首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small molecule inhibitors have proven extremely useful for investigating signal transduction pathways and have the potential for development into therapeutics for inhibiting signal transduction pathways whose activities contribute to human diseases. Transforming growth factor beta (TGF-beta) is a member of a large family of pleiotropic cytokines that are involved in many biological processes, including growth control, differentiation, migration, cell survival, adhesion, and specification of developmental fate, in both normal and diseased states. TGF-beta superfamily members signal through a receptor complex comprising a type II and type I receptor, both serine/threonine kinases. Here, we characterize a small molecule inhibitor (SB-431542) that was identified as an inhibitor of activin receptor-like kinase (ALK)5 (the TGF-beta type I receptor). We demonstrate that it inhibits ALK5 and also the activin type I receptor ALK4 and the nodal type I receptor ALK7, which are very highly related to ALK5 in their kinase domains. It has no effect on the other, more divergent ALK family members that recognize bone morphogenetic proteins (BMPs). Consistent with this, we demonstrate that SB-431542 is a selective inhibitor of endogenous activin and TGF-beta signaling but has no effect on BMP signaling. To demonstrate the specificity of SB-431542, we tested its effect on several other signal transduction pathways whose activities depend on the concerted activation of multiple kinases. SB-431542 has no effect on components of the ERK, JNK, or p38 MAP kinase pathways or on components of the signaling pathways activated in response to serum.  相似文献   

2.
In our continuing effort to expand the SAR of the quinoline domain of dihydropyrrolopyrazole series, we have discovered compound 15d, which demonstrated the antitumor efficacy with oral bioavailability. This effort also demonstrated that the PK/PD in vivo target inhibition paradigm is an effective approach to assess potential for antitumor efficacy. The dihydropyrrolopyrazole inhibitor 15d (LY2109761) is representative of a novel series of antitumor agents.  相似文献   

3.
Novel dihydropyrrolopyrazole-substituted benzimidazoles were synthesized and evaluated in vitro as inhibitors of transforming growth factor-beta type I receptor (TGF-beta RI), TGF-beta RII, and mixed lineage kinase-7 (MLK-7). These compounds were found to be potent TGF-beta RI inhibitors and selective versus TGF-beta RII and MLK-7 kinases. Benzimidazole derivative 8b was active in an in vivo target (TGF-beta RI) inhibition assay.  相似文献   

4.
The purpose of this study is to investigate a thermoreversible gel using Pluronic® F-127 to deliver an activin receptor-like kinase 5 (ALK-5) inhibitor SB-505124 in glaucoma filtration surgery (GFS). The gel was characterized for in vitro drug release and viscosity studies. Cytotoxicity of Pluronic® F-127 was examined by MTT assay using cultured rabbit subconjunctival fibroblasts. In addition, Pluronic® F-127 gel (18% w/v) containing 5?mg of SB-505124 was applied at the surgical site in an in vivo rabbit GFS model. In the in vitro viscosity study, the gel showed a change in viscosity (from 1000 cps to 45,000 cps) from low temperature (10°C) to body temperature (37°C). The in vitro drug release study demonstrated 100% drug release within 12?h. The gel did not show cytotoxicity to the cultured rabbit subconjunctival cells by MTT assay. In the in vivo rabbit GFS model, the drug was successfully delivered by injection and no severe post-surgical complications were observed. A thermoreversible gel system with SB-505124 was successfully prepared and delivered for the rabbit GFS model, and it may provide a novel delivery system in GFS.  相似文献   

5.
Transforming growth factor (TGFbeta) is a 25-kDa dimeric polypeptide that plays a key role in a variety of physiological processes and disease states. Blocking TGFbeta signaling represents a potentially powerful and conceptually novel approach to the treatment of disorders in which the signaling pathway is constitutively activated, such as cancer, chronic inflammation with fibrosis and select immune disorders. In this paper, we describe the biological properties of a novel series of quinazoline-derived inhibitors of the type I transforming growth factor receptor kinase (TbetaKIs) that bind to the ATP-binding site and keep the kinase in its inactive conformation. These compounds effectively inhibited TGFbeta-induced Smad2 phosphorylation in cultured cells in vitro with an IC(50) between 20 and 300 nM. Moreover, TbetaKIs were able to broadly block TGFbeta-induced reporter gene activation. Finally, TbetaKIs inhibited TGFbeta-mediated growth inhibition of normal murine mammary epithelial cells (NMuMG) and mink lung epithelial cells (Mv1Lu), and TGFbeta-induced epithelial-mesenchymal transdifferentiation (EMT) of NMuMG cells. Thus, these chemical TbetaKIs have the potential to be further developed as anti-cancer and -fibrosis agents. In addition, they represent valuable new tools for dissecting the biochemical mechanisms of TGFbeta signal transduction and understanding the role of TGFbeta signaling pathways in different physiological and disease processes.  相似文献   

