首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
Asthma is a type-I allergic airway disease characterized by Th2 cells and IgE. Episodes of bronchial inflammation, eosinophilic in nature and promoting bronchoconstriction, may become chronic and lead to persistent respiratory symptoms and irreversible structural airway changes. Representative mostly of mild to moderate asthma, this clinical definition fails to account for the atypical and often more severe phenotype found in a considerable proportion of asthmatics who have increased neutrophil cell counts in the airways as a distinguishing trait. Neutrophilic inflammation is a hallmark of another type of allergic airway pathology, hypersensitivity pneumonitis. Considered as an immune counterpart of asthma, hypersensitivity pneumonitis is a prototypical type-III allergic inflammatory reaction involving the alveoli and lung interstitium, steered by Th1 cells and IgG and, in its chronic form, accompanied by fibrosis. Although pathologically very different and commonly approached as separate disorders, as discussed in this review, clinical studies as well as data from animal models reveal undeniable parallels between both airway diseases. Danger signaling elicited by the allergenic agent or by accompanying microbial patterns emerges as critical in enabling immune sensitization and in determining the type of sensitization and ensuing allergic disease. On this basis, we propose that asthma allergens cause severe noneosinophilic asthma because of sensitization in the presence of hypersensitivity pneumonitis-promoting danger signaling.  相似文献   

2.
Asthma is a chronic inflammatory disease of the airways characterized by infiltration and activation of inflammatory cells and by structural changes, including subepithelial fibrosis, smooth muscle cells hypertrophy/hyperplasia, epithelial cell metaplasia and angiogenesis. These structural changes are thought to correlate with asthma severity and to account for the development of progressive lung function deterioration. The mechanism underlying airway angiogenesis in asthma and its precise clinical relevance have not yet been completely elucidated. This review provides recent data showing the contribution of allergic inflammation in increased airway vascularity and potential therapeutical approaches in asthma treatment by acting on bronchial microvascular changes.  相似文献   

3.
Experimental approaches to evaluate respiratory allergy in animal models.   总被引:1,自引:0,他引:1  
Asthma is defined as a chronic disease of the entire lung and asthma attacks may either be immediate, delayed or dual in onset. Allergic asthma is a complex chronic inflammatory disease of the airways and its etiology is multifactorial. It involves the recruitment and activation of many inflammatory and structural cells, all of which release mediators that result in typical pathological changes of asthma. A wealth of clinical and experimental data suggests that allergic asthma is due to an aberrant lung immune response mediated through T-helper type 2 (Th2) cells and associated cytokine-signaling pathways. The pathology of asthma is associated with reversible narrowing of airways, associated with prominent features that involve structural changes in the airway walls and extracellular matrix remodeling including abnormalities of bronchial smooth muscle, eosinophilic inflammation of the bronchial wall, hyperplasia and hypertrophy of mucous glands. The primary objective of respiratory allergy tests is to determine whether a low-molecular-weight chemical (hapten) or high-molecular-weight compound (antigen) exhibits sensitizing properties to the respiratory tract. This may range from reactions occurring in the nose (allergic rhinitis), in the bronchial airways (i.e., allergic bronchitis, asthma) or alveoli (e.g., hypersensitivity pneumonitis). Current assays utilize several phases, viz. an induction phase, which includes multiple exposures to the test compound (sensitization) via the respiratory tract (e.g., by intranasal or intratracheal instillations), by inhalation exposures or by dermal contact, and a single or multiple challenge or elicitation phase. The challenge can either be with the chemical (hapten), the homologous protein conjugate of the hapten or the antigen. The choice depends both on the irritant potency and the physical form (vapor, aerosol) of the hapten. The appropriate selection of concentrations (dosages) both for the induction and elicitation of respiratory allergy appears to be paramount for the outcome of test. Endpoints to characterize positive response range from the induction of immunoglobulins, cytokine or lymphokine patterns in serum (or the lung) to (patho-)physiological reactions typifying asthma. None of the currently applied animal models duplicate all features of human asthma. Accordingly, the specific pros and cons of the selected animal model, including protocol variables, animal species and strain selected, must be interpreted cautiously in order to arrive at a meaningful extrapolation for humans.  相似文献   

