首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Background: The volatile anesthetic isoflurane reduces acute and delayed neuron death in vitro models of brain ischemia, an action that the authors hypothesize is related to moderate increases in intracellular calcium concentration ([Ca2+]i). Specifically, the authors propose that during hypoxia, moderate increases in [Ca2+]i in the presence of isoflurane stimulates the Ca2+-dependent phosphorylation of members of the mitogen-activated protein kinase (MAP) kinase Ras-Raf-MEK-ERK pathway that are critical for neuroprotective signaling and suppression of apoptosis.

Methods: Death of CA1, CA3, and dentate neurons in rat hippocampal slice cultures was assessed by propidium iodide fluorescence 48-72 h after 60-75 min of hypoxia. [Ca2+]i in CA1 neurons was measured with fura-2 and fura-2 FF. Concentrations of the survival-signaling proteins Ras, MEK, MAP kinase p42/44, and protein kinase B (Akt) were assessed by immunostaining, and specific inhibitors were used to ascertain the role of Ca2+ and MAP kinases in mediating survival.

Results: Isoflurane, 1%, decreased neuron death in CA1, CA3, and dentate gyrus neurons after 60 but not 75 min of hypoxia. Survival of CA1 neurons required an inositol triphosphate receptor-dependent increase in [Ca2+]i of 30-100 nm that activated the Ras-Raf-MEK-ERK (p44/42) signaling pathway. Isoflurane also increased the phosphorylation of Akt during hypoxia.  相似文献   


2.
Background: Most in vitro neuroprotection studies with isoflurane have involved cells obtained during the embryonic or early postnatal period. However, in mature rodents, isoflurane neuroprotection does not persist. The authors determined whether neuroprotection of hippocampal slices with isoflurane decreases with aging and is due to decreased intracellular Ca2+ regulation and survival protein phosphorylation.

Methods: Hippocampal slices from 5-day-old, 1-month-old, and 19- to 23-month-old rats were deprived of oxygen and glucose for 5-30 min in media bubbled with 1% isoflurane. Cell death was assessed in the CA1, CA3, and dentate regions, and intracellular Ca2+ concentration was measured in CA1 neurons. N-methyl-d-aspartate receptor (NMDAR)-dependent Ca2+ influx was measured and the phosphorylation of NMDARs, and the survival proteins Akt and mitogen-activated protein kinase p42/44 were quantified.

Results: Twenty minutes of oxygen and glucose deprivation killed approximately 40-60% of neurons in CA3 and dentate in all age groups. Isoflurane, 1%, reduced death of CA1, CA3, and dentate neurons in slices from 5-day-old rats but not those from 23-month-old rats. In 5-day slices, isoflurane attenuated NMDAR-mediated Ca2+ influx, whereas in aging slices, Ca2+ influx was increased protein kinase C. In aging slices, isoflurane did not increase the phosphorylation of Akt and p42/44.  相似文献   


3.
Background: Droperidol has recently been associated with cardiac arrhythmias and sudden cardiac death. Changes in action potential duration seem to be the cause of the arrhythmic behavior, which can lead to alterations in intracellular free Ca2+ concentration ([Ca2+]i). Because [Ca2+]i and myofilament Ca2+ sensitivity are key regulators of myocardial contractility, the authors' objective was to identify whether droperidol alters [Ca2+]i or myofilament Ca2+ sensitivity in rat ventricular myocytes and to identify the cellular mechanisms responsible for these effects.

Methods: Freshly isolated rat ventricular myocytes were obtained from adult rat hearts. Myocyte shortening, [Ca2+]i, nitric oxide production, intracellular pH, and action potentials were monitored in cardiomyocytes exposed to droperidol. Langendorff perfused hearts were used to assess overall cardiac function.

Results: Droperidol (0.03-1 [mu]m) caused concentration-dependent decreases in peak [Ca2+]i and shortening. Droperidol inhibited 35 mm KCl-induced increase in [Ca2+]i, with little direct effect on sarcoplasmic reticulum Ca2+ stores. Droperidol had no effect on action potential duration but caused a rightward shift in the concentration-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. Droperidol decreased pHi and increased nitric oxide production. Droperidol exerted a negative inotropic effect in Langendorff perfused hearts.  相似文献   


4.
Background: The authors previously reported that the isoflurane-caused reduction of the carbachol-evoked cytoplasmic Ca2+ transient increase ([Ca2+]cyt) was eliminated by K+ or caffeine-pretreatment. In this study the authors investigated whether the isoflurane-sensitive component of the carbachol-evoked [Ca2+]cyt transient involved Ca2+ influx through the plasma membrane.

