首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow stroma consists predominately of two cell types, macrophages and fibroblastoid stromal cells, which regulate the growth and differentiation of myelopoietic cells via the production of growth factors. We have previously shown that macrophages are more sensitive than fibroblastoid stromal cells (LTF cells) to the toxic effects of the benzene metabolite hydroquinone. In this study, the role of selective bioactivation and/or deactivation in the macrophage-selective effects of hydroquinone was examined. LTF and macrophage cultures were incubated with 10 microM [14C]hydroquinone to examine differential bioactivation. After 24 hr, the amount of 14C covalently bound to acid-insoluble macromolecules was determined. Macrophages had 16-fold higher levels of macromolecule-associated 14C than did LTF cells. Additional experiments revealed that hydroquinone bioactivation to covalent-binding species was hydrogen peroxide dependent in macrophage homogenates. Covalent binding in companion LTF homogenates was minimal, even in the presence of excess hydrogen peroxide. These data suggest that a peroxidative event was responsible for bioactivation in macrophages and, in agreement with this, macrophages contained detectable peroxidase activity whereas LTF cells did not. Bioactivation of [14C]hydroquinone to protein-binding species by peroxidase was confirmed utilizing purified human myeloperoxidase in the presence of hydrogen peroxide and ovalbumin as a protein source. High performance liquid chromatographic analysis of incubations containing purified myeloperoxidase, hydroquinone, and hydrogen peroxide showed that greater than 90% of hydroquinone was removed and could be detected stoichometrically as 1,4-benzoquinone. 1,4-Benzoquinone was confirmed as a reactive metabolite formed from hydroquinone in macrophage incubations using excess GSH and trapping the reactive quinone as its GSH conjugate, which was measured by high performance liquid chromatography with electrochemical detection. The activity of DT-diaphorase, a quinone reductase that has been invoked as a protective mechanism in quinone-induced toxicity, was 4-fold higher in LTF cells than macrophages. These data suggest that the macrophage-selective toxicity of hydroquinone results from higher levels of peroxidase-mediated bioactivation and/or lower levels of DT-diaphorase-mediated detoxification.  相似文献   

2.
In vitro effects of benzene metabolites on mouse bone marrow stromal cells   总被引:2,自引:0,他引:2  
Benzene exposure can result in bone marrow myelotoxicity. We examined the effects of benzene metabolites on bone marrow stromal cells of the hemopoietic microenvironment. Male B6C3F1 mouse bone marrow adherent stromal cells were plated at 4 X 10(6) cells per 2 ml of DMEM medium in 35-mm tissue culture dishes. The growing stromal cell cultures were exposed to log 2 doses of five benzene metabolites: hydroquinone, benzoquinone, phenol, catechol, or benzenetriol for 7 days. The dose which caused a 50% decrease in colony formation (TD50) was 2.5 X 10(-6) M for hydroquinone, 17.8 X 10(-6) M for benzoquinone, 60 X 10(-6) M for benzenetriol, 125 X 10(-6) M for catechol, and 190 X 10(-6) M for phenol. We next examined the effect of benzene metabolites on the ability of stromal cells to influence granulocyte/monocyte colony growth (G/M-CFU-C) in a coculture system. Adherent stromal cells were plated and incubated for 14 days and then exposed to a benzene metabolite. After 3 days the medium and metabolite were removed and an agar:RPMI layer containing 10(6) fresh bone marrow cells was placed over the stromal layer. After incubation for 7 days the cultures were scored for G/M colony formation. Hydroquinone and benzoquinone were most toxic, while catechol and benzenetriol inhibited colony growth only at high doses. These results indicate that injured bone marrow stromal cells may be a significant factor in benzene-induced hemotoxicity.  相似文献   