4.
Allergic inflammation is a type 2 immune disorder classically characterized by high levels of immunoglobulin E (IgE) and the development of Th2 cells. Asthma is a pulmonary allergic inflammatory disease resulting in bronchial hyper-reactivity. Atopic asthma is defined by IgE antibody-mediated mast cell degranulation, while in non-atopic asthma there is no allergen-specific IgE and more involvement of innate immune cells, such as basophils, group 2 innate lymphoid cells (ILC2), and eosinophils. Recently, protease allergens were shown to cause asthmatic responses in the absence of Th2 cells, suggesting that an innate cell network (IL-33/TSLP-basophil-ILC2-IL-5/IL-13 axis) can facilitate the sensitization phase of type 2 inflammatory responses. Recent evidence also indicates that in the chronic phase, these innate immune cells directly or indirectly contribute to the adaptive Th2 cell responses. In this review, we discuss the role of Th2 cytokines (IL-4 and IL-13) and innate immune cells (mast cells, basophils, ILC2s, and dendritic cells) in the cross-talk between innate and adaptive inflammatory responses.  相似文献   

5.
IL-1 alpha and IL-1 beta are potent pro-inflammatory cytokines that regulate many physiological systems by binding and signaling to the same receptor termed IL-1 receptor type 1 (IL-1R1). We have investigated the role of IL-1 for pulmonary immune responses in models of allergic asthma using IL-1R1-deficient (IL-1R1(-/-)) mice. In a model of mild asthma, based on repeated sensitization of mice with low doses of ovalbumin in the absence of any adjuvant and multiple intranasal challenges, the pulmonary eosinophilic inflammation and goblet cell hyperplasia were strongly reduced in IL-1R1(-/-) as compared to control BALB/c mice. Moreover, priming of CD4(+) T cells in bronchial lymph nodes and their recruitment to the lung was affected in IL-1R1(-/-) mice associated with impaired antibody responses including IgG, IgE, and IgA. In contrast, sensitization of mice in the presence of alum adjuvant, a more severe asthma model, rendered the IL-1 pathway dispensable for the development of pulmonary allergic Th2 responses, as eosinophilic inflammation, antibody responses, and CD4(+) T cell priming in lymph nodes were comparable between IL-1R1(-/-) and wild-type mice. These results suggest a critical role of IL-1/IL-1R1 for development of allergic Th2 responses, but its requirement can be overcome by using alum as adjuvant for sensitization.  相似文献   

6.
7.
Do mouse models of allergic asthma mimic clinical disease?   总被引:6,自引:0,他引:6  
Experimental mouse models of allergic asthma established almost 10 years ago offered new opportunities to study disease pathogenesis and to develop new therapeutics. These models focused on the factors governing the allergic immune response, on modeling clinical behavior of allergic asthma, and led to insights into pulmonary pathophysiology. Although mouse models rarely completely reproduce all the features of human disease, after sensitization and respiratory tract challenges with antigen, wild-type mice develop a clinical syndrome that closely resembles allergic asthma, characterized by eosinophilic lung inflammation, airway hyperresponsiveness (AHR), increased IgE, mucus hypersecretion, and eventually, airway remodeling. There are, however, differences between mouse and human physiology that threaten to limit the value of mouse models. Three examples of such differences relate to both clinical manifestations of disease and underlying pathogenesis. First, in contrast to patients who have increased methacholine-induced AHR even when they are symptom-free, mice exhibit only transient methacholine-induced AHR following allergen exposure. Second, chronic allergen exposure in patients leads to chronic allergic asthma, whereas repeated exposures in sensitized mice causes suppression of disease. Third, IgE and mast cells, in humans, mediate early- and late-phase allergic responses, though both are unnecessary for the generation of allergic asthma in mice. Taken together, these observations suggest that mouse models of allergic asthma are not exact replicas of human disease and thus, question the validity of these models. However, observations from mouse models of allergic asthma support many existing paradigms, although some novel discoveries in mice have yet to be verified in patients. This review presents an overview of the clinical aspects of disease in mouse models of allergic asthma emphasizing (1). the factors influencing the pathophysiological responses during the initiation and perpetuation of disease, (2). the utility of mouse models for studying clinical manifestations of disease, and (3). the applicability of mouse models for testing new treatments for allergic asthma.  相似文献   