6.
Recombinant 5-hydroxytryptamine 5-HT7 receptors are known to express constitutive, i.e., agonist-independent activity. Nonselective ligands, like methiothepin, ritanserin or clozapine behave as full inverse agonists at 5-HT7 receptors. The aim of the present study was to evaluate the degree of inverse agonist activity of three selective 5-HT7 receptor antagonists ((R)-3,N-dimethyl-N-[1-methyl-3-(4-methyl-piperidin-1-yl)propyl]benzene sulfonamide or SB-258719, R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine or SB-258741 and (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)-pyrrolidine-1-sulfonyl)-phenol or SB-269970) in the same model. cAMP accumulation was measured in intact Chinese hamster ovary (CHO) cells expressing human recombinant 5-HT7a receptors. In these cells, 5-HT stimulated cAMP levels and a series of ligands antagonized the effect of 5-HT with a 5-HT7 receptor-like profile. SB-258719 had no inverse agonist activity, SB-258741 behaved as a partial inverse agonist and SB-269970 was a quasi-full inverse agonist (as compared to methiothepin). The inverse agonist effect of SB-269970 was antagonized in a concentration-dependent manner by SB-258719. The widespread spectrum of inverse agonist activities shown by these compounds should help assessing the physiological relevance of constitutive 5-HT7 receptor activity in native tissues.  相似文献   

7.
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.  相似文献   

8.
1. SB-242235 (1-(4-piperidinyl)-4-(4-fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole) is a potent and selective p38 MAP kinase inhibitor that may be an effective therapy for cytokine-mediated diseases such as autoimmune or inflammatory diseases. The present studies were conducted to evaluate the pharmacokinetics of SB-242235 in several preclinical species, including rat, dog and monkey. 2. SB-242235 demonstrates generally favourable pharmacokinetic properties in all species examined. Systemic plasma clearance was high in rat, but in the non-rodent species SB-242235 demonstrated low to moderate clearance with plasma half-lives > 4 h. Oral bioavailability in each preclinical species was high. In rat and monkey, SB-242235 demonstrated non-linear elimination kinetics that manifested as a decrease in clearance with increasing dose and apparent oral bioavailability >100% at high oral doses. Furthermore, SB-242235 displayed concentration-dependent plasma protein binding over a concentration range of 1000-10,000 ng ml -1. 3. In conclusion, SB-242235 demonstrates high oral bioavailability across the major preclinical species, and may thus be a useful tool compound for investigation of the role of p38 inhibition in various disease states. However, the observations of non-linear protein binding and disposition also suggest the need for caution in the design of and data interpretation from such studies.  相似文献   

9.
1. SB-242235 (1-(4-piperidinyl)-4-(4-fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole) is a potent and selective p38 MAP kinase inhibitor that may be an effective therapy for cytokine-mediated diseases such as autoimmune or inflammatory diseases. The present studies were conducted to evaluate the pharmacokinetics of SB-242235 in several preclinical species, including rat, dog and monkey. 2. SB-242235 demonstrates generally favourable pharmacokinetic properties in all species examined. Systemic plasma clearance was high in rat, but in the non-rodent species SB-242235 demonstrated low to moderate clearance with plasma half-lives > 4h. Oral bioavailability in each preclinical species was high. In rat and monkey, SB-242235 demonstrated non-linear elimination kinetics that manifested as a decrease in clearance with increasing dose and apparent oral bioavailability > 100% at high oral doses. Furthermore, SB-242235 displayed concentration-dependent plasma protein binding over a concentration range of 1000-10,000 ng ml(-1). 3. In conclusion, SB-242235 demonstrates high oral bioavailability across the major preclinical species, and may thus be a useful tool compound for investigation of the role of p38 inhibition in various disease states. However, the observations of non-linear protein binding and disposition also suggest the need for caution in the design of and data interpretation from such studies.  相似文献   

