coefficient was 0.92, and the repeatability coefficient was 0.25.Conclusion SPECT and [123I]ADAM were used to investigate SERT occupancies after single doses of escitalopram or citalopram. The test–retest study revealed good reproducibility of SERT quantification. Similar SERT occupancies were found after administration of equal doses (in respect to mg) of escitalopram and citalopram, giving indirect evidence for a fractional blockade of SERT by the inactive R-citalopram.  相似文献   

9.
Rationale Stress is a common experience in drug abusers. Methamphetamine (METH) is an abused psychostimulant that damages dopamine and serotonin terminals through pro-oxidant mechanisms and glutamate-mediated excitotoxicity. Both METH and stress increase dopamine and glutamate release in the striatum. Since dopamine inhibits striatal glutamate release and METH depletes dopamine, stress-induced glutamate release may be disinhibited after METH exposure. Objective We examined if repeated stress would worsen excitotoxic damage to the striatum after METH pretreatment. Materials and methods In vivo microdialysis was used to examine stress-induced striatal glutamate release in rats pre-exposed to METH (7.5 mg/kg × 4 injections) or saline. The effects on striatal DA, serotonin, DAT, SERT, and spectrin proteolysis produced by chronic restraint stress (CRS, 6 h/day for 21 days) in the presence or absence of corticosterone synthesis inhibition by metyrapone (50 mg/kg) beginning 7 days after METH were also examined. Results Stress-induced glutamate release was augmented in rats pre-exposed to METH. CRS 7 days after METH enhanced METH-induced DAT depletions from 23 to 44% in the nonstressed versus stressed rats, respectively. Striatal SERT and serotonin tissue content were decreased by 51 and 36%, respectively, in rats exposed to both METH and CRS but was unchanged by either treatment alone. Spectrin proteolysis was increased by 53% in rats treated with both METH and CRS but was unaffected by either treatment alone. Metyrapone blocked the effects of CRS on METH-induced depletions of SERT but not DAT. Conclusions Exposure to chronic stress depleted striatal dopamine and serotonin terminal markers possibly through excitotoxic mechanisms in METH-treated rats.  相似文献   

10.
This study investigated the ability of a high-resolution pinhole single-photon emission computed tomography (SPECT) system, with [(123)I]beta-CIT as a radiotracer, to detect 3,4-methelenedioxymethamphetamine (MDMA, 'Ecstasy')-induced loss of serotonin transporters (SERTs) in the living rat brain. In vivo striatal and thalamic [(123)I]beta-CIT binding ratios, representing specific binding to dopamine and serotonin transporters, respectively, were determined 7 days before as well as 10 days after treatment of rats with neurotoxic doses of MDMA using SPECT. At the end of the experiment, radioactivity ratios were also determined ex vivo, and compared to control data. Both in vivo and ex vivo, thalamic, but not striatal, uptake ratios were statistical significantly reduced after MDMA treatment. These data show that [(123)I]beta-CIT SPECT may be able to detect MDMA-induced loss of SERTs. Therefore, this may be a promising technique to perform serial studies on MDMA-induced serotonergic neurotoxicity in living small animals.  相似文献   

11.
Dopamine transporter knockout (DAT KO) mice display deficits in sensorimotor gating that are manifested by reduced prepulse inhibition (PPI) of the acoustic startle reflex. Since PPI deficits may model some of the cognitive dysfunctions identified in certain neuropsychiatric patients, we have studied the effects of transporter blockers on PPI in wild-type and DAT KO mice. Treatments with High dose psychostimulants that block DAT as well as the norepinephrine (NET) and serotonin (SERT) transporters (60 mg/kg cocaine or methylphenidate) significantly impaired PPI in wild-type mice. By contrast, these treatments significantly ameliorated the PPI deficits observed in untreated DAT KO mice. In studies with more selective transport inhibitors, the selective NET inhibitor nisoxetine (10 or 30 mg/kg) also significantly reversed PPI deficits in DAT KO mice. By contrast, while the SERT inhibitor fluoxetine (30 mg/kg) normalized these PPI deficits in DAT KO mice, citalopram (30 or 100 mg/kg) failed to do so. The 'paradoxical' effects of cocaine and methylphenidate in DAT KO mice are thus likely to be mediated, at least in part by the ability of these drugs to block NET, although serotonin systems may also have some role. Together with recent microdialysis data, these results support the hypothesis that prefrontal cortical NET blockade and consequent enhancement of prefrontal cortical extracellular dopamine mediates the reversal of PPI deficits in DAT KO mice.  相似文献   

