首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The calcium channel blocker verapamil[2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] is widely used in the treatment of hypertension, angina pectoris and cardiac arrythmias. The drug undergoes extensive and variable hepatic metabolism in man with the major metabolic steps comprising formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile] and norverapamil [2,8-bis-(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoxtanitrile]. The enzymes involved in metabolism of verapamil have not been characterized so far. Identification of these enzymes would enable estimation of both interindividual variability in verapamil metabolism introduced by the respective pathway and potential for metabolic interactions. We therefore characterized the enzymes involved in formation of D-617 and norverapamil.The maximum rate of formation of D-617 and norverapamil was determined in the microsomal fraction of 21 human livers which had been previously characterized for the individual expression of various P450 enzymes (CYP1A2, CYP2C, CYP2D6, CYP2E1 and CYP3A3/4) by means of Western blotting. Specific antibodies directed against CYP3A were used to inhibit formation of D-617 and norverapamil. Finally, formation of both metabolites was investigated in microsomes obtained from yeast cells which were genetically engineered for stable expression of human P450.Formation of D-617 was correlated with the expression of CYP3A (r=0.85; P<0.001) and CYP1A2 (r=0.57; P<0.01) in the microsomal fraction of 21 human livers after incubation with racemic verapamil. Formation of norverapamil was correlated with the expression of CYP3A (r=0.58; P<0.01) and CYP1A2 (r=0.5; P<0.05) in the same preparations after incubation with racemic verapamil. Antibodies against CYP3A reduced maximum rate of formation of D-617 (to 37.1±11% and 40.6±6.801o of control after incubation with S- and R-verapamil, respectively) and norverapamil (to 38.2±4.5% and 29.2±5.5% of control after incubation with S- and R-verapamil, respectively). Both D-617 and norverapamil were formed by stable expressed CYP3A4 (16.6 pmol/mg protein/min and 22.6 pmol/mg protein/min, respectively). In summary, formation of D-617 and norverapamil is catalyzed mainly by CYP3A4. D-617 is also formed by CYP1A2. Veraparnil therefore has the potential to interact with other drugs which are substrates or inducers of CYP3A and CYP1A2.Part of this work has been presented at the 32 Annual Spring Meeting of the German Society for Pharmacology and Toxicology, 1991, The abstract was published in Naunyn-Schmiedeberg's Archives of Pharmacology (1991) 343:R124 Correspondence to H. K. Kroemer at the above address  相似文献   

2.
The calcium channel blocker verapamil [2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] undergoes extensive biotransformation in man. We have previously demonstrated cytochrome P450 (CYP) 3A4 and 1A2 to be the enzymes responsible for verapamil N-dealkylation (formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile]), and verapamil N-demethylation (formation of norverapamil [2,8-bis(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoctanitrile]), while there was no involvement of CYP3A4 and CYP1A2 in the third initial metabolic step of verapamil, which is verapamil O-demethylation. This pathway yields formation of D-703 [2-(4-hydroxy-3-methoxyphenyl)-8-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] and D-702 [2-(3,4-dimethoxyphenyl)-8-(4-hydroxy-3-methoxyphenyl)6-methyl-2-isopropyl-6-azaoctanitrile]. The enzymes catalyzing verapamil O-demethylation have not been characterized so far. We have therefore identified and characterized the enzymes involved in verapamil O-demethylation in humans by using the following in vitro approaches: (I) characterization of O-demethylation kinetics in the presence of the microsomal fraction of human liver, (II) inhibition of verapamil O-demethylation by specific antibodies and selective inhibitors and (111) investigation of metabolite formation in microsomes obtained from yeast strain Saccharomyces cerevisiae W(R), that was genetically engineered for stable expression of human CYP2C8, 2C9 and 2C18.In human liver microsomes (n=4), the intrinsic clearance (CLint), as derived from the ratio of V max/Km, was significantly higher for O-demethylation to D-703 compared to formation of D-702 following incubation with racemic verapamil (13.9±1.0 vs 2.4±0.6 ml*min-1 *g-1 mean±SD; p<0.05), S-Verapamil (16.8±3.3 vs 2.2±1.2 ml* mini*g-1, p<0.05) and R-verapamil (12.1±2.9 vs 3.6 ±1.3 ml*min-1 * g-1; p<0.05), thus indicating regioselectivity of verapamil O-demethylation process. The CLint of D-703 formation in human liver microsomes showed a modest but significant degree of stereo selectivity (p<0.05) with a S/R-ratio of 1.41±0.17. Anti-LKM2 (anti-liver/kidney microsome) autoantibodies (which inhibit CYP2C9 and 2C19) and sulfaphenazole (a specific CYP2C9 inhibitor) reduced the maximum rate of formation of D-703 by 81.5±4.5% and 45%, that of D-702 by 52.7±7.5% and 72.5%, respectively. Both D-703 and D-702 were formed by stably expressed CYP2C9 and CYP2C18, whereas incubation with CYP2C8 selectively yielded D-703.In conclusion, our results show that enzymes of the CYP2C subfamily are mainly involved in verapamil O-demethylation. Verapamil therefore has the potential to interact with other drugs which inhibit or induce these enzymes.  相似文献   