8.
Asthma and COPD     
The two obstructive airway diseases bronchial asthma and chronic obstructive pulmonary disease (COPD) represent major global causes of disability and death, and COPD is estimated to become the third most common cause of death by 2020. The structural and pathophysiologic findings in both diseases appear to be easily differentiated in the extremes of clinical presentation. However, a significant overlap may exist in individual patients regarding features such as airway wall thickening on computer tomography or reversibility and airway hyperresponsiveness in lung function tests. Airway inflammation differs between the two diseases. In bronchial asthma, airway inflammation is characterized in most cases by an increased number of activated T-lymphocytes, particularly CD4+ Th2 cells, and sometimes eosinophils and mast cells. The most notable difference of chronic severe asthma compared with mild to moderate asthma is an increased number of neutrophils. In stable COPD, airway inflammation is characterized by an increased number of T-lymphocytes, particularly CD8+ T cells, macrophages and neutrophils. With the progression of the disease severity, macrophage and neutrophil numbers increase. Although there may be a partial overlap between asthma and COPD in some patients, the differences in functional, structural and pharmacological features clearly demonstrate the consensus that asthma and COPD are different diseases along all their stages of severity.  相似文献   

9.
Summary: Bronchial asthma is a chronic inflammatory airway disease defined by reversible airway obstruction and non-specific airway hyper-responsiveness (AHR). Although profound insights have been made into the pathophysiology of asthma, the exact mechanisms inducing and regulating the disease are still not fully understood. Yet, it is generally accepted that the pathological changes in asthma are induced by a chronic inflammatory process which is characterized by infiltration of the bronchial mucosa with lymphocytes and eosinophils, increased mucus production and submucosal edema. There is increasing evidence that an imbalance in the T-helper (Th) cell response of genetically predisposed individuals to common environmental antigens plays a pivotal role in the pathogenesis of allergic bronchial asthma and other atopic disorders. Following allergic sensitization, T cells from atopic patients tend to produce elevated levels of Th2-type cytokines, especially interleukin (IL)-4, IL-13, IL-5 and IL-6, which induce and regulate IgE production and eosinophil airway infiltration. In this review, the role of Th2-type cytokines, IgE and airway eosinophils in the induction of airway inflammation and AHR is discussed, and animal studies of asthma and AHR, mainly in rodents will be considered. A better understanding of the underlying mechanisms leading to asthma pathology may yield more specific immunological strategies for the treatment of this disease which is increasing worldwide.
I thank the many colleagues in the laboratory of Dr. E. W. Gelfand, National Jewish Research Center, Denver CO, USA, for continuous support and encouragement. E.H. is a fellow of the Deutsche Forschungsgemeinschaft (DFG Ha 2162/1-1 and 2-1).  相似文献   

10.
BACKGROUND: Histamine elicits many features of immediate hypersensitivity reactions. Recent evidence indicates that H1 receptors modulate immune responses to antigens. Desloratadine (DL), a new, long-acting, H1 receptor antagonist, has both a potent antihistaminic function and anti-inflammatory properties. OBJECTIVE: We sought to evaluate the effect of DL on allergic-airway responses in mice after inhalation of the naturally occurring aeroallergen Aspergillus fumigatus (Af ) and to examine the effects of DL on specific immune responses to a defined protein antigen with the use of an ovalbumin (OVA) model of asthma. METHODS: Mice were subjected either to repeated, intranasal application of Af extract or to intraperitoneal immunization with OVA, followed by inhalation challenge. DL or a control fluid was given daily throughout the sensitization process. Immunoglobulin E (IgE) levels, bronchoalveolar lavage-fluid cytokines and cytology, lung histology, and physiologic responses to methacholine were assessed in the allergen-treated mice. Anti-OVA IgE responses and OVA-driven T-cell cytokine production were examined. RESULTS: Treatment with DL did not impair IgE production but did inhibit bronchial inflammation and bronchial hyperresponsiveness in both Af- and OVA-treated mice. This inhibition required that DL be administered concurrently with allergen sensitization, indicating that the attenuation of bronchial hyperresponsiveness and inflammation was not caused by anticholinergic receptor effects. OVA-responsive T cells from DL-treated mice exhibited depressed production of IL-4, IL-5, and IL-13 and normal amounts of interferon-gamma. The amounts of IL-5 and IL-13 were also diminished in the bronchoalveolar lavage fluid. CONCLUSION: DL, given at the time of exposure to the allergen, inhibits T(H)2 responses, the induction of allergic pulmonary inflammation, and bronchial hyperresponsiveness. These results suggest that DL or similar agents given during times of antigen exposure might alter disease progression in patients with respiratory allergy.  相似文献   