12.
A series of N,N-dimethylated and N-monomethylated analogues of N,N-dimethyl-2-(2'-amino-4'-iodophenylthio)benzylamine substituted at the 4'-phenyl position have been prepared and evaluated in vitro for serotonin transporter (SERT) selectivity. Several derivatives were prepared where the 4'-position was either unsubstituted 13 and 33a or substituted with methyl 14a and 33b, ethenyl 14b and 34, ethyl 16 and 35, hydroxymethyl 20 and 41, hydroxyethyl 22, fluoroethyl 23, hydroxypropyl 27, and fluoropropyl 28. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428 or [(125)I]RTI-55, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) (nM)): 14a (0.25) > 16 (0.49) > 20 (0.57) > 14b (1.12) > 13 (1.59) > 33b (1.94) = 35 (2.04) > 23 (8.50) = 28 (8.55) > 41 (15.11) > 22 (51) > 33a (83.43) > 27 (92). The K(i) values revealed that most of these derivatives displayed a high affinity for the SERT and a high selectivity over the DAT and NET. Moreover, substitution at the 4'-position of the dimethylated and monomethylated benzylamines differently influenced SERT binding: (i) the dimethylated benzylamines exhibited higher SERT affinity than the monomethylated ones, (ii) alkyl, alkenyl, or hydroxymethyl functions at the 4'-position afford compounds with high SERT affinity, and (iii) omega-hydroxy and fluoro-substituted ethyl and propyl groups at the 4'-position decrease the SERT affinity. From this series, the dimethylated derivatives 13, 14a, 14b, 16, and 20 were radiolabeled with carbon-11 and their log P(7.4) was calculated as a measure of their potential brain penetrance as positron emission tomography SERT imaging agents.  相似文献   

13.
Mutants of serotonin transporter that are altered in their regulation by cGMP were tested for the ability of cocaine and the antidepressant drugs imipramine, sertraline, citalopram and fluoxetine to inhibit serotonin transport. Mutation at Ile-425 to valine, found in some patients with obsessive-compulsive disorder, altered the response of SERT to cGMP (Kilic, F., Murphy, D.L., Rudnick, G., 2003. A human serotonin transporter mutation causes constitutive activation of transport activity. Mol. Pharmacol. 64, 440-446). This mutation selectively decreased the potency of sertraline for inhibiting serotonin transport. The potencies of imipramine, citalopram, fluoxetine and cocaine for inhibiting transport were not affected by this mutation. In binding measurements with the cocaine analog 2beta-carbomethoxy-3beta-(4-[(125)I]-iodophenyl)-tropane (beta-CIT), sertraline potency was reduced by the I425V mutation but citalopram potency was unchanged. Mutation at the site of cGMP-dependent phosphorylation, Thr-276, decreased the potency of each of the drugs tested. This effect was also observed in studies with beta-CIT where both citalopram and sertraline were less potent at displacing this high-affinity ligand. These results support an influence of Thr-276 on the conformation of inhibitor binding sites of serotonin transporter, and also suggest that the sertraline binding site contains unique determinants that are not shared with the other tested inhibitors.  相似文献   