3.
Quinones as toxic metabolites of benzene   总被引:6,自引:0,他引:6  
Occupational exposure to benzene has long been associated with toxicity to the blood and bone marrow, including lymphocytopenia, pancytopenia, aplastic anemia, acute myelogenous leukemia, and possibly lymphoma. A variety of studies have established that benzene itself is not the toxic species but requires metabolism to reactive intermediates. The bioactivation of benzene is complex. Both primary and secondary oxidation of benzene and its metabolites are mediated via cytochrome P-450 in the liver, although the role of secondary metabolism in the bone marrow is not clear. Toxicity is associated with the dihydroxy metabolites, hydroquinone and catechol, which concentrate in bone marrow. Hydroquinone and its terminal oxidation product, p-benzoquinone, have been demonstrated to be potent suppressors of cell growth in culture. Suppression of lymphocyte blastogenesis by these compounds is a sulfhydryl-dependent process and occurs at concentrations that do not result in cell death, or in detectable alterations in energy metabolism, intracellular glutathione concentration, or protein synthesis. Recent studies suggest that these compounds and other membrane-penetrating sulfhydryl alkylating agents, such as N-ethylmaleimide and cytochalasin A, and endogenous regulatory molecules, such as soluble immune response suppressor (SIRS), interfere with microtubule assembly in vitro and selectively interfere with microtubule-dependent cell functions at identical concentrations. These agents appear to react with nucleophilic sulfhydryl groups essential for guanosine triphosphate binding to tubulin that are particularly sensitive to sulfhydryl-alkylating agents.  相似文献   

4.
It has long been recognized that benzene exposure produces disparate toxic responses among different species or even among different strains within the same species. There is ample evidence that species- or strain-dependent differences in metabolic activity correlate with the disparate responses to benzene. However, bone marrow cells (the putative targets of benzene toxicity) may also exhibit species- or strain-dependent differences in susceptibility to the toxic effects of benzene. To investigate this hypothesis, two sets of companion experiments were performed. First, two strains of mice, Swiss Webster (SW) and C57B1/6J (C57), were exposed to 300 ppm benzene via inhalation and the effects of the exposures were determined on bone marrow cellularity and the development of bone marrow CFU-e (Colony Forming Unit-erythroid, an early red cell progenitor). Second, bone marrow cells from the same strains were exposed in vitro to five known benzene metabolites (1,4 benzoquinone, catechol, hydroquinone, muconic acid, and phenol) individually and in binary combinations. Benzene exposure, in vivo, reduced bone marrow cellularity and the development of CFU-e in both strains; however, reductions in both these endpoints were more severe in the SW strain. When bone marrow cells from the two strains were exposed in vitro to the five benzene metabolites individually, benzoquinone, hydroquinone, and catechol reduced the numbers of CFU-e in both strains in dose-dependent responses, phenol weakly reduced the numbers of the C57 CFU-e only and in a non-dose-dependent manner, and muconic acid was without effect on cells from either strain. Only benzoquinone and hydroquinone exhibited differential responses to CFU-e from the two strains and both of these metabolites were more toxic to SW cells than to C57 cells. Six of the ten possible binary mixtures of metabolites were differentially toxic to the CFU-e from the two strains and five of these mixtures were more toxic to SW cells than to C57 cells. Thus, SW mice were more susceptible to the toxic effects of inhaled benzene and their bone marrow cells were more severely affected by in vitro exposure to benzene metabolites. The binary combinations containing phenol produced little or no enhancement of the toxic effects of the non-phenol metabolites. The weak toxic response induced by phenol, whether delivered alone or in binary mixtures, suggests that little metabolism occurred during the 48 h of the in vitro exposures since benzoquinone and hydroquinone, which were clearly toxic when added to the CFU-e culture system, are formed by further metabolic oxidation of phenol. Thus, strain-dependent differential metabolism appeared to play a minimal role in the disparate toxicity observed in the in vitro studies, implying that the diverse responses were due to inherent differences in the susceptibilities of the CFU-e to the toxic action of the benzene metabolites.  相似文献   

5.
Bioactivation of catechol in rat and human bone marrow cells   总被引:1,自引:0,他引:1  
o-Benzoquinone-glutathione (GSH) conjugate formation and covalent binding of [14C]catechol to protein were utilized as probes of bioactivation of catechol in both rat and human white bone marrow cell systems. Conjugate formation and binding occurred in the absence of exogenous hydrogen peroxide, but were markedly stimulated by its addition. Protein-binding and conjugate formation using rat cells in the presence of exogenous peroxide were increased by the presence of phenol whereas GSH and hydroquinone inhibited binding. Similarly, protein-binding in the absence of exogenous peroxide was inhibited by GSH and exacerbated by phenol. Prostaglandin synthase, the peroxidatic function of which may also utilize hydrogen peroxide as a substrate, appeared on the basis of experiments using arachidonic acid to play only a minor role in bioactivation of catechol in rat bone marrow cells. These results show that peroxide-dependent bioactivation of catechol occurs in rat and human bone marrow cells and that hydroquinone and GSH inhibit whereas phenol stimulates bioactivation.  相似文献   