11.
T lymphocytes have a central regulatory role in the pathogenesis of asthma. We delineated the participation of lymphocytes in the acute allergic and chronic tolerant stages of a murine model of asthma by characterizing the various subsets of lymphocytes in bronchoalveolar lavage and lung tissue associated with these responses. Acute (10-day) aerosol challenge of immunized C57BL/6J mice with ovalbumin resulted in airway eosinophilia, histological evidence of peribronchial and perivascular airway inflammation, clusters of B cells and TCRgammadelta cells in lung tissue, increased serum IgE levels, and airway hyperresponsiveness to methacholine. In mice subjected to chronic (6-week) aerosol challenge with ovalbumin, airway inflammation and serum IgE levels were significantly attenuated and airway hyperresponsiveness was absent. The marked increases in lung B and T cell populations seen in the acute stage were also significantly reduced in the chronic stage of this model. Thus, acute ovalbumin challenge resulted in airway sensitization characteristic of asthma, whereas chronic ovalbumin challenge elicited a suppressed or tolerant state. The transition from antigenic sensitization to tolerance was accompanied by shifts in lymphocyte profiles in the lung and bronchoalveolar lavage fluid.  相似文献   

12.
AIMS: Although atopic sensitization is common in childhood, its relationship to clinical allergic disease remains incompletely understood. We therefore sought to explore this relationship by defining sensitization based atopic phenotypes. METHODS: Children were recruited at birth (n = 1456) and reviewed at 1, 2, 4 and 10 years. Skin prick testing (SPT) to common allergens was done at 4 (n = 980) and 10 years (n = 1036) with lung function (n = 981), bronchial challenge (n = 784) and serum IgE (n = 953) testing at 10. Atopic phenotypes were defined, by sensitization pattern, for children with SPT at both 4 and 10 years (n = 823). RESULTS: Of phenotyped children, 68.0% were never atopic, 4.3% early childhood atopic (only atopic at age 4), 16.5% chronic childhood atopics (at 4 and 10 years) and 11.2% delayed childhood atopics (only at 10). Never atopics showed small but identifiable prevalence of allergic diseases such as asthma, eczema and rhinitis. Amongst allergen-sensitized subjects, aeroallergen predominated over food sensitization throughout childhood. Chronic childhood atopics showed highest prevalence of lifetime plus persistent wheeze, eczema and rhinitis, increased prevalence of aeroallergen sensitization, some evidence of persistent food sensitization, significantly greater cord IgE than never atopics (P = 0.006), plus higher total IgE (P < 0.001) and bronchial hyper-responsiveness (P < 0.001) at 10 years than other phenotypes. CONCLUSION: A proportion of childhood eczema, rhinitis and asthma is nonatopic. The commonest childhood pattern of atopy is chronic sensitization, associated with early, persisting and clinically significant allergic disease. The currently accepted childhood 'Allergic March' may oversimplify the natural history of childhood atopy and allergic disease.  相似文献   

13.
Asthma is the most common chronic disease in childhood characterized by chronic bronchial inflammation of variable intensity accompanied by spontaneous or drug reversible airflow obstruction. The onset of asthma, clinical presentation and response to therapy are influenced by numerous genetic and environmental factors. Asthma in childhood is characterized by its heterogeneity in terms of possible etiology, degree of inflammation and airway obstruction, lung function as well as the natural course of disease that may persist and continue to adulthood. Protective factors linked to early life experiences have also been delineated which may impact the development of asthma. Pathophysiological mechanisms of allergic reaction as an excessive inflammation driven by T-helper-2 (Th2) immunity, offer poor understanding of the heterogeneity of clinical disease. A recently introduced approach defines asthma as a syndrome that comprises of several subtypes or endotypes based on entirely novel pathways to disease. Timely diagnosis and adequate treatment are necessary to prevent irreversible airway remodeling and consequent decrease in pulmonary function.  相似文献   