10.
1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.  相似文献   

11.
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TGF-beta type I receptor [activin receptor-like kinase (ALK)5] and the substrate, Smad3, and determined that SB-431542 is a selective inhibitor of Smad3 phosphorylation with an IC50 of 94 nM. It inhibited TGF-beta1-induced nuclear Smad3 localization. The p38 mitogen-activated protein kinase inhibitors SB-203580 and SB-202190 also inhibit phosphorylation of Smad3 by ALK5 with IC50 values of 6 and 3 microM, respectively. This suggests that these p38 MAPK inhibitors must be used at concentrations of less than 10 microM to selectively address p38 MAPK mechanisms. However, the p38 MAPK inhibitor SB-242235 did not inhibit ALK5. To evaluate the relative contribution of Smad signaling and p38 MAPK signaling in TGF-beta1-induced matrix production, the effect of SB-431542 was compared with that of SB-242235 in renal epithelial carcinoma A498 cells. All compounds inhibited TGF-beta1-induced fibronectin (FN) mRNA, indicating that FN synthesis is mediated in part via the p38 MAPK pathway. In contrast, SB-431542, but not the selective p38 MAPK inhibitor SB-242235, inhibited TGF-beta1-induced collagen Ialpha1 (col Ialpha1). These data indicate that some matrix markers that are stimulated by TGF-beta1 are mediated via the p38 MAPK pathway (i.e., FN), whereas others seem to be activated via ALK5 signaling independent of the p38 MAPK pathway (i.e., col Ialpha1).  相似文献   

12.
The JmjC oxygenases catalyze the N-demethylation of N(ε)-methyl lysine residues in histones and are current therapeutic targets. A set of human 2-oxoglutarate analogues were screened using a unified assay platform for JmjC demethylases and related oxygenases. Results led to the finding that daminozide (N-(dimethylamino)succinamic acid, 160 Da), a plant growth regulator, selectively inhibits the KDM2/7 JmjC subfamily. Kinetic and crystallographic studies reveal that daminozide chelates the active site metal via its hydrazide carbonyl and dimethylamino groups.  相似文献   

13.
Pyrazole-based inhibitors of the transforming growth factor-beta type I receptor kinase domain (TbetaR-I) are described. Examination of the SAR in both enzyme- and cell-based in vitro assays resulted in the emergence of two subseries featuring differing selectivity versus p38 MAP kinase. A common binding mode at the active site has been established by successful cocrystallization and X-ray analysis of potent inhibitors with the TbetaR-I receptor kinase domain.  相似文献   

14.
Inhibitors of transforming growth factor beta (TGF-beta) type I receptor (ALK5) offer a novel approach for the treatment of fibrotic diseases such as renal, hepatic, and pulmonary fibrosis. The optimization of a novel phenylpyridine pyrazole series (1a) led to the identification of potent, selective, and orally active ALK5 inhibitors. The cellular potency and pharmacokinetics profiles of these derivatives were improved and several compounds presented antifibrotic activity when orally administered to rats in an acute liver model of dimethylnitrosamine- (DMN-) induced expression of collagen IA1 mRNA, a major gene contributing to excessive extra cellular matrix deposit. One of the most potent ALK5 inhibitors identified in this chemical series, compound 13d (GW788388), reduced the expression of collagen IA1 by 80% at a dose of 1 mg/kg twice a day (b.i.d.). This compound significantly reduced the expression of collagen IA1 mRNA when administered orally at 10 mg/kg once a day (u.i.d.) in a model of puromycin aminonucleoside-induced renal fibrosis.  相似文献   

15.
《Biochemical pharmacology》2014,88(4):543-546
Vidarabine was the first clinically approved antiviral drug, but due to safety and efficacy issues the drug is currently only used topically for herpes virus keratitis. Scientific interest in vidarabine has been recently renewed due to the fact that the compound exhibits beneficial effects in animal models of heart failure and cancer, replicating effects of the knockout of adenylyl cyclase 5 (AC5). Therefore, vidarabine has been suggested to mediate these effects via selective inhibition of AC5. Based on these results, clinical studies with vidarabine in humans for heart failure and cancer have been proposed. Here, evidence is presented that vidarabine is neither a potent nor a selective AC5 inhibitor. Greatest caution should be exerted when proposing new mechanisms of actions and clinical uses for vidarabine.  相似文献   

16.
The neuropharmacological properties of cocaine are known to be associated with the activation of sigma-1 receptors. Cocaine also has been shown to alter both cytokine production and HIV-1 expression in mononuclear phagocytes, including microglial cells. This study tested the hypothesis that sigma-1 receptors and transforming growth factor (TGF)-beta1 are involved in cocaine-induced up-regulation of HIV-1 expression in microglial cell cultures. Treatment of microglial cells with cocaine resulted in a concentration-dependent increase in viral expression assessed by measurement of p24 antigen levels in culture supernatants. This cocaine-mediated stimulation of HIV-1 expression was blocked by treatment of microglia with inhibitors of sigma-1 receptors (BD1047) and TGF-beta1 (SB-431542 and anti-TGF-beta1 antibodies). Microglia were also shown to constitutively express sigma-1 receptor mRNA. Thus, the results of this study support the notion that neuroimmunopharmacological properties of cocaine involve sigma-1 receptors and cytokines.  相似文献   