14.
Extrapyramidal symptoms, such as tardive dyskinesia, often develop in patients on long-term treatment with haloperidol. It has been proposed that these symptoms could be caused by neurotoxic effects of haloperidol metabolites following uptake by monoamine transporters, in an analogous mechanism to the neurotoxic effect of MPP+ (1-methyl-4-phenylpyridinium) metabolised from MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In this study, the hypothesis was partially investigated by determining the potencies of haloperidol and reduced haloperidol and the corresponding pyridinium and tetrahydropyridine metabolites, compared with MPP+ and MPTP, as inhibitors of the noradrenaline transporter (NAT), dopamine transporter (DAT) and 5-HT transporter (SERT). Two days after COS-7 cells were transiently transfected with the cDNA for the human NAT, DAT or SERT (Lipofectamine method), the cells were incubated with 10 nM [3H]noradrenaline, dopamine or 5-HT, respectively, for 2 min at 37 C, in the absence or presence of various concentrations of the eight compounds or a specific uptake inhibitor (NAT: nisoxetine 1 microM; DAT: GBR 12909 1 microM; SERT: citalopram 10 microM). Specific amine uptake (fmol/ mg protein) was calculated as the difference in uptake in the absence and presence of the specific uptake inhibitor. Ki values were calculated for the eight compounds for inhibition of NAT, DAT and SERT. Haloperidol, its five metabolites and MPP+ and MPTP all inhibited NAT, DAT and SERT. For the pyridinium and tetrahydropyridine metabolites of haloperidol, there were not marked differences between their potencies as inhibitors between each other for NAT or DAT or between NAT and DAT, with all of the Ki values in the range of 5.8-16 microM. However, there were more marked differences for SERT, with all but one of the metabolites showing selectivity for inhibition of SERT relative to NAT and DAT. Haloperidol and reduced haloperidol had similar inhibitory potencies for all three transporters, and were clearly less potent than the other haloperidol metabolites only for inhibition of SERT. The lack of correlation between the inhibitory potencies of the haloperidol metabolites and their structural analogues, MPTP and MPP+, suggests that they are not likely to cause neurotoxicity by a mechanism analogous to that of the latter neurotoxin.  相似文献   

15.
Objectives Previous studies have investigated the occupancy of the serotonin reuptake transporter (SERT) after clinical doses of citalopram and other selective serotonin reuptake inhibitors. In the present study, the occupancies of SERT after multiple doses of escitalopram and citalopram were compared using the radioligand [123I]ADAM and single photon emission computed tomography (SPECT). Methods Fifteen healthy subjects received escitalopram 10 mg/day (n = 6) or citalopram 20 mg/day (n = 9) for a total of 10 days. SERT occupancies in midbrain were determined with SPECT and [123I]ADAM at three different time points: at baseline (no medication) and at 6 and 54 h after last drug intake. Results At 6 h after the last dose, mean SERT occupancies were 81.5 ± 5.4% (mean±SD) for escitalopram and 64.0 ± 12.7% for citalopram (p < 0.01). At 54 h after the last dose, mean SERT occupancies were 63.3 ± 12.1% for escitalopram and 49.0 ± 11.7% for citalopram (p < 0.05). The plasma concentrations of the S-enantiomer were of the same magnitude in both substances. For both drugs, the elimination rate of the S-enantiomer in plasma was markedly higher than the occupancy decline rate in the midbrain. Conclusion The significantly higher occupancy of SERT after multiple doses of escitalopram compared to citalopram indicates an increased inhibition of SERT by escitalopram. The results can also be explained by an attenuating effect of R-citalopram on the occupancy of S-citalopram at the SERT.  相似文献   

16.
[3H]2-beta-carbomethoxy-3-beta-[4'-iodophenyl]tropane (beta-CIT) was prepared and evaluated. With rat forebrain tissue, [3H]beta-CIT showed high affinity for dopamine transporters (DAT), with selectivity for DAT over norepinephrine transporters, but not serotonin transporters, as well as DAT-stereoselectivity with beta-CIT, amphetamine and methylphenidate. Affinity and selectivity for 53 compounds assayed with [3H]beta-CIT and standard DAT radioligand [3H]GBR-12935 were highly correlated (r0.95). [3H]beta-CIT is proposed as a useful, high-affinity DAT radioprobe.  相似文献   