Methods: Perfused attached human neuroblastoma SH-SY5Y cells were exposed to carbachol (1 mm, 2 min) in the absence and presence of isoflurane (1 mm) and in the absence and presence of extracellular Ca2+ (1.5 mm). The authors studied the effect of the nonspecific cationic channel blocker La3+ (100 [mu]m), of the L-type Ca2+ channel blocker nitrendipine (10 [mu]m), and of the N-type Ca2+ channel blocker [omega]-conotoxin GVIA (0.1 [mu]m) on isoflurane modulation of the carbachol-evoked [Ca2+]cyt transient. [Ca2+]cyt was detected with fura-2 and experiments were carried out at 37[degrees]C.

Results: Isoflurane reduced the peak and area of the carbachol-evoked [Ca2+]cyt transient in the presence but not in the absence of extracellular Ca2+. La3+ had a similar effect as the removal of extracellular Ca2+. [omega]-Conotoxin GVIA and nitrendipine did not affect the isoflurane sensitivity of the carbachol response although nitrendipine reduced the magnitude of the carbachol response.  相似文献   


5.
Background: Inhalational anesthetics are neuroprotective in rat models of global ischemia. To determine whether isoflurane at a clinically relevant concentration is neuroprotective in a canine model of cardiac arrest, we measured neurologic function and hippocampal Ca2+/calmodulin-dependent protein kinase II (CaMKII) content 20 h after cardiac arrest.

Methods: We tested the neuroprotective effect of 30 min of 1.5% isoflurane exposure before 8 min of global ischemia induced with ventricular fibrillation. Animals were randomized to four groups: control, isoflurane-control, ischemia, and isoflurane-ischemia. After resuscitation and 20 h of intensive care, each animal's neurologic deficit score was determined by two blinded evaluators. The hippocampal content of CaMKII, determined by immunoblotting, was measured by an individual blinded to the treatment groups. CaMKII activity was measured in samples from the cortex, hippocampus, and striatum of animals in each group.

Results: Isoflurane-ischemic animals had a median neurologic deficit score of 22.6% compared with 43.8% for the ischemic animals (P < 0.05). Hippocampal levels of the [beta]-subunit of CaMKII (CaMKII[beta]) were relatively preserved in isoflurane-ischemic animals (68 +/- 4% of control) compared with ischemic animals (48 +/- 2% of control;P < 0.001), although both groups were statistically significantly lower than control (P < 0.001 ischemia vs. control and P < 0.05 isoflurane-ischemia vs. control).  相似文献   


6.
Background: The aim of this study was to describe and compare the effects of isoflurane, sevoflurane, and halothane at selected concentrations (i.e., concentrations that led to equivalent depression of the electrically evoked Ca2+ transient) on myofilament Ca2+ sensitivity, sarcoplasmic reticulum (SR) Ca2+ content, and the fraction of SR Ca2+ released during electrical stimulation (fractional release) in rat ventricular myocytes.

Methods: Single rat ventricular myocytes loaded with fura-2 were electrically stimulated at 1 Hz, and the Ca2+ transients and contractions were recorded optically. Cells were exposed to each anesthetic for 1 min. Changes in myofilament Ca2+ sensitivity were assessed by comparing the changes in the Ca2+ transient and contraction during exposure to anesthetic and low Ca2+. SR Ca2+ content was assessed by exposure to 20 mm caffeine.

Results: Isoflurane and halothane caused a depression of myofilament Ca2+ sensitivity, unlike sevoflurane, which had no effect on myofilament Ca2+ sensitivity. All three anesthetics decreased the electrically stimulated Ca2+ transient. SR Ca2+ content was reduced by both isoflurane and halothane but was unchanged by sevoflurane. Fractional release was reduced by both isoflurane and sevoflurane, but was unchanged by halothane.  相似文献   


7.
Background: Halothane and isoflurane depress myocardial contractility by decreasing transsarcolemmal Ca2+ influx and Ca2+ release from the sarcoplasmic reticulum. Decreases in Ca2+ sensitivity of the contractile proteins have been shown in skinned cardiac fibers, but the relative importance of this effect in intact living myocardium is unknown. The aims of this study were to assess whether halothane and isoflurane decrease myofibrillar Ca2+ sensitivity in intact, living cardiac fibers and to quantify the relative importance of changes in myofibrillar Ca2+ sensitivity versus changes in myoplasmic Ca2+ availability caused by these anesthetics.