3.
In vitro studies of enantioselective metabolism of R-(+)- and S-(-)verapamil (VER) were conducted using human cDNA-expressed CYP3A isoforms, CYP3A4, CYP3A5, and CYP3A7. N-dealkylated products nor-VER [2,8-bis-(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoctanitrile] and D617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile] were the major metabolites for all CYP3A isoforms regardless of enantiomer. Enantioselectivity of CYP3A4 and CYP3A7 was most similar among the three isoforms. This coincides with the degree of homology of amino acids at the active sites and in the total amino acid sequences of the enzymes. Biphasic substrate inhibition was observed for the formation of nor-VER and D617, whereas simple biphasic kinetics were observed for the formation of O-demethylated products for both enantiomers with CYP3A4. The biphasic substrate inhibition was observed only for nor-VER, and simple biphasic kinetics were observed for D617 and O-demethylated products for both enantiomers with CYP3A5. However, with CYP3A7, D617 and O-demethylated products showed typical Michaelis-Menten kinetics, and only nor-VER displayed substrate (monophasic) inhibition. When metabolic rates of VER were determined in the presence of three different effectors, midazolam, testosterone, and nifedipine, activation, inhibition, or activation and inhibition of VER metabolism was observed depending on the enantiomers, metabolites, effectors, and cytochrome P450 isoforms. Addition of anti-CYP3A4 antibody inhibited formation of all metabolites for both CYP3A4 and CYP3A5. The atypical phenomena (biphasic substrate inhibition, activation, and inhibition depending on product formation) of VER kinetics could be adequately explained by introducing the concept of steric interaction into a two binding-site model.  相似文献   

4.
We have investigated several effects of verapamil (5-[(3,4-dimethoxyphenethyl)methylamino]-2-(3,4-dimethoxyphenyl)-2- isopropylvaleronitrile) on platelet structure and function. At concentrations below a threshold of approximately 4.2 x 10(7) molecules.cell-1, verapamil binds to platelets according to a typical Langmuir adsorption isotherm (i.e., binding is saturable and noncooperative). By extrapolation, we calculate that saturation would occur at 6.8 x 10(7) +/- 1.9 x 10(7) molecules.platelet-1, with one bound verapamil molecule per two membrane phospholipids. Saturation is never achieved, however, because past the threshold surface concentration, the adsorption isotherm becomes discontinuous and further adsorption becomes a linear function of the concentration of drug in solution. We attribute this discontinuity to disorganization of the membrane bilayer which is stretched beyond cohesion by insertion of too many amphiphilic molecules of a length shorter than that of the phospholipid. The partitioning of verapamil between the bulk aqueous phase and the newly created lipid phase would then account for the linear portion of the adsorption isotherm. The discontinuity of binding is accompanied by discontinuities in the verapamil-dependent swelling of platelets and the verapamil-dependent inhibition of both ADP-inducible binding of fibrinogen to, and aggregation of, platelets. In contrast, N-methylverapamil (5-[(3,4-dimethoxyphenyl)- methylamino]-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile), a hydrophilic quaternary amine derivative of verapamil, neither swells platelets nor inhibits the ADP-dependent processes that we investigated. From this we conclude that deprotonated verapamil is the operative species of the drug. Collectively, these data suggest that verapamil alters platelet structure and function by mechanisms involving disorganization of the platelet plasma membrane.  相似文献   