17.
The studies were carried out to elucidate the effect of a novel cyclic peptide, SEK-1005 (C(45)H(70)N(8)O(13)), on wound healing. SEK-1005 (4-10 microg/wound) applied topically significantly accelerated the healing of a full-thickness wound on the dorsal skin of a rat. In a healing-impaired mouse, the peptide (2-10 microg/wound) had more potent activity, exerting an effect comparable to that of basic fibroblast growth factor (FGF). However, SEK-1005 (0.1-100 ng/ml) scarcely promoted the proliferation of cultured fibroblasts (NIH3T3 cells) while basic FGF (0.2-5 ng/ml) showed marked mitogenic activity. SEK-1005 (2-10 microg/wound) significantly increased the topical production of transforming growth factor (TGF)-beta1, a cytokine that is known to accelerate wound healing. This activity was closely correlated with the wound-repairing effect. From the above, SEK-1005 can be considered as a new type of wound healing agent with potent TGF-beta1-inducing activity.  相似文献   

18.
The enzymological and pharmacological properties of 2-(2-Methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)methoxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride (T-0156), a new phosphodiesterase type 5 inhibitor, were studied in vitro and in vivo. The inhibitory effects of T-0156 on six phosphodiesterase isozymes isolated from canine tissues were investigated. T-0156 specifically inhibited the hydrolysis of cyclic guanosine monophosphate (cGMP) by phosphodiesterase type 5, at low concentration (IC(50)=0.23 nM), in a competitive manner. T-0156 also inhibited phosphodiesterase type 6 with IC(50) value of 56 nM, which was 240-fold higher than that for inhibition of phosphodiesterase type 5. T-0156 had low potencies against phosphodiesterase types 1, 2, 3, and 4 (IC(50)>10 microM). In the isolated rabbit corpus cavernosum, T-0156 at 10 and 100 nM increased cGMP levels (100 nM T-0156-treated: 6.0+/-1.5 pmol/mg protein, vehicle-treated: 1.1+/-0.4 pmol/mg protein, P<0.05), causing relaxation of the tissue. T-0156 at 1 to 100 nM potentiated the electrical field stimulation-induced relaxation in the isolated rabbit corpus cavernosum in a concentration-dependent manner (100 nM T-0156-treated: 76.9+/-19.8%, vehicle-treated: 12.3+/-10.1%, P<0.05). Intraduodenal administration of T-0156 at 100 to 1000 microg/kg potentiated the pelvic nerve stimulation-induced tumescence in anesthetized dogs (1000 microg/kg T-0156-treated: 279.0+/-38.4%, vehicle-treated: 9.8+/-4.5%, P<0.05). These results suggested that T-0156 enhanced the nitric oxide (NO)/cGMP pathway, probably through blockade of phosphodiesterase type 5 in vitro and in vivo experimental conditions. The present study clearly showed that T-0156 is a potent and highly selective phosphodiesterase type 5 inhibitor, which is a useful tool for pharmacological studies in vitro and in vivo.  相似文献   

19.
A variety of drugs have been developed to inhibit transforming growth factor (TGF)beta signaling. These drugs have been designed to block TGFbeta synthesis, ligand/receptor binding or receptor kinase signaling. Preclinical studies using TGFbeta inhibitors have demonstrated efficacy in reducing metastasis and have shown improvements in cytotoxic drug delivery. Results of phase I/II clinical trials of TGFbeta inhibitors in patients with glioblastoma suggest improved survival rates compared with conventional chemotherapy. The predominant cellular target, whether cancer or stromal cell, immune cell or angiogenesis, may differ between tumor types. Different individuals may show variable responses to drug therapy dependent on both germline genetic variation and the somatic mutation profile of the tumor. A deeper understanding of these issues will assist in targeting the right patients for such therapy, and in limiting unwanted side effects.  相似文献   

20.
DA-8159, a new phosphodiesterase 5 inhibitor, was assessed for its erectogenic potential by a penile erection test in rats, the relaxation of isolated rabbit corpus cavernosum (CC), and estimation of the intracavernous pressure (ICP) in the anesthetized dog. Oral administration of DA-8159 (0.3 to 1 mg/kg) increased the number of erections in rats with increasing dosage, with the highest penile erection index at 10 mg/kg. DA-8159 induced the relaxation of phenylephrine (PHE)-induced contractions in the rabbit CC and decreased the IC50 of the nitric oxide donor sodium nitroprusside (SNP) in a dose-dependent fashion. In pentobarbital-anesthetized dogs, the intravenous administration of DA-8159 (1 approximately 300 g/kg) potentiated the increase in ICP induced by the intracavernosal SNP in a dose-related manner. These findings suggest that DA-8159 has significant therapeutic potential in the treatment of erectile dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号