Methods: The effects of halothane and isoflurane (0-1.5 times the minimum alveolar concentration (MAC) in three equal increments) on isometric and isotonic variables of contractility and on the intracellular calcium transient were assessed in isolated ferret right ventricular papillary muscle microinjected with the Ca2+-regulated photoprotein aequorin. The intracellular calcium transient was analyzed in the context of a multicompartment model of intracellular Ca2+ buffers in mammalian ventricular myocardium.

Results: Halothane and isoflurane decreased contractility, time-to-peak force, time to half-isometric relaxation, and intracellular Ca2+ transient in a reversible, concentration-dependent manner. Halothane, but not isoflurane, slowed the increase and the decrease of the intracellular Ca2+ transient. Increasing extracellular Ca2+ in the presence of anesthetic to produce peak force equal to control values increased intracellular Ca2+ to values higher than control values.  相似文献   


8.
Background: Protein kinase C (PKC) and Ca2+-calmodulin-dependent protein kinase II (CaMKII) have been implicated in isoflurane-increased force in skinned femoral arterial strips. The extracellular signal-regulated kinases (ERK1/2) of mitogen-activated protein kinase have been shown to be target effectors of PKC and CaMKII. This study examined the role of the ERK1/2 signaling pathway in isoflurane activation of PKC and CaMKII using cultured vascular smooth muscle cells.

Methods: Vascular smooth muscle cells were prepared by cell migration from isolated rabbit femoral arterial segments. Growth of passage of vascular smooth muscle cells (80-90% confluence, passage 5-10) was arrested for 48 h before experiments, during which time phorbol 1,3-diaceylester treatment was used to down-regulate PKC. Cells were treated for 30 min with one of the inhibitors of mitogen-activated protein kinase kinase (PD98059), PKC (Go6976 and bisindolylmaleimide), or CaMKII (KN-93 and KN-62) at 10 [mu]m. After administration of isoflurane, vascular smooth muscle cells were frozen rapidly, homogenized, and centrifuged. The homogenates were used for identification of phosphorylated ERK1/2 or for further centrifugation to separate the membrane from the cytosol for identification of PKC isoforms ([alpha] and ) by Western blotting.

Results: Isoflurane increased ERK1/2 phosphorylation in a dose-dependent manner and reached a plateau at 10 min. PD98059 or down-regulated PKC blocked the increase of phosphorylated ERK1/2 levels by isoflurane, and bisindolylmaleimide, KN-93, or KN-62, but not by Go6976 reduced levels of phosphorylated ERK1/2. The membrane fraction of PKC but not of PKC[alpha] was increased by isoflurane.  相似文献   


9.
Background: The objectives were to determine the extent and mechanism of action by which propofol increases myofilament Ca2+ sensitivity and intracellular pH (pHi) in ventricular myocytes.

Methods: Freshly isolated adult rat ventricular myocytes were used for the study. Cardiac myofibrils were extracted for assessment of myofibrillar actomyosin adenosine triphosphatase (ATPase) activity. Myocyte shortening (video edge detection) and pHi (2',7'-bis-(2-carboxyethyl)-5(6')-carboxyfluorescein, 500/440 ratio) were monitored simultaneously in individual cells field-stimulated (0.3 Hz) and superfused with HEPES-buffered solution (pH 7.4, 30[degrees]C).