5.
Three analogues with restricted flexibility were designed to study the active conformation of verapamil during interaction with the slow calcium channel. Thus cis- and trans-1-(3,4-dimethoxyphenyl)-4-[N-[2-(3,4-dimethoxy-phenyl)ethyl]-N- methylamino]-r-1-cyclohexanecarbonitrile (5a and 5b), and 4-(3,4-dimethoxyphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-4-cyanopiper idine, in which the verapamil structure is inserted into a cyclohexane or piperidine ring, were synthesized. Conformational analysis was performed with NMR and theoretical methods, and slow calcium channel antagonism was tested on guinea pig aorta strips. The compounds are some 100 times less potent than the parent compound even if they are able to reach conformations that are quite close to the lowest energy conformation proposed for verapamil and similar compounds. It appears that the flexibility to rotate around the bond between the quaternary atom and the adjacent methylene, a property which is lost in compounds 5a, 5b, and 6, is a major requisite for the calcium antagonism of verapamil.  相似文献   

6.
Cilostazol (OPC-13013; 6-[4-(1-cyclohexl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone) is widely used as an antiplatelet vasodilator agent. In vitro, the hydroxylation of the quinone moiety of cilostazol to OPC-13326 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-4-hydroxy-2(1H)-quinolinone], is the predominant route, and the hydroxylation of the hexane moiety to OPC-13217 is the second most predominant route. This study was carried out to identify and kinetically characterize the human cytochrome P450 (P450) isozymes responsible for the formation of the two major metabolites of cilostazol, namely, OPC-13326 and OPC-13217 [3,4-dihydro-6-[4-[1-(cis-4-hydroxycyclohexyl)-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone)]. In in vitro studies using 14 recombinant human P450 isozymes, CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, and CYP4A11, cilostazol was metabolized to OPC-13326 mainly by CYP3A4 (K(m) = 5.26 muM, intrinsic clearance (CL(int)) = 0.34 microl/pmol P450/min), CYP1B1 (K(m) = 11.2 microM, CL(int) = 0.03 microl/pmol P450/min), and CYP3A5 (K(m) = 2.89 microM, CL(int) = 0.05 microl/pmol P450/min) and to OPC-13217 mainly by CYP3A5 (K(m) = 1.60 microM, CL(int) = 0.57 microl/pmol P450/min), CYP2C19 (K(m) = 5.95 microM, CL(int) = 0.16 microl/pmol P450/min), CYP3A4 (K(m) = 5.35 microM, CL(int) = 0.10 microl/pmol P450/min), and CYP2C8 (K(m) = 33.8 microM, CL(int) = 0.009 microl/pmol P450/min). The present study showed that the two major metabolites of cilostazol in vitro, namely, OPC-13326 and OPC-13217, are mainly catalyzed by CYP3A4 and CYP3A5, respectively.  相似文献   

7.
We have investigated the ionization and surface properties of verapamil (5-[(3,4-dimethoxyphenethyl)methylamino]-2-(3, 4-dimethoxyphenyl)-2-isopropylvaleronitrile, 1) and several verapamil analogues since these properties appear to be involved in the biologic activities of these compounds. Our results show that verapamil and its analogues are surface-active and bind to amphiphilic surfaces. The affinity toward, as well as the capacity of, an amphiphilic surface for verapamil and its ionizable analogues is pH dependent, with the surface having both higher affinity and capacity for the neutral form of the molecules. Thus, verapamil exists as protonated and neutral forms, both of which are free in solution and adsorbed to the interface, and the ionization of verapamil at an interface changes with respect to its ionization in solution. From analyses of the pH dependency of surface binding and of solution and interfacial ionizations, we determined the values of the four equilibrium constants. These equilibrium constants permit correlative studies between the pH-dependent abundance of each species and biologic activity. We discuss preliminary studies which indicate that the negative inotropic effect of verapamil is mediated by the membrane-bound neutral form of the drug.  相似文献   