6.
Male Fischer-344 rats were given 100 μCi (14 mg/kg) [14C]catechol or [14C]hydroquinone by injection into the lateral tail vein. For a period of at least 24 hr, soluble radioactivity associated with either compound was retained in the bone marrow, but not in the liver or thymus. The amount of covalently bound radioactivity increased with time in all tissues examined and was significantly depressed in liver, white blood cells, and bone marrow in rats pretreated with Aroclor 1254, a regimen which protects against benzene toxicity. Potential enzymatic and nonenzymatic activation pathways for catechol, hydroquinone, and other known benzene metabolites were examined. In air-saturated 50 mm phosphate buffer (pH 7.4) at 37°C, only hydroquinone and 1,2,4-benzenetriol autoxidized. The oxidation product of hydroquinone had an uv absorption maximum (248 nm) identical to that of benzoquinone. With 250 units superoxide dismutase, hydroquinone autoxidation increased fivefold, whereas the oxidation of 1,2,4-benzenetriol was inhibited (4% of control). Epinephrine autoxidation, an indirect measure of superoxide anion generation, was stimulated by 1,2,4-benzenetriol and hydroquinone, but was barely detectable in the presence of catechol. Of the compounds studied, only benzoquinone augmented the oxidation of NADPH by a 3000g rat bone marrow supernatant. These data support a mechanism for benzene toxicity in which the formation of potentially cytotoxic metabolites, semiquinone, and quinone oxidation products and superoxide radicals, result from autoxidation of at least two polyphenol metabolites of benzene, hydroquinone, and 1,2,4-benzenetriol.  相似文献   

7.
The skin is exposed to benzene and its derivatives, prevalent environmental chemicals. They may impair the structural integrity of the skin by increased expression of matrix metalloproteinase 1 (MMP-1; degrades structural collagen) and elastin, synthesized primarily by the dermal fibroblasts. We examined the metabolism of benzene in dermal fibroblasts and identified the benzene metabolites as toluene, benzaldehyde, aniline and benzoic acid. These metabolites were not toxic to the cells with regard to cell viability, apoptosis and lipid peroxidation, unlike the phenolic benzene metabolites (hydroquinone, t-butyl hydroquinone and phenol) or hydrogen peroxide. Toluene and phenol, which compose cigarette smoke, and benzaldehyde stimulated MMP-1 and/or elastin expression. In summary, the dermal fibroblasts metabolize benzene to nonphenolic metabolites that are less toxic to the cellular components than the phenolic benzene derivatives. Toluene, benzaldehyde and phenol can directly cause facial wrinkling and impaired structural integrity by upregulating MMP-1 and/or elastin.  相似文献   

8.
Little information is available on benzene disposition after exposure by inhalation despite the importance of this route in man. Benzene metabolites as a group have been measured in bone marrow, but quantitation of individual metabolites in this target tissue has not been reported. Male Fischer-344 rats were exposed to 500 ppm benzene in air and the uptake and elimination was followed in several tissues. Concentrations of free phenol, catechol, and hydroquinone in blood and bone marrow were also measured. Steady-state concentrations of benzene (11.5, 37.0, and 164.0 μg/g in blood, bone marrow, and fat, respectively) were achieved within 6 hr in all tissues studied. Benzene half-lives during the first 9 hr were similar in all tissues (0.8 hr). A plot of amount of benzene remaining to be excreted in the expired air was biphasic with t12 values for the α and β phases of 0.7 and 13.1 hr, respectively. Phenol was the main metabolite in bone marrow at early times (peak concentration, 19.4 μg/g). Catechol and hydroquinone predominated later (peak concentrations, 13.0 and 70.4 μg/g, respectively). Concentrations of these two metabolites declined very slowly during the first 9 hr. These data indicate that free catechol and hydroquinone persist in bone marrow longer than benzene or free phenol.  相似文献   