Results: Propofol (100 [mu]m) reduced the Ca2+ concentration required for activation of myofibrillar actomyosin ATPase from pCa 5.7 +/- 0.01 to 6.6 +/- 0.01. Increasing pHi (7.05 +/- 0.03 to 7.39 +/- 0.04) with NH4Cl increased myocyte shortening by 35 +/- 12%. Washout of NH4Cl decreased pHi to 6.82 +/- 0.03 and decreased myocyte shortening to 52 +/- 10% of control. Propofol caused a dose-dependent increase in pHi but reduced myocyte shortening. The propofol-induced increase in pHi was attenuated, whereas the decrease in myocyte shortening was enhanced after pretreatment with ethylisopropyl amiloride, a Na+-H+ exchange inhibitor, or bisindolylmaleimide I, a protein kinase C inhibitor. Propofol also attenuated the NH4Cl-induced intracellular acidosis, increased the rate of recovery from acidosis, and attenuated the associated decrease in myocyte shortening. Propofol caused a leftward shift in the extracellular Ca2+-shortening relation, and this effect was attenuated by ethylisopropyl amiloride.  相似文献   


10.
Background: This study examined the responsiveness of skinned pulmonary arteries from newborn rabbit to volatile anesthetics and the role of protein kinase C (PKC), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the downstream effectors, mitogen-activated protein kinases (ERK1/2 and p38).

Methods: Pulmonary arterial strips from 9- to 12-day-old rabbits were mounted on force transducers and treated with saponin ("skinned" strips). The skinned strips were activated by pCa 6.3 until force reached a steady state (control). Isoflurane or halothane was then administered. The result (test) was expressed as a percentage of the control. Inhibitors included bisindolylmaleimide (Ca2+-dependent and -independent PKC), Go6976 (Ca2+-dependent PKC), CKIINtide (CaMKII), KN-93 (CaMKII), PD98059 (MEK/ERK1/2), and SB203580 (p38).

Results: The anesthetics dose-dependently decreased pCa-induced force (4-32% for 1-5% isoflurane; 17-76% for 1-3% halothane). The inhibitors of PKC (bisindolylmaleimide and Go6976) and MEK/ERK1/2 (PD98059) completely prevented the relaxation induced by 3% isoflurane and partially prevented that induced by 2% and 3% halothane with the same effective inhibitor concentrations. In contrast, the effective concentration of CaMKII inhibitors was a direct function of the anesthetic concentration for different inhibitors (KN-93 for isoflurane and CKIINtide for halothane), and that of the p38 inhibitor (SB20358) was a direct function of both anesthetics.  相似文献   


11.
Background: Neuropathic pain is inadequately treated and poorly understood at the cellular level. Because intracellular Ca2+ signaling critically regulates diverse neuronal functions, the authors examined effects of peripheral nerve injury on the Ca2+ transient that follows neuronal activation.

Methods: Cytoplasmic Ca2+ levels were recorded by digital microfluorometry from dissociated dorsal root ganglion neurons of hyperalgesic animals after ligation of the fifth lumbar spinal nerve and control animals. Neurons were activated by field stimulation or by K+ depolarization.

Results: Transients in presumptively nociceptive, small, capsaicin-sensitive neurons were diminished after axotomy, whereas transient amplitude increased in axotomized nonnociceptive neurons. Axotomy diminished the upward shift in resting calcium after transient recovery. In contrast, nociceptive neurons adjacent to axotomy acquired increased duration of the transient and greater baseline shift after K+ activation. Transients of nonnociceptive neurons adjacent to axotomy showed no changes after injury. In nociceptive neurons from injured rats that did not develop hyperalgesia, transient amplitude and baseline offset were large after axotomy, whereas transient duration in the adjacent neurons was shorter compared with neurons excised from hyperalgesic animals, which show normalization of these features.  相似文献   


12.
Background: Anesthetic preconditioning (APC) is well known to protect against myocardial ischemia-reperfusion injury. Studies also show the benefit of Na+-Ca2+ exchange inhibition on ischemia-reperfusion injury. The authors tested whether APC plus Na+-Ca2+ exchange inhibitors given just on reperfusion affords additive protection in intact hearts.

Methods: Cytosolic [Ca2+] was measured by fluorescence at the left ventricular wall of guinea pig isolated hearts using indo-1 dye. Sarcoplasmic reticular Ca2+-cycling proteins, i.e., Ca2+ release channel (ryanodine receptor [RyR2]), sarcoplasmic reticular Ca2+-pump adenosine triphosphatase (SERCA2a), and phospholamban were measured by Western blots. Hearts were assigned to seven groups (n = 8 each): (1) time control; (2) ischemia; (3, 4) 10 [mu]m Na+-Ca2+ exchange inhibitor KB-R7943 (KBR) or 1 [mu]m SEA0400 (SEA), given during the first 10 min of reperfusion; (5) APC initiated by sevoflurane (2.2%, 0.41 +/- 0.03 mm) given for 15 min and washed out for 15 min before ischemia-reperfusion; (6, 7) APC plus KBR or SEA.