8.
P-glycoprotein (P-gp) can limit the intestinal permeability of a number of compounds and may therefore influence their exposure to metabolizing enzymes within the enterocyte (e.g. cytochrome P450 3A, CYP 3A). In this study, the intestinal metabolic profile of verapamil, the influence of P-gp anti-transport on the cellular residence time of verapamil, and the impact of this change in residence time on the extent of enterocyte-based metabolism have been investigated in-vitro, utilizing segments of rat jejunum and side-by-side diffusion chambers. Verapamil exhibited concentration-dependent P-gp efflux and CYP 3A metabolism. The P-gp efflux of verapamil (1 microM) increased the cellular residence time across the intestinal membrane (approximately 3-fold) in the mucosal to serosal (m to s) direction relative to serosal to mucosal (s to m), yielding significantly greater metabolism (approximately 2-fold), presumably as a result of the prolonged exposure to CYP 3A. Intestinal metabolism of verapamil generated not only norverapamil, but resulted also in the formation of an N-dealkylated product (D-617). Norverapamil and D-617 accumulated significantly in mucosal chambers, relative to serosal chambers, over the time course of the experiment. Based on these in-vitro data, it was apparent that P-gp efflux prolonged the cellular residence time of verapamil (m to s) and therefore increased the extent of intestinal metabolism, and also played a role in metabolite secretion from within the enterocyte.  相似文献   

9.
10.
[7-(2,6-Dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) is a novel multi-targeted Src family kinase inhibitor with demonstrated anticancer activity in preclinical species. Potent kinase inhibition is associated with TG100435 and its major N-oxide metabolite [7-(2,6-dichlorophenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-{4-[2-(1-oxy-pyrrolidin-1-yl)-ethoxy]-phenyl}-amine (TG100855). The objectives of the current study were to identify the hepatic enzyme(s) responsible for 1) the total metabolic flux of TG100435, 2) the formation of TG100855, and 3) the subsequent metabolism of TG100855. Flavin-containing monooxygenases (FMO) and cytochrome P450 monooxygenases (P450s) contribute to TG100435 total metabolic flux. TG100435 metabolic flux was completely inhibited by methimazole and ketoconazole, suggesting only FMO- and CYP3A4-mediated metabolism. TG100855 formation was markedly inhibited (~90%) by methimazole or heat inactivation (>99%). FMO3 was the primary enzyme responsible for TG100855 formation. In addition, an enzyme mediated retroreduction of TG100855 back to TG100435 was observed. The N-oxidation reaction was approximately 15 times faster than the retroreduction reaction. Interestingly, the retroreduction of TG100855 to TG100435 in recombinant P450 or liver microsomes lacked inhibition by the P450 inhibitors. TG100435 formation in the human liver microsomes or recombinant P450 increased as a function of cytochrome P450 reductase activity, suggesting potential involvement of cytochrome P450 reductase. The results of this in vitro study demonstrate the potential of TG100435 and TG100855 to be interconverted metabolically. FMO seem to be the major N-oxidizing enzymes, whereas cytochrome P450 reductase seems to be responsible for the retroreduction reaction.  相似文献   

11.
Cytochrome P450 (P450)-derived arachidonic acid (AA) metabolites serve pivotal physiological roles. Therefore, it is important to determine the dominant P450 AA monooxygenases in different organs. We investigated the P450 AA monooxygenases protein expression as well as regioselectivity, immunoinhibition, and kinetic profile of AA epoxygenation and hydroxylation in rat heart, lung, kidney, and liver. Thereafter, the predominant P450 epoxygenases and P450 hydroxylases in these organs were characterized. Microsomes from heart, lung, kidney, and liver were incubated with AA. The protein expression of CYP2B1/2, CYP2C11, CYP2C23, CYP2J3, CYP4A1/2/3, and CYP4Fs in the heart, lung, kidney, and liver were determined by Western blot analysis. The levels of AA metabolites were determined by liquid chromatography–electrospray ionization mass spectroscopy. This was followed by determination of regioselectivity, immunoinhibition effect, and the kinetic profile of AA metabolism. AA was metabolized to epoxyeicosatrienoic acids and 19- and 20-hydroxyeicosatetraenoic acid in the heart, lung, kidney, and liver but with varying metabolic activities and regioselectivity. Anti-P450 antibodies were found to differentially inhibit AA epoxygenation and hydroxylation in these organs. Our data suggest that the predominant epoxygenases are CYP2C11, CYP2B1, CYP2C23, and CYP2C11/CYP2C23 for the heart, lung, kidney, and liver, respectively. On the other hand, CYP4A1 is the major ω-hydroxylase in the heart and kidney; whereas CYP4A2 and/or CYP4F1/4 are probably the major hydroxlases in the lung and liver. These results provide important insights into the activities of P450 epoxygenases and P450 hydroxylases-mediated AA metabolism in different organs and their associated P450 protein levels.  相似文献   