9.
Stromal cells from bone marrow are susceptible to toxicity induced by several redox-active metabolites of benzene, including hydroquinone (HQ). We have previously shown that tert-butyl-hydroquinone (tBHQ) can induce quinone reductase (QR) in bone marrow stroma as well as protect stromal cells against HQ-induced toxicity. Current studies investigate the underlining mechanisms of chemoprotection against HQ in DBA/2- and C57Bl/6-derived bone marrow stromal cells. The chemoprotector 1,2-dithiole-3-thione (DTT) has been used in these studies due to tBHQ toxicity to stromal cells at higher concentrations. Pretreatment of cells with DTT prior to HQ administration protected cells against HQ-induced toxicity. DTT induced QR activity in a dose-dependent manner in stromal cells from both strains of mice. However, there were no corresponding changes in glutathione transferase activity. DTT also increased cytosolic glutathione (GSH) concentrations by approximately 85% in both strains. Since bone marrow stroma consists primarily of fibroblasts and macrophages, we also evaluated QR activity in the separate cell types from the two strains of mice. There were differences in basal and DTT-induced QR activity between fibroblasts and macrophage cells derived from the same strain of mice, as well as the expected differences between strains. Additionally, dicoumarol, an inhibitor of QR activity, potentiated HQ-induced toxicity in both strains of bone marrow stromal cells. Thus, cellular glutathione, QR activity, and their inducibility by chemoprotective agents such as DTT may prove to be important factors in chemically induced bone marrow toxicity and carcinogenicity.  相似文献   

10.
Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [3H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 microM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [3H]thymidine triphosphate into DNA up to 24 microM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase alpha, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase I, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply that p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase alpha, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause.  相似文献   

11.
Khan's review is a brief summary of the complex field of study revolving around bone marrow toxicity and leukemogenesis observed in people chronically exposed to benzene. These comments are intended to demonstrate the use of the Kahn review as a launching pad for an in-depth analysis of the several related areas that must be fully explored to understand benzene-related diseases. The accumulated evidence demonstrates that benzene-induced bone marrow damage results from the production of hematotoxins that are metabolic products of benzene metabolism. The metabolism of benzene is described with respect to the formation benzene metabolites with emphasis on phenol and hydroquinone, which are the major metabolites, the significance of the formation of glutathione conjugates, the activity of NAD(P)H:quinone oxidoreductase (NQO1), and the ring opening products. Results are shown suggesting that oxidative stress induced by benzene metabolites is likely to be a significant factor in damaging DNA in bone marrow cells. Although a variety of effects on bone marrow can be demonstrated it is not yet clear which metabolites are most important in either benzene-induced aplastic anemia or leukemia. Benzene metabolism alone is insufficient to fully describe benzene toxicity. The impact of benzene metabolites on bone marrow cells must be fully explored to determine how benzene exposure can result in decreased viability or genetic toxicity to cells in the bone marrow.  相似文献   

12.
Hydroquinone, a myelotoxic metabolite of benzene, decreases the ability of murine bone marrow stromal cells to support myelopoiesis in vitro. Bone marrow stroma consists of macrophages and fibroblastoid stromal cells that participate coordinately in regulating myelopoiesis. The goal of this study was to determine if macrophage or fibroblastoid cell function is more sensitive to the myelotoxic actions of hydroquinone. To address this question, we developed purified populations of macrophages and fibroblastoid stromal cells and treated each population with hydroquinone. These cells were reconstituted together with nontreated cells of the opposite type and assayed for their ability to support the formation of granulocyte and macrophage colonies in an agar overlay. Reconstituted cultures containing hydroquinone-treated macrophages supported fewer colonies than did corresponding cultures containing untreated macrophages. Reconstituted cultures containing hydroquinone-treated fibroblastoid stromal cells were not affected. Moreover, hydroquinone reduced detectable interleukin-1 activity in purified macrophage cultures stimulated with lipopolysaccharide. These results indicate that hydroquinone selectively interferes with macrophage function possibly, in part, via alteration of macrophage interleukin-1 secretion.  相似文献   