Results: The authors found that APC reduced the increase in systolic [Ca2+], whereas KBR and SEA both reduced the increase in diastolic [Ca2+] on reperfusion. Each intervention improved recovery of left ventricular function. Moreover, APC plus KBR or SEA afforded better functional recovery than APC, KBR, or SEA alone (P < 0.05). Ischemia-reperfusion-induced degradation of major sarcoplasmic reticular Ca2+-cycling proteins was attenuated by APC, but not by KBR or SEA.  相似文献   


13.
Background: Neuraxial opioids produce analgesia in part by decreasing excitatory neurotransmitter release from primary nociceptive neurons, an effect that may be due to inhibition of presynaptic voltage-activated Ca2+ channels. The purpose of this study was to determine whether opioids decrease Ca2+ currents (ICa) in primary nociceptive neurons, identified by their response to the algogenic agent capsaicin.

Methods: ICa was recorded from acutely isolated rat dorsal root ganglion neurons using the whole cell patch clamp technique before, during, and after application of the [mu]-opioid agonist fentanyl (0.01-1 [mu]m). Capsaicin was applied to each cell at the end of the experiment.

Results: Fentanyl reduced ICa in a greater proportion of capsaicin-responsive cells (62 of 106, 58%) than capsaicin-unresponsive cells (2 of 15, 13%;P < 0.05). Among capsaicin-responsive cells, the decrease in ICa was 38 +/- 3% (n = 36, 1 [mu]m) in fentanyl-sensitive cells versus just 7 +/- 1% (n = 15, 1 [mu]m;P < 0.05) in fentanyl-insensitive cells. Among capsaicin-responsive cells, ICa inactivated more rapidly in fentanyl-sensitive cells ([tau]h, 52 +/- 4 ms, n = 22) than in fentanyl-insensitive cells (93 +/- 14 ms, n = 24;P < 0.05). This was not due to differences in the types of Ca2+ channels expressed as the magnitudes of [omega]-conotoxin GVIA-sensitive (N-type), nifedipine-sensitive (L-type), and GVIA/nifedipine-resistant (primarily P-/Q-type) components of ICa were similar.  相似文献   


14.
Background: Neuronal excitability is in part determined by Ca2+ availability that is controlled by regulatory mechanisms of cytosolic Ca2+ ([Ca2+]cyt). Alteration of any of those mechanisms by volatile anesthetics (VAs) may lead to a change in presynaptic transmission and postsynaptic excitability. Using a human neuroblastoma cell line, the effects of halothane and isoflurane on cytosolic Ca2+ concentration ([Ca2+]cyt) in response to K+ and carbachol stimulation were investigated.

Methods: Volatile anesthetic (0.05-1 mm) action on stimulated [Ca2+]cyt transients were monitored in suspensions of SH-SY5Y cells loaded with fura-2. Potassium chloride (KCl; 100 mm) was used to depolarize and activate Ca2+ entry through voltage-dependent calcium channels; 1 mm carbachol was used to activate muscarinic receptor-mediated inositol triphosphate (IP3)-dependent intracellular Ca2+ release. Sequential stimulations, KCl followed by carbachol and vice versa, were used to investigate interactions between intracellular Ca2+ stores.

Results: Halothane and isoflurane in clinically relevant concentrations enhanced the K+-evoked [Ca2+]cyt transient whether intracellular Ca2+ stores were full or partially depleted. In contrast, halothane and isoflurane reduced the carbachol-evoked [Ca2+]cyt transient when the intracellular Ca2+ stores were full but had no effect when the Ca2+ stores were partially depleted by KCl stimulation.  相似文献   


15.
Background: Sevoflurane depresses myocardial contractility by decreasing transsarcolemmal Ca2+ influx. In skinned muscle fibers, sevoflurane affects actin-myosin cross-bridge cycling, which might contribute to the negative inotropic effect. It is uncertain to what extent decreases in Ca2+ sensitivity of the contractile proteins play a role in the negative inotropic effect of sevoflurane in intact cardiac muscle tissue. The aim of this study was to assess whether sevoflurane decreases myofibrillar Ca2+ sensitivity in intact living cardiac fibers and to quantify the relative importance of changes in myofibrillar Ca2+ sensitivity versus changes in myoplasmic Ca2+ availability by sevoflurane.