12.
In vitro studies were conducted to elucidate the metabolic profiles of and the enzymes responsible for the metabolism of (R)- and (S)-tofisopam (1-(3,4-dimethoxyphenyl)-5-ethyl-7,8-dimethoxy-4-methyl-5H-2,3-benzodiazepine). Large differences were observed between the two enantiomers. The major metabolite in incubations of 500 ng/ml (approximately 1.3 microM) (R)-tofisopam in human liver microsomes corresponded to demethylation of the methoxy group at the 4-position of the phenyl ring (M3). Incubating (R)-tofisopam with recombinant cytochrome P450 (P450) or with human liver microsomes and isoform-selective P450 chemical inhibitors indicated that M3 was primarily catalyzed by CYP2C9. Similar incubations with S-tofisopam indicated that the primary metabolite was due to demethylation of the methoxy group at the 7-position of the benzodiazepine ring (M1), and this reaction was catalyzed primarily by CYP3A4. The primary metabolites of both enantiomers were further demethylated to form a common didemethylated metabolite (M5) where the methoxy groups at positions 4 and 7 are demethylated. Analysis of plasma and urine samples from human clinical trials confirmed the in vitro observations. Subjects orally treated with 200 mg b.i.d. (R)-tofisopam had a 2-h M1/M3 plasma ratio of 1:29 and a ratio of 1:123 in urine, whereas patients orally administered (S)-tofisopam at 150 mg/kg t.i.d. had opposite M1 to M3 ratios of 8:1 in plasma and 6:1 in urine.  相似文献   

13.
AIMS: The present study was conducted to evaluate metabolism of the enantiomers of verapamil and norverapamil using a broad range of cytochrome P450 isoforms and measure the kinetic parameters of these processes. METHODS: Cytochrome P450 cDNA-expressed cells and microsomes from a P450-expressed lymphoblastoid cell line were incubated with 40 microm concentrations of R- or S-verapamil and R- or S-norverapamil and metabolite formation measured by h.p.l.c. as an initial screening. Those isoforms exhibiting substantial activity were then studied over a range of substrate concentrations (2.5-450 microm ) to estimate the kinetic parameters for metabolite formation. RESULTS: P450s 3A4, 3A5, 2C8 and to a minor extent 2E1 were involved in the metabolism of the enantiomers of verapamil. Estimated Km values for the production of D-617 and norverapamil by P450 s 3A4 and 3A5 were similar (range=60-127 microm ) regardless of the enantiomer of verapamil studied while the Vmax estimates were also similar (range=4-8 pmol min-1 pmol-1 P450). Only nominal production of D-620 by these isoforms was noted. Interestingly, P450 2C8 readily metabolized both S- and R-verapamil to D-617, norverapamil and PR-22 with only slightly higher Km values than noted for P450s 3A4 and 3A5. However, the Vmax estimates for P450 2C8 metabolism of S- and R-verapamil were in general greater (range=8-15 pmol min-1 pmol-1 P450) than those noted for P450 s 3A4 and 3A5 with preference noted for metabolism of the S-enantiomer. Similarly, P450 s 3A4, 3A5 and 2C8 also mediated the metabolism of the enantiomers of norverapamil with minor contributions by P450 s 2D6 and 2E1. P450s 3A4 and 3A5 readily formed the D-620 metabolite with generally a lower Km and higher Vmax for S-norverapamil than for the R-enantiomer. In contrast, P450 2C8 produced both the D-620 and PR-22 metabolites from the enantiomers of norverapamil, again with stereoselective preference seen for the S-enantiomer. CONCLUSIONS: These results confirm that P450s 3A4, 3A5 and 2C8 play a major role in verapamil metabolism and demonstrate that norverapamil can also be further metabolized by the P450s.  相似文献   