13.
Administration of benzene to mice will inhibit bone marrow stromal cell-supported hemopoiesis in culture. Hydroquinone, a major metabolite of benzene, will cause a similar inhibition of stromal cell function in vitro. Stromal cells produce both an inducer (colony-stimulating factor) and an inhibitor (prostaglandin E2; PGE2) of hemopoiesis. This research was conducted to determine if prostaglandin synthesis is involved in the suppression of stromal cell function by benzene and hydroquinone. Male B6C3F1 mice were administered benzene (100 mg/kg), indomethacin (1 mg/kg), or benzene plus indomethacin twice a day for 4 consecutive days. On Day 5 bone marrow cells were removed to determine the effect of treatment. In a second series of experiments mouse bone marrow stromal cells in culture were treated with hydroquinone (10(-7) to 10(-4) M), indomethacin (10(-6) M), or a combination of hydroquinone plus indomethacin. Stromal cell function was based on the ability of the treated stromal cells to support granulocyte/monocyte colony development in coculture. The results demonstrated that preadministration of indomethacin in vivo ameliorated benzene-induced inhibition of bone marrow stromal cell function. In vitro, indomethacin ameliorated hydroquinone toxicity to stromal cell function. Benzene administration in vivo induced elevated PGE2 in bone marrow samples which were prevented by preadministration of indomethacin. However, hydroquinone in vitro did not induce a consistent increase in PGE2 levels. These results suggested that toxicity to stromal cells was not due solely to increased prostaglandin synthetase activity.  相似文献   

14.
Benzene is a well known hematotoxicant which induces hematopoietic dyscrasias of varying intensities in different individuals and even in different strains of the same experimental animal species. Although there is ample evidence that diverse responses to benzene are related to differences in benzene metabolism, we have recently provided evidence implicating differences in host target cell susceptibility to these diverse responses to benzene. The present study extends our previous work and concerns strain-specific differences in marrow progenitor cells that survive benzene exposure. Two mouse strains (Swiss-Webster and C57Bl/6J) which respond to benzene exposure with different intensities of bone marrow cytotoxicity were used. Bone marrow cells from benzene-exposed and untreated mice were cultured with one of five benzene metabolites: 1,4-benzoquinone (BQ), catechol (C), hydroquinone (HQ), muconic acid (MA) or phenol (P) and the abilities of these cells to produce erythroid (CFU-e) or granulocyte/macrophage colonies (GM-CFU-c) were assessed. In both strains, marrow cells isolated from benzene-exposed mice showed a higher percentage of plated CFU-e surviving culture with BQ, HQ or MA than marrow cells isolated from control mice. In contrast, both strains of benzene-exposed mice displayed decreased percentages of plated CFU-e surviving culture with catechol than cells isolated from control mice. Only one condition (the culturing of cells with HQ under GM-CFU-c forming conditions) showed any strain-specific difference in plating efficiency. In all, 20 possible combinations of benzene metabolites and cell types were examined (5 metabolites × 2 progenitor cell types × 2 strains). With seven of these combinations, the colony-forming efficiencies were higher for plated cells isolated from benzene-exposed mice than from untreated mice. With three combinations, the colony-forming efficiencies were lower for cells from benzene-exposed mice, and for ten combinations, there were no changes in plating efficiencies. Possible mechanisms for an acquired resistance to the toxicities of benzene metabolites were explored by measuring the concentrations of hepatic and bone marrow sulfhydryl (SH) groups in cells isolated from benzene-exposed and untreated mice. In both strains, benzene exposure induced no changes in hepatic SH concentrations, but the SH content of bone marrow was more than doubled after benzene exposure in both strains. These results suggest that a fraction of hematopoietic progenitor cells are able to survive severe benzene exposure and produce progeny because of a marked increase in marrow SH groups which react with electrophilic benzene metabolites. Moreover, this protective mechanism occurs in two mouse strains with differing susceptibilities to benzene. Received: 23 November 1993/Accepted: 26 April 1994  相似文献   

15.
Benzene is a well-established hematotoxin that affects developing leukocytes and erythrocytes as well as bone marrow stromal cells. In the present studies we analyzed the effects of benzene on the morphology and functional activity of bone marrow phagocytes. Male Balb/c mice were treated with benzene (660 mg/kg) once per day for 3 days. Bone marrow cells were then isolated and fractionated by density gradient centrifugation. Using highly sensitive techniques in flow cytometry/cell sorting, we found that we could separate three distinct populations of bone marrow cells that differed with respect to size and density. Monoclonal antibody binding and cell sorting revealed a large, dense population that consisted predominantly of granulocytes, a smaller, less dense population of lymphocytes, and a population of intermediate size and density consisting of mononuclear phagocytes and precursor cells. Differential staining of sorted mononuclear phagocytes revealed that benzene treatment of mice caused a marked increase in the number of mature, morphologically activated macrophages in the bone marrow. Benzene treatment of mice also resulted in enhanced chemotaxis and production of hydrogen peroxide by bone marrow granulocytes and mononuclear phagocytes. In contrast, treatment of mice with the combination of hydroquinone and phenol (50 mg/kg each, 1 x/day, 3 days), two metabolites of benzene, resulted in a significant (p < or = 0.02) depression of granulocyte chemotaxis and had no effect on hydrogen peroxide production by bone marrow phagocytes compared to cells from control animals. Taken together these results demonstrate that benzene causes increased differentiation and/or activation of phagocytes in the bone marrow.  相似文献   