Methods: The effects of sevoflurane 0-4.05% vol/vol (0-1.5 minimum alveolar concentration [MAC]) on isometric and isotonic variables of contractility and on the intracellular calcium transient were assessed in isolated ferret right ventricular papillary muscles microinjected with the Ca2+-regulated photoprotein aequorin. The intracellular calcium transient was analyzed in the context of a multicompartment model of intracellular Ca2+ buffers in mammalian ventricular myocardium.

Results: Sevoflurane decreased contractility, time to peak force, time to half isometric relaxation, and the [Ca2+]i transient in a reversible, concentration-dependent manner. Increasing [Ca2+]o in the presence of sevoflurane to produce peak force equal to control increased intracellular Ca2+ transient higher than control.  相似文献   


16.
Background: Although barbiturates activate [Greek small letter alpha]-aminobutyric acid type A receptors as part of their hypnotic effect, these drugs also inhibit voltage-gated calcium channels. The authors determined if barbiturates could decrease neuronal intracellular Ca2+ transients and the resulting glutamate release.

Methods: Neonatal rat cerebellar granule neurons were isolated and cultured on coverslips and studied at 37 [degree sign]C. Spectrofluorometric assays were used during identical conditions to monitor intracellular Ca2+ with the Ca2+-sensitive fluorophore fura-2 and glutamate release by a glutamate dehydrogenase-coupled assay, which produced the reduced form of nicotinamide-adenine dinucleotide phosphate in proportion to the amount of glutamate released. Neurons were depolarized by a rapid increase in external [K+] from 5 to 55 mM. Control responses were compared with those in the presence of 10, 30, and 100 [micro sign]M thiopental; 3, 10, and 30 [micro sign]M methohexital; decreased external [Ca2+]; or voltage-gated calcium channel blockers.

Results: Thiopental and methohexital depressed the intracellular Ca2+ transient peak and plateau in a dose-dependent manner, as did decreased Ca (2+). The intermediate dose of either drug caused [almost equal to] 50% decrease in peak intracellular Ca2+ and 60% decrease in glutamate release. In the presence of specific L-and/or N-type voltage-gated calcium channel blockade by nicardipine or [Greek small letter omega]-conotoxin-GVIA, respectively, 30 [micro sign]M thiopental further decreased the intracellular Ca2+ transient. Thiopental caused a dose-dependent decrease in glutamate release, which was proportional to the decreased peak intracellular Ca2+.  相似文献   


17.
Background: Benzodiazepines have a direct bronchodilator action in airway smooth muscle, but the mechanisms by which these agents produce muscle relaxation are not fully understood. The current study was performed to identify the effects of the benzodiazepines diazepam and midazolam on Ca2+ and K+ channels in canine tracheal smooth muscle cells.

Methods: Whole-cell patch-clamp recording techniques were used to evaluate the effects of the benzodiazepines diazepam (10-8 to 10-3 M) and midazolam (10-8 to 10-3 M) on inward Ca2+ and outward K (+) channel currents in dispersed canine tracheal smooth muscle cells. The effects of the antagonists flumazenil (10-5 M) and PK11195 (10-5 M) on these channels were also studied.

Results: Each benzodiazepine tested significantly inhibited Ca2+ currents in a dose-dependent manner, with 10-6 M diazepam and 10-5 M midazolam each causing approximately 50% depression of peak voltage-dependent Ca2+ currents. Both benzodiazepines promoted the inactivated state of the channel at more-negative potentials. The Ca2+ -activated and voltage-dependent K+ currents were inhibited by diazepam and midazolam (> 10-5 M and > 10-4 M, respectively). Flumazenil and PK11195 had no effect on these channel currents or on the inhibitory effects of the benzodiazepines.  相似文献   


18.
Background: Bupivacaine produces skeletal muscle damage in clinical concentrations. It has been suggested that this may be caused by an increased intracellular level of [Ca2+]. Therefore, the aim of this study was to investigate direct intracellular effects of bupivacaine on Ca2+ release from the sarcoplasmic reticulum (SR), on Ca2+ uptake into the SR, and on Ca2+ sensitivity of the contractile proteins.