14.
Cytochrome P450 (P450) monooxygenases play a role in target tissue metabolic activation of xenobiotics and/or endogenous compounds, such as vasoactive molecules or hormones. Indeed, tissue-specific metabolism of steroids is important in a variety of organs, including thymus, and may alter tissue-specific functions. Steroids have been shown to regulate thymus growth and function, but surprisingly little is known about expression of the responsible enzyme systems in thymus tissue, nor is the thymus-specific biotransformation of testosterone known. We therefore investigated gene and protein expression, total protein content, and enzyme activity of major P450 isoforms and other key steroid-metabolizing enzymes in thymus tissue of adult and fetal rats. We detected 6 beta-hydroxytestosterone (HT), 7 alpha-HT, 16 alpha-HT, 2 alpha-HT, and androstenedione to be major testosterone metabolites in the adult thymus. The high production of 7 alpha-HT and 16 alpha-HT correlated well with the gene and protein expression of CYP2A1/2 and CYP2B1/2 in thymus of adult animals. When compared with fetal thymic tissue, CYP2A1/2, 17beta-hydroxysteroid dehydrogenase isoform 1 (17 beta-HSDH1) and the androgen receptor were 8-, 3-, and 3-fold more highly expressed in adult rats, whereas 17 beta-HSDH2, 17 beta-HSDH3, and 5 alpha-reductase were reduced to 12%, 0%, and 32% of those in fetal thymus. In conclusion, we demonstrated that rat thymus expresses a variety of cytochrome P450 monooxygenases and other steroid-metabolizing enzymes, and it successfully metabolizes testosterone. Changes of the underlying steroid-metabolizing enzyme systems may aid in understanding the role of androgens in altering biological functions of the thymus.  相似文献   

15.
Considerable unexplained intersubject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undisclosed metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes [extensive metabolizers (EMs)] and four CYP2D6*4 homozygotes [poor metabolizers (PMs)] took 12.8 mg of debrisoquine hemisulfate by mouth and collected 0- to 8- and 8- to 24-h urines, which were analyzed by gas chromatography-mass spectrometry (GCMS) before and after treatment with beta-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, liquid chromatography-tandem mass spectrometry, and (1)H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0- to 24-h urine, both in EMs (3.1-27.6% of dose) and PMs (0-2.1% of dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A previously unstudied CYP2D6*1 homozygote was administered 10.2 mg of 4-hydroxydebrisoquine orally and also excreted 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0-4.8%) and 8-hydroxydebrisoquine (0-1.3%), but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A microsomal activity that probably does not involve cytochrome P450 participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio.  相似文献   

16.
CYP2A6 is the principle enzyme metabolizing nicotine to its inactive metabolite cotinine. In this study, the selective probe reactions for each major cytochrome P450 (P450) were used to evaluate the specificity and selectivity of the CYP2A6 inhibitors methoxsalen, tranylcypromine, and tryptamine in cDNA-expressing and human liver microsomes. Phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), p-nitrophenol hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4) were used as index reactions. Apparent K(i) values for inhibition of P450s' (1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) activities showed that tranylcypromine, methoxsalen, and tryptamine have high specificity and relative selectivity for CYP2A6. In cDNA-expressing microsomes, tranylcypromine inhibited CYP2A6 (K(i) = 0.08 microM) with about 60- to 5000-fold greater potency relative to other P450s. Methoxsalen inhibited CYP2A6 (K(i) = 0.8 microM) with about 3.5- 94-fold greater potency than other P450s, except for CYP1A2 (K(i) = 0.2 microM). Tryptamine inhibited CYP2A6 (K(i) = 1.7 microM) with about 6.5- 213-fold greater potency relative to other P450s, except for CYP1A2 (K(i) = 1.7 microM). Similar results were also obtained with methoxsalen and tranylcypromine in human liver microsomes. R-(+)-Tranylcypromine, (+/-)-tranylcypromine, and S-(-)-tranylcypromine competitively inhibited CYP2A6-mediated metabolism of nicotine with apparent K(i) values of 0.05, 0.08, and 2.0 microM, respectively. Tranylcypromine [particularly R-(+) isomer], tryptamine, and methoxsalen are specific and relatively selective for CYP2A6 and may be useful in vivo to decrease smoking by inhibiting nicotine metabolism with a low risk of metabolic drug interactions.  相似文献   