14.
Background: Allergic asthma is a Th2-type chronic inflammatory disease of the lung. It is characterized by infiltration of eosinophils, neutrophils, mast cells and T lymphocytes into the airways. Th2 cytokines like interleukin (IL)-4, IL-5 and chemokines like eotaxin are increased in the asthmatic response. The processing and presentation of exogenous antigens is important in the sensitization to an allergen. Cathepsin E (Ctse) is an intracellular aspartic endoprotease which is expressed in immune cells like dendritic cells (DCs). It was found to play an essential role in the processing and presentation of ovalbumin (OVA). The aim of the present study was to investigate the inhibition of Ctse in two different experimental models of allergic airway inflammation. Methods: Ctse wild-type (Ctse(+/+)) and Ctse-deficient (Ctse(-/-)) bone marrow-derived DCs (BMDCs) were pulsed with OVA/OVA peptide and cocultured with OVA transgenic T II (OT II) cells whose proliferation was subsequently analyzed. Two different in vivo asthma models with Ctse(+/+) and Ctse(-/-) mice were performed: an acute OVA-induced and a subchronic Phleum pratense-induced airway inflammation. Results: Proliferation of OT II cells was decreased when cocultured with BMDCs of Ctse(-/-) mice as compared to cells cocultured with BMDCs of Ctse(+/+) mice. In vivo, Ctse deficiency led to reduced lymphocyte influx after allergen sensitization and challenge in both investigated airway inflammation models, compared to their control groups. Conclusion: Ctse deficiency leads to a reduced antigen presentation in vitro. This is followed by a distinct effect on lymphocyte influx in states of allergic airway inflammation in vivo.  相似文献   

15.
BACKGROUND: Murine models used to delineate mechanisms and key mediators of asthma have yielded conflicting results and suggest that the dominant mechanism and mediators required for disease induction differ depending on the model and method of allergen sensitization used. OBJECTIVE: The goal of this study was to determine whether the mode of allergen sensitization influenced the role that IgE had in allergen-induced pulmonary eosinophilic inflammation. METHODS: Mice were exposed to dust mite extract in 2 models of allergic inflammation that differed in the method of sensitization. We compared sensitization by aerosol exposure with and without concomitant human respiratory syncytial virus infection with sensitization by means of systemic (intraperitoneal) exposure with adjuvant. After sensitization, animals were similarly challenged with aerosolized allergen. Animals were treated with anti-IgE mAb to deplete IgE and to determine its role in the induction of allergic inflammation and mucosa pathology in these models. RESULTS: Concomitant respiratory syncytial virus infection significantly enhanced allergen sensitization by aerosol exposure and exacerbated eosinophilic inflammation and airway mucosa pathology. Depletion of IgE in this model significantly reduced lung eosinophilic inflammation and airway mucosa pathology. However, in the model in which animals were sensitized by means of systemic allergen exposure with adjuvant, depletion of IgE had no ameliorative effect on lung inflammation or pathology. CONCLUSION: We demonstrated that the method of antigen sensitization can delineate the role of IgE in allergen-induced lung inflammation. In a murine model that more closely resembles ambient allergen exposure in human subjects, IgE had a critical role in the pathogenesis of allergic asthma and mucosa pathology. The results parallel the results reported with anti-IgE efficacy in allergic asthmatic human subjects.  相似文献   

16.
17.
Airway inflammation is thought to play a major role in the pathogenesis of bronchial asthma. The precise role of individual inflammatory cells, mediator and asthma related genes in allergic lung diseases is not completely understood. The uteroglobin-related protein (UGRP) 1 was proposed to be an asthma candidate gene and play a role in regulating lung inflammation, however its precise function in the airways remains obscure. In this investigation, we used a mouse model of allergic airway inflammation to establish a relationship between UGRP 1 and IL-5 in airway inflammation. Ovalbumin (OVA) challenged mice demonstrate eosinophilia in airway tissues and high levels of IL-5 in bronchoalveolar lavage (BAL) fluid analogous to that found in bronchial asthma. Interestingly, these "OVA-challenged" mice show down-regulation of Ugrp1 expression as compared with the control group. Regression analysis further demonstrates a significant negative correlation between Ugrp1 mRNA expression in the lung and IL-5 levels in BAL fluid with r = 0.948 and P < 0.0001 when IL-5 levels were normalized by log transformation. Intranasal instillation of IL-5 to mice revealed an inhibitory effect of IL-5 on the expression of Ugrp1 mRNA. Together, these results indicate an involvement of IL-5 in the down-regulation of Ugrp1 expression in airway inflammation such as allergic asthma disease.  相似文献   