Methods: Saponin skinned muscle fibers from the extensor digitorum longus muscle of BALB/c mice were examined according to a standardized procedure described previously. For the assessment of effects on Ca2+ uptake and release from the SR, bupivacaine was added to the loading solution and the release solution, respectively. Force transients and force decays were monitored, and the position of the curve relating relative isometric force versus free [Ca2+] was evaluated in the presence or absence of bupivacaine.

Results: Bupivacaine induces Ca2+ release from the SR. In addition, the Ca2+ loading procedure is suppressed, resulting in smaller caffeine-induced force transients after loading in the presence of bupivacaine. The decay of caffeine-induced force transients is reduced by bupivacaine, and it also shifts [Ca2+]-force relation toward lower [Ca2+].  相似文献   


19.
Background: Myocardial contractility is regulated by intracellular concentration of free Ca2+ ([Ca2+]i) and myofilament Ca2+ sensitivity. The objective of this study was to elucidate the direct effects of thiopental on cardiac excitation-contraction coupling using individual, field-stimulated ventricular myocytes.

Methods: Freshly isolated rat ventricular myocytes were loaded with the Ca2+ indicator, fura-2, and placed on the stage of an inverted fluorescence microscope in a temperature-regulated bath. [Ca2+]i (340/380 ratio) and myocyte shortening (video-edge detection) were monitored simultaneously in individual cells field-stimulated at 0.3 Hz. Amplitude and timing of myocyte shortening and [Ca2+]i were compared before and after addition of thiopental. Intracellular pH was measured with the pH indicator, BCECF (500/440 ratio). Real-time uptake of Ca2+ into isolated sarcoplasmic reticulum vesicles was measured using fura-2 free acid in the extravesicular compartment. One hundred thirty-two cells were studied.

Results: Field stimulation increased [Ca2+]i from 85 +/- 10 nM to 355 +/- 22 nM (mean +/- SEM). Myocytes shortened by 10% of resting cell length (127 +/- 5 [micro sign]m). Times to peak [Ca2+]i and shortening were 139 +/- 6 and 173 +/- 7 msec, respectively. Times to 50% recovery for [Ca2+]i and shortening were 296 +/- 6 and 290 +/- 6 ms, respectively. Addition of thiopental (30-1,000 [micro sign]M) resulted in dose-dependent decreases in peak [Ca2+]i and myocyte shortening. Thiopental altered time to peak and time to 50% recovery for [Ca2+]i and myocyte shortening and inhibited the rate of uptake of Ca2+ into isolated sarcoplasmic reticulum vesicles. Thiopental did not, however, alter the amount of Ca2+ released in response to caffeine in sarcoplasmic reticulum vesicles or intact cells. Thiopental (100 [micro sign]M) increased intracellular pH and caused an upward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. These effects were abolished by ethylisopropyl amiloride, an inhibitor of Na+ -H+ exchange.  相似文献   


20.
Background: Halothane directly inhibits contraction of airway smooth muscle, mainly by decreasing the intracellular concentration of free Ca2+ ([Ca2+]i). The role of intracellular Ca2+ stores, sarcoplasmic reticulum, is still unclear. We investigated the role of sarcoplasmic reticulum in the inhibitory effect of halothane on contraction of airway smooth muscle by measuring [Ca2+]i and intracellular concentration of inositol 1,4,5-triphosphate ([IP3]i), a second messenger for release of Ca2+ from sarcoplasmic reticulum.

Methods: [Ca2+]i was monitored by measuring the 500-nm light emission ratio (F340/F380) of a Ca2+ indicator fura-2 with isometric tension of canine tracheal smooth muscle strip. During Ca2+-free conditions, carbachol (10-5 M) was introduced with pretreatment of halothane (0-3%). During Ca2+-free conditions, 20 mM caffeine, a Ca (2+-induced) Ca2+ release channel opener, was introduced with or without halothane. We measured [IP3]i during exposure to carbachol and halothane by radioimmunoassay technique.

Results: Pretreatment with halothane significantly diminished carbachol-induced increases in [Ca2+]i by 77% and muscle tension by 83% in a dose-dependent manner. Simultaneous administration of halothane significantly enhanced caffeine-induced transient increases in [Ca2+] (i) and muscle tension in a dose-dependent manner, by 97% and 69%, respectively. Pretreatment with halothane abolished these responses. Rapid increase in [IP3]i produced by carbachol was significantly inhibited by 32% by halothane in a dose-dependent manner.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号