17.
The oxidative N-dealkylation of verapamil (1), a calcium channel antagonist, was examined in the presence of rat and human liver microsomes by using GC-MS methodology and synthesized regio-isomeric standards. All three possible secondary amine metabolites, N-methyl-4-(3,4-dimethoxyphenyl)-4-cyano-5-methylhexylamine (5), norverapamil (4), and N-methyl-2-(3,4-dimethoxyphenyl)ethylamine (3), were formed as microsomal metabolites. Compound 5 and norverapamil (4) were major products. Substrate stereoselectivity for the N-dealkylation process was determined when pseudoracemic verapamil[equimolar (S)-(-)-verapamil-d6 and (R)-(+):verapamil-d0] was used as substrate. In the presence of rat liver microsomes, a slight enantiomeric preference for the metabolism of (R)-verapamil to secondary amines 3 and 5 (S/R ratio = 0.88 and 0.78, respectively) was observed. In contrast, (S)-verapamil was preferentially metabolized to norverapamil (4) and primary amine 9 (S/R ratio = 1.20 for both). The enantioselectivity for the N-dealkylation process in the presence of human liver microsomes was slight and variable (six samples). Quantitatively, the major N-dealkylation routes in both microsomal systems yielded norverapamil (4) and secondary amine 5. Greater substrate enantioselectivity was observed for the N-dealkylation process in rat liver microsomes than in human liver microsomes. In rat liver microsomal studies, two aliphatic aldehydes (2 and 6) were successfully trapped as their O-methyloximes (7 and 11, respectively) by using methoxylamine. In addition, the alcohols formed from reduction of these aldehydes were observed, due in part to a direct reduction by NADPH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Conveniently accessible 4-[(2-(3,4-dimethoxyphenyl)ethyl]-3-thiosemicarbazide (2) was converted to new 1-substituted benzylidene/furfurylidene-4- [2-(3,4-dimethoxyphenyl)ethyl]-3-thiosemicarbazides (3) which furnished 2-(substituted benzylidene/furfurylidene) hydrazono-3-[2-(3,4-dimethoxyphenyl)ethyl]thiazolidin-4-ones (4) and 1-(substituted benzylidene/furfurylidene)-amino -3-[2-(3,4-dimethoxyphenyl)ethyl]-2-thioxo-4,5-imidazolidinedio nes (5) on reaction with chloroacetic acid and oxalyl chloride, respectively. The structure of 5 was confirmed by X-ray diffraction studies performed on 5a. 4 and 5 were evaluated for their potentiating effects on pentobarbital induced hypnosis. Most of the compounds caused remarkable increases in pentobarbital sleeping time.  相似文献   

19.
KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6beta-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.  相似文献   

20.
"Ecstasy" [(+/-)-3,4-methylenedioxymethamphetamine or MDMA] is a CNS stimulant, whose use is increasing despite evidence of long-term neurotoxicity. In vitro, the majority of MDMA is demethylenated to (+/-)-3,4-dihydroxymethamphetamine (DHMA) by the polymorphic cytochrome P450 2D6 (CYP2D6). We investigated the demethylenation of MDMA and dextromethorphan (DEX), as a comparison drug, in reconstituted microsomes expressing the variant CYP2D6 alleles (*)2, (*)10, and (*)17, all of which have been linked to decreased enzyme activity. With MDMA, intrinsic clearances (V(max)/K(m)) in CYP2D6.2, CYP2D6.17, and CYP2D6.10 were reduced 15-, 13-, and 135-fold, respectively, compared with wild-type CYP2D6.1. With DEX, intrinsic clearances were reduced by 37-, 51-, and 164-fold, respectively. It was evident that CYP2D6.17 displayed substrate-specific changes in drug affinity (K(m)). Compounds potentially used with MDMA [fluoxetine, paroxetine, (-)-cocaine] demonstrated significant inhibition of MDMA metabolism in both human liver and CYP2D6.1-expressing microsomes. These data demonstrate that individuals possessing the CYP2D6(*)2, (*)17, and, particularly, (*)10 alleles may show significantly reduced MDMA metabolism. These individuals, and those taking CYP2D6 inhibitors, may demonstrate altered acute and/or long-term MDMA-related toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号