16.
The effects of benzene and its metabolites on the rate of DNA synthesis were measured in the mouse lymphoma cell line, L5178YS. The direct toxicity of benzene could be distinguished from that of its metabolites since bioactivation of benzene in L5178YS cells was not observed. Cells were exposed to benzene, phenol, catechol, hydroquinone, p-benzoquinone, or 1,2,4-benzenetriol over the range of 1.0 X 10(-7) to 1.0 X 10(-2) M for 30 min, and the rate of DNA synthesis was measured at various times after chemical washout. Cell viability and protein synthesis were determined by trypan blue dye exclusion and [3H]leucine incorporation, respectively. Effects were designated as "DNA specific" when DNA synthesis was inhibited in the absence of discernible effects on cell membrane integrity and protein synthesis. Concentrations of benzene as high as 1 mM had no effect on DNA synthesis. Comparison of the effects at the maximum nontoxic dose for each compound showed that catechol and hydroquinone were the most effective, inhibiting DNA synthesis by 65%. Phenol, benzoquinone, and benzenetriol inhibited DNA synthesis by approximately 40%. Maximum inhibition was observed 60 min after metabolite washout in each case. Benzoquinone was the most potent inhibitor of DNA synthesis, followed by hydroquinone, benzenetriol, catechol, and phenol with ED50 values of 5 X 10(-6), 1 X 10(-5), 1.8 X 10(-4), 2.5 X 10(-4), and 8.0 X 10(-4), respectively. Cyclic voltammetric experiments were performed on the hydroxylated metabolites of benzene to assess the possible involvement of a redox-type mechanism in their inhibition of DNA synthesis. The ease of oxidation of these metabolites correlated with their ED50 values for inhibition of DNA synthesis (r = 0.997). This suggests that oxidation of phenol or one of its metabolites may be necessary for production of the species involved in inhibition of DNA synthesis.  相似文献   

17.
Administration of benzene to mice causes bone marrow toxicity and elevations in prostaglandin E2 (PGE2), a negative regulator of myelopoiesis. In these experiments, benzene (400 mg/kg; 2 x/day for 2 days) administered to DBA/2 or C57Bl/6 mice decreased bone marrow cellularity and myeloid progenitor cell development (measured as colony-forming units per femur) by 40%. When inhibitors of the cyclooxygenase component of prostaglandin H synthase (PHS) (either indomethacin, 2 mg/kg; aspirin, 50 mg/kg; meclofenamate, 4 mg/kg) were coadministered with benzene, myelotoxicity and the elevation in bone marrow PGE level were prevented. Additionally, when indomethacin (1 microM) was added to cultures of bone marrow cells from benzene-treated mice, myeloid progenitor cell development was the same as the controls. The doses of indomethacin used had no affect on the hepatic conversion of benzene to its major metabolite, phenol. Using purified PHS, indomethacin (10 microM) inhibited the arachidonic acid-dependent oxidation of hydroquinone to p-benzoquinone, a putative reactive metabolite of benzene. Indomethacin (10 microM) had no effect on the H2O2-driven oxidation of hydroquinone catalysed by either PHS-peroxidase or myeloperoxidase. Coadministration of the benzene metabolites, phenol and hydroquinone, has been reported previously to reproduce the myelotoxicity of benzene. In our studies, phenol and hydroquinone (50 mg/kg each; 2 x/day for 2 days) decreased bone marrow cellularity by 40%; however, coadministration of indomethacin (2 mg/kg) or meclofenamate (4 mg/kg) with these metabolites did not prevent the decrease in bone marrow cell number. Our results implicate marrow PHS in mediating the short-term myelotoxicity of benzene.  相似文献   