17.
Citalopram is a selective serotonin reuptake inhibitor used in the treatment of depression. Recent investigations have shown that it reduces in rat brain the release of excitatory amino neurotransmitters acid glutamate and aspartate by the involvement of the inhibitory neuromodulator adenosine. In this study, we described citalopram and serotonin levels in plasma and platelets, as well as plasma adenosine levels, in depressive patients during acute and chronic administration of citalopram. Twelve patients affected by Major Depression (DSM-IV) received a single oral dose of citalopram in the morning, 5 mg in the first 5 days, 10 mg from the 6th to the 10th day, and 20 mg from the 11th to the 40th day. Blood samples for citalopram, serotonin, and adenosine were collected at Time 0 and 4, 12 and 24 hours after drug administration on the first day of citalopram 5 mg, and on the first and the last day of citalopram 20 mg. Citalopram, serotonin, and adenosine concentrations in plasma increased after citalopram administration, and the highest levels were observed on the last day of treatment. Citalopram was detectable in platelets with concentrations showing a time variation similar to plasma values. Serotonin levels in platelets decreased after drug administration, reaching the lowest values on the last day of treatment.  相似文献   

18.
2beta-Carbomethoxy-3beta-[4'-((Z)-2-iodoethenyl)phenyl]tropane (ZIET) and 2beta-carbomethoxy-3beta-[4'-((Z)-2-bromoethenyl)phenyl]tropane (ZBrET) were synthesized as well as their nortropane congeners ZIENT and ZBrENT. Binding affinities of these compounds were determined in cells transfected to express human SERT, DAT, and NET using [3H]citalopram, [125I]RTI-55, and [3H]nisoxetine, respectively. Both ZIET and ZBrET displayed high affinity for the SERT (Ki = 0.11 and 0.08 nM, respectively).The affinities of ZIET and ZBrET for the DAT were 200 and 38-fold lower, respectively, than for the SERT. [11C]ZIET and [11C]ZBrET were prepared by alkylation of their corresponding nortropanes with [11C]methyl iodide in approximately 30% radiochemical yield (decay-corrected to end of bombardment, EOB). High specific activity [123I]ZIET was synthesized in 33% radiochemical yield (decay-corrected) by treating the 2beta-carbomethoxy-3beta-[4'-((Z)-2-trimethylstannylethenyl)phenyl]tropane (3) with no carrier-added sodium [123I]iodide and hydrogen peroxide in ethanolic HCl. Biodistribution studies in rats indicated that [123I]ZIET enters the brain readily and accumulates in SERT-rich regions. Blocking studies performed in rats demonstrated that [123I]ZIET was selective and specific for SERT-rich regions (e.g. thalamus, brainstem, and striatum). MicroPET brain imaging studies in monkeys demonstrated that [11C]ZIET and [11C]ZBrET uptakes were selectivity localized in the putamen, midbrain, caudate, thalamus, pons, and medulla. Radioactivity in the regions of high SERT density of monkey brain was displaceable with citalopram except in the putamen and caudate. Radioactivity uptake in these DAT-rich regions was significantly displaceable either by preadministration of citalopram followed by injection of RTI-113 (or vice-versa) or by administration of a mixture of DAT and SERT ligands. In conclusion, the high yield, high specific activity, one-step radiolabeling method, high selectivity and favorable kinetics, and the good results obtained with [123I]ZIET in rats support the candidacy of [11C]ZIET for in vivo visualization and quantification of brain SERT.  相似文献   

