首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast mitochondrial histone protein HM is required for maintenance of the mitochondrial genome, and disruption of the gene encoding HM (HIM1/ABF2) results in formation of a respiration-deficient petite mutant phenotype. HM contains two homologous regions, which share sequence similarity with the eukaryotic nuclear nonhistone protein, HMG-1. Experiments with various deletion mutants of HM show that a single HMG domain of HM is functional and can restore respiration competency to cells that lack HM protein (him1 mutant cells). The gene encoding the putative yeast nuclear HMG-1 homolog, the NHP6A protein, can functionally complement the him1 mutation. These results suggest that the HMG domain is the basic unit for the function of HM in mitochondria and that the function of HMG-1 proteins in the nucleus and HM in the mitochondrion may be equivalent.  相似文献   

2.
The region of the Pf3 virus genome encoding its major coat protein and its single-stranded DNA-binding protein is organized somewhat like the corresponding region of the fd (M13, f1) genome. Nevertheless, the major coat protein is unique among the major coat proteins of fd and the other filamentous phages studied in that it lacks a signal sequence and appears to be a direct translation product and in that it has fewer basic amino acid residues than its equivalent of DNA phosphates in the virion. These features are relevant to considerations of both protein insertion into membranes and DNA structure in filamentous viruses. The single-stranded DNA-binding protein also has a sequence that is different from the sequences of single-stranded DNA-binding proteins from other filamentous viruses.  相似文献   

3.
We have isolated two genes from yeast encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase [hydroxymethylglutaryl-coenzyme A reductase (NADPH); HMG-CoA reductase; EC 1.1.1.34], the rate-limiting enzyme of sterol biosynthesis. These genes, HMG1 and HMG2, were identified by hybridization to a cDNA clone encoding hamster HMG-CoA reductase. DNA sequence analysis reveals homology between the amino acid sequence of the proteins encoded by the two yeast genes and the carboxyl-terminal half of the hamster protein. Cells containing mutant alleles of both HMG1 and HMG2 are unable to undergo spore germination and vegetative growth. However, cells containing a mutant allele of either HMG1 or HMG2 are viable but are more sensitive to compactin, a competitive inhibitor of HMG-CoA reductase, than are wild-type cells. Assays of HMG-CoA reductase activity in extracts from hmg1- and hmg2- mutants indicate that HMG1 contributes at least 83% of the activity found in wild-type cells.  相似文献   

4.
5.
6.
7.
We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.  相似文献   

8.
9.
HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells.  相似文献   

10.
nifU of nitrogen-fixing bacteria is involved in the synthesis of the Fe-S cluster of nitrogenase. In a synthetic lethal screen with the mitochondrial heat shock protein (HSP)70, SSQ1, we identified a gene of Saccharomyces cerevisiae, NFU1, which encodes a protein with sequence identity to the C-terminal domain of NifU. Two other yeast genes were found to encode proteins related to the N-terminal domain of bacterial NifU. They have been designated ISU1 and ISU2. Isu1, Isu2, and Nfu1 are located in the mitochondrial matrix. ISU genes of yeast carry out an essential function, because a Deltaisu1Deltaisu2 strain is inviable. Growth of Deltanfu1Delta isu1 cells is significantly compromised, allowing assessment of the physiological roles of Nfu and Isu proteins. Mitochondria from Deltanfu1Deltaisu1 cells have decreased activity of several respiratory enzymes that contain Fe-S clusters. As a result, Deltanfu1Deltaisu1 cells grow poorly on carbon sources requiring respiration. Deltanfu1Deltaisu1 cells also accumulate abnormally high levels of iron in their mitochondria, similar to Deltassq1 cells, indicating a role for these proteins in iron metabolism. We suggest that NFU1 and ISU1 gene products play a role in iron homeostasis, perhaps in assembly, insertion, and/or repair of mitochondrial Fe-S clusters. The conservation of these protein domains in many organisms suggests that this role has been conserved throughout evolution.  相似文献   

11.
12.
Two yeast genes that encode unusual protein kinases.   总被引:8,自引:2,他引:6       下载免费PDF全文
Mixed synthetic oligonucleotides encoding sequences conserved among tyrosine-specific protein kinases were used to probe the genome of the budding yeast Saccharomyces cerevisiae. Two genes with homology to protein kinases were isolated and characterized by DNA sequence analysis. These genes, designated KIN1 and KIN2, are closely related to each other. Among previously characterized protein kinases, the products of KIN1 and KIN2 are most closely related to the bovine cAMP-dependent protein kinase (30% amino acid identities) and the protein encoded by the v-src oncogene (27% and 25% identities with KIN1 and KIN2, respectively) within their putative kinase domains. KIN1 and KIN2 are transcribed into 3.5-kilobase mRNAs that contain uninterrupted open reading frames encoding polypeptides of 117 kDa and 126 kDa, respectively. The predicted proteins are unusual in two respects: (i) their catalytic domains are carried near the N termini of relatively large proteins, in contrast to the majority of characterized protein kinases, and (ii) these catalytic domains are structural mosaics, with some features characteristic of tyrosine-specific protein kinases and other elements that are distinctive of serine/threonine-specific enzymes.  相似文献   