18.
Alterations of benzene metabolism in liver markedly influence benzene toxicity at extrahepatic target tissues. Therefore, generation of 11 phase I and II metabolites of benzene (including phenol, hydroquinone, catechol, benzene-1,2-dihydrodiol, their sulfates and glucuronides, and phenylglutathione) was compared in hepatocytes from 3-methylcholanthrene (MC)- or phenobarbital-treated rats and from untreated controls. At 0.1 mM benzene, total metabolism appeared to be unchanged by treatment with inducers. Phenylsulfate (35%), phenylglucuronide (15%), and phenylglutathione (12%) represented the major metabolites in hepatocytes from untreated controls. With hepatocytes from MC-treated rats, a pronounced shift from phenylsulfate to phenylglucuronide (increase to 34%) was observed, while the formation of unconjugated phenol, hydroquinone, and catechol was decreased (from 16 to 10%). A similar shift from sulfation to glucuronidation was seen in similar studies with phenol. Lineweaver-Burk analysis of microsomal phenol UDP-glucuronosyltransferase activity suggested that MC-treatment induced a high affinity isozyme (KM = 0.14 mM), in addition to the low affinity isozyme (KM = 3.1 mM) present in liver microsomes from untreated and phenobarbital-treated rats. It is concluded that induction by MC of a high affinity hepatic phenol UDP-glucuronosyltransferase effectively shifts benzene metabolism toward formation of less toxic metabolites. This shift may reduce toxic risks at extrahepatic target tissues.  相似文献   

19.
Rodent bioassays indicate that B6C3F1 mice are more sensitive to the carcinogenicity of benzene than are rats. The urinary profile of benzene metabolites is different in rats vs mice. Mice produce higher proportions of hydroquinone conjugates and muconic acid, indicators of metabolism via pathways leading to putative toxic metabolites, than do rats. In both species, metabolism to hydroquinone and muconic acid is favored at low concentrations of benzene, indicating that these pathways are easily saturated. These species differences in the metabolism of benzene make it difficult to predict the health risk to humans and how this risk varies with dose. For this reason, the metabolism of [14C]benzene by cynomolgus monkeys and chimpanzees, animals phylogenetically closer to humans than rodents, was studied. Monkeys were dosed ip with 5, 50, or 500 mg [14C]benzene/kg body wt. Urine was collected for up to 24 hr following exposure and was analyzed for benzene metabolites. The proportion of the administered 14C excreted in the urine of monkeys decreased from approximately 50 to 15% as the dose increased. Phenyl sulfate was the major urinary metabolite. The proportion of hydroquinone conjugates and muconic acid in the monkey's urine decreased as the dose increased. The proportion of catechol conjugates was not affected by dose. The proportion of these metabolites in the urine was quite variable from animal to animal, but the proportion of muconic acid was consistently much lower in the monkey than in the mouse or rat. Three chimpanzees were administered 1 mg [14C]benzene/kg body wt, iv; essentially all of the injected 14C was recovered in the urine. Of the total urinary metabolites, 79% were accounted for by phenyl conjugates and less than 15% by hydroquinone conjugates or muconic acid. Catechol conjugates were not detected. The metabolism of benzene appeared to be qualitatively similar but quantitatively different in the species studied. The mouse, the sensitive rodent species, forms the highest levels of hydroquinone conjugates and muconic acid and the chimpanzee, the lowest. In all animal species studied for the effect of dose on benzene metabolism, as the dose decreased, a larger proportion of the benzene metabolites was represented by hydroquinone conjugates and muconic acid.  相似文献   

20.
Benzene-induced myelotoxicity can be reproduced by the coadministration of two principal metabolites, phenol and hydroquinone. Coadministration of phenol (75 mg/kg) and hydroquinone (25-75 mg/kg) twice daily to B6C3F1 mice for 12 days resulted in a significant loss in bone marrow cellularity in a manner exhibiting a dose-response. One explanation for this potentiation is that phenol stimulates the peroxidase-dependent metabolism of hydroquinone. Addition of phenol to incubations containing horseradish peroxidase, H2O2, and hydroquinone resulted in a stimulation of both hydroquinone removal and benzoquinone formation. Stimulation occurred with phenol as low as 100 microM and with very low concentrations of horseradish peroxidase. When boiled rat liver protein was added to identical incubations containing [14C]hydroquinone, the level of radioactivity recovered as protein bound increased by 37% when phenol was added. Similar results were observed when [14C]hydroquinone was incubated in the presence of activated human leukocytes. Hydroquinone binding was increased by approximately 70% in the presence of phenol. Phenol-induced stimulation of hydroquinone metabolism and benzoquinone formation represents a likely explanation for the bone marrow suppression associated with benzene toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号