18.
BACKGROUND: Eosinophil-epithelial cell interactions make a major contribution to asthmatic airway inflammation. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other members of the neurotrophin family, originally defined as a class of neuronal growth factors, are now recognized to support the survival and activation of immune cells. Neurotrophin levels are increased in bronchoalveolar lavage fluid during allergic asthma. OBJECTIVE: We sought to investigate the role of neurotrophins as inflammatory mediators in eosinophil-epithelial cell interactions during the allergic immune response. METHODS: Neurotrophin expression in the lung was investigated by means of immunohistochemistry and ELISA in a mouse model of chronic experimental asthma. Coculture experiments were performed with airway epithelial cells and bronchoalveolar lavage fluid eosinophils. RESULTS: Neurotrophin levels increased continuously during chronic allergic airway inflammation, and airway epithelial cells were the major source of NGF and BDNF within the inflamed lung. Epithelial neurotrophin production was upregulated by IL-1beta, TNF-alpha, and T(H)2 cytokines. Lung eosinophils expressed the BDNF and NGF receptors tropomyosin-related kinase (Trk) A and TrkB, and coculture with airway epithelial cells resulted in enhanced epithelial neurotrophin production, as well as in prolonged survival of eosinophils. Eosinophil survival was completely abolished in the presence of the neurotrophin receptor Trk antagonist K252a. CONCLUSION: During allergic inflammation, airway epithelial cells express increased amounts of NGF and BDNF that promote the survival of tissue eosinophils. Controlling epithelial neurotrophin production might be an important therapeutic target to prevent allergic airway eosinophilia. CLINICAL IMPLICATIONS: Attenuating the release of inflammatory mediators from the activated airway epithelium will become an important strategy to disrupt the pathogenesis of chronic allergic asthma.  相似文献   

19.
Background Asthma is a chronic disease defined by airway inflammation, increased airway hyperresponsiveness and episodes of airway obstruction. Although there are abundant clinical and experimental data showing that stress may worsen asthma, the mechanisms linking stress to asthma are not well understood. By inducing a pro‐inflammatory cytokine milieu, stress might enhance airway inflammation in bronchial asthma. We therefore investigated the correlation of stress perception and the cytokine profile of circulating lymphocytes in humans. Methods Allergic asthmatic patients and healthy controls were evaluated for perceived level of stress, demographic and lung function data. Whole blood cells were obtained and stimulated by mitogen to assess intracellular IL‐4, IFN‐γ and TNF‐α by flow cytometry. Neurotrophins nerve growth factor (NGF) and brain‐derived neurotrophic factor (BDNF) were measured in serum. Results Asthmatic patients showed significantly higher percentages of TNF‐α‐producing T cells than healthy controls. Only in asthmatic patients was stress perception correlated with percentages of TNF‐α‐producing T cells and serum BDNF levels, while forced expiratory volume in 1 s (% predicted) was negatively correlated to BDNF. Conclusion The results of our study support the hypothesis that stress deteriorates bronchial asthma by inducing a pro‐inflammatory cytokine profile in allergic asthmatics. Stress management might provide a supplement therapy of allergic asthma.  相似文献   

20.
Thymic stromal lymphopoietin (TSLP) primes dendritic cells to promote a Th2 inflammatory response. Its action is mediated by a heterodimeric receptor which consists of the interleukin-7 receptor α chain and the TSLP receptor chain (TSLPR). TSLPR resembles the common γ chain subunit utilized by many type 1 cytokine receptors. Normal epithelial cells, keratinocytes, and stromal cells constitutively express TSLP. Dendritic cells that are activated by TSLP promote the development of CD4+ T cells into pro-inflammatory Th2 cells. TSLP thus plays a potentially important role in the pathogenesis of allergic inflammation in asthma and atopic dermatitis. TSLP also has direct effects on other types of cells in the bronchial mucosa. It is over-expressed in the bronchial mucosa in chronic obstructive pulmonary disease (COPD), which is traditionally described as a Th1-related disease, as well as severe asthma, which is traditionally described as a Th2-related disease. In this review we will discuss TSLP expression, function, and available and potential mechanisms in both allergic inflammation and COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号