19.
Selective serotonin reuptake inhibitor use is associated with increased risk of suicidal ideation in adolescent humans, yet the neuropharmacological basis of this phenomenon is unknown. Consequently, we examined the behavioural and neurochemical effects of chronic paroxetine (PRX) treatment in adult and adolescent rats. Rats received PRX in their drinking water (target dose 10 mg/kg) for 22 d, during which time they were assessed for depression- and anxiety-like behaviours. Subsequent ex-vivo analyses examined serum PRX concentrations, striatal neurotransmitter content, and regional serotonin and dopamine transporter (SERT, DAT) binding density. After 11-12 d treatment, PRX-treated adolescent rats showed a significant inhibition of social interaction while adults were unaffected. After 19-20 d treatment, adolescents failed to show an antidepressant-like effect of PRX treatment on the forced swim test (FST), while PRX-treated adults showed a typical decrease in immobility and increase in swimming. Two PRX-treated adolescents died unexpectedly after the FST suggesting a compromised response to physical stress. Despite their greater apparent adverse reaction to the drug, adolescents had significantly lower plasma PRX than adults at day 22 of treatment. Chronic PRX treatment had similar effects in adults and adolescents on striatal 5-HT (unchanged relative to controls) and 5-HIAA levels (decreased), while markers of dopaminergic function (DOPAC, HVA, DA turnover) were increased in adults only. SERT density was up-regulated in the amygdala in PRX-treated adolescents only while DAT density in the nucleus accumbens was down-regulated only in PRX-treated adults. These data suggest that the immature rat brain responds differently to PRX and that this might be of use in modelling the atypical response of human adolescents to antidepressants. The age-specific PRX-induced changes in dopaminergic markers and SERT and DAT binding provide clues as to the neural mechanisms underlying adverse PRX effects in adolescent humans.  相似文献   

20.
2beta-(R)-Carbo-1-fluoro-2-propoxy-3beta-(4-chlorophenyl) tro pane ((R)-FIPCT, R-6) and 2beta-(S)-carbo-1-fluoro-2-propoxy-3beta-(4-chlorophenyl) tro pane ((S)-FIPCT, S-6) were prepared and evaluated in vitro and in vivo for dopamine transporter (DAT) selectivity and specificity. High specific activity [(18)F](R)-FIPCT and [(18)F](S)-FIPCT were synthesized in 5% radiochemical yield (decay-corrected to end of bombardment (EOB)) by preparation of the precursors 2beta-carbo-R-1-mesyloxy-2-propoxy-3beta-(4-chlorop hen yl)tropane (R-12) and 2beta-carbo-S-1-mesyloxy-2-propoxy-3beta-(4-chlorop hen yl)tropane (S-12) followed by treatment with no carrier-added potassium[(18)F]fluoride and kyrptofix K222 in acetonitrile. Competition binding in cells stably expressing the transfected human DAT and serotonin transporter (SERT) labeled by [(3)H]WIN 35428 and [(3)H]citalopram, respectively, demonstrated the following order of DAT affinity (K(i) in nM): GBR 12909 (0.36) > CIT (0.48) > (S)-FIPCT (0.67) > (R)-FIPCT (3.2). The affinity of (S)-FIPCT and (R)-FIPCT for SERT was 127- and 20-fold lower, respectively, than for DAT. In vivo biodistribution studies were performed in male rats and demonstrated that the brain uptake of [(18)F](R)-FIPCT and [(18)F](S)-FIPCT were selective and specific for DAT rich regions (caudate and putamen). PET brain imaging studies in monkeys demonstrated high [(18)F](R)-FIPCT and [(18)F](S)-FIPCT uptake in the caudate and putamen which resulted in caudate-to-cerebellum and putamen-to-cerebellum ratios of 2.5-3.5 at 115 min. [(18)F](R)-FIPCT uptake in the caudate/putamen achieved transient equilibrium at 75 min. In an imaging experiment with [(18)F](S)-FIPCT in a rhesus monkey with its left hemisphere lesioned with MPTP, radioactivity was reduced to background in the caudate and putamen of the lesioned hemisphere. The high specific activity one-step radiolabeling preparation and high specificity and selectivity of [(18)F](R)-FIPCT and [(18)F](S)-FIPCT for DAT indicate [(18)F](R)-FIPCT and [(18)F](S)-FIPCT are potential radioligands for mapping brain DAT in humans using PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号