13.
14.
During the course of evolution, a massive reduction of the mitochondrial genome content occurred that was associated with transfer of a large number of genes to the nucleus. To further characterize factors that control the mitochondrial gene transfer/retention process, we have investigated the barriers to transfer of yeast COX2, a mitochondrial gene coding for a subunit of cytochrome c oxidase complex. Nuclear-recoded Saccharomyces cerevisiae COX2 fused at the amino terminus to various alternative mitochondrial targeting sequences (MTS) fails to complement the growth defect of a yeast strain with an inactivated mitochondrial COX2 gene, even though it is expressed in cells. Through random mutagenesis of one such hybrid MTS-COX2, we identified a single mutation in the first Cox2 transmembrane domain (W56 → R) that (i) results in the cellular expression of a Cox2 variant with a molecular mass indicative of MTS cleavage, which (ii) supports growth of a cox2 mutant on a nonfermentable carbon source, and that (iii) partially restores cytochrome c oxidase-specific respiration by the mutant mitochondria. COX2W56R can be allotopically expressed with an MTS derived from S. cerevisiae OXA1 or Neurospora crassa SU9, both coding for hydrophobic mitochondrial proteins, but not with an MTS derived from the hydrophilic protein Cox4. In contrast to some other previously transferred genes, allotopic COX2 expression is not enabled or enhanced by a 3′-UTR that localizes mRNA translation to the mitochondria, such as yeast ATP23-UTR. Application of in vitro evolution strategies to other mitochondrial genes might ultimately lead to yeast entirely lacking the mitochondrial genome, but still possessing functional respiratory capacity.  相似文献   

15.
16.
Interactions of the Bcl-2 protein with itself and other members of the Bcl-2 family, including Bcl-X-L, Bcl-X-S, Mcl-1, and Bax, were explored with a yeast two-hybrid system. Fusion proteins were created by linking Bcl-2 family proteins to a LexA DNA-binding domain or a B42 trans-activation domain. Protein-protein interactions were examined by expression of these fusion proteins in Saccharomyces cerevisiae having a lacZ (beta-galactosidase) gene under control of a LexA-dependent operator. This approach gave evidence for Bcl-2 protein homodimerization. Bcl-2 also interacted with Bcl-X-L and Mcl-1 and with the dominant inhibitors Bax and Bcl-X-S. Bcl-X-L displayed the same pattern of combinatorial interactions with Bcl-2 family proteins as Bcl-2. Use of deletion mutants of Bcl-2 suggested that Bcl-2 homodimerization involves interactions between two distinct regions within the Bcl-2 protein, since a LexA protein containing Bcl-2 amino acids 83-218 mediated functional interactions with a B42 fusion protein containing Bcl-2 amino acids 1-81 but did not complement a B42 fusion protein containing Bcl-2 amino acids 83-218. In contrast to LexA/Bcl-2 fusion proteins, expression of a LexA/Bax protein was lethal to yeast. This cytotoxicity could be abrogated by B42 fusion proteins containing Bcl-2, Bcl-X-L, or Mcl-1 but not those containing Bcl-X-S (an alternatively spliced form of Bcl-X that lacks a well-conserved 63-amino acid region). The findings suggest a model whereby Bax and Bcl-X-S differentially regulate Bcl-2 function, and indicate that requirements for Bcl-2/Bax heterodimerization may be different from those for Bcl-2/Bcl-2 homodimerization.  相似文献   

17.
18.
The human homolog of mouse NF-E2 was isolated from the K562 cell line and found to encode a member of the basic leucine-zipper family of DNA-binding regulatory proteins. The deduced amino acid sequence of the mouse and human proteins exhibited near identity. Comparison to the related protein, Nrf1, revealed significant homologies at isolated regions, particularly within the basic domain, suggesting that NF-E2 and Nrf1 are members of a distinct subfamily of basic leucine-zipper proteins that share similar DNA-binding properties. High levels of human NF-E2 mRNA were observed in human erythroleukemic cell lines examined. Extensive survey of human tissue samples found NF-E2 expression not limited to erythropoeitic organs. Expression in the colon and testis suggests that NF-E2 may participate in the regulation of genes other than globin.  相似文献   

19.
20.
The human homolog of mouse NF-E2 was isolated from the K562 cell line and found to encode a member of the basic leucine-zipper family of DNA-binding regulatory proteins. The deduced amino acid sequence of the mouse and human proteins exhibited near identity. Comparison to the related protein, Nrf1, revealed significant homologies at isolated regions, particularly within the basic domain, suggesting that NF-E2 and Nrf1 are members of a distinct subfamily of basic leucine-zipper proteins that share similar DNA-binding properties. High levels of human NF-E2 mRNA were observed in human erythroleukemic cell lines examined. Extensive survey of human tissue samples found NF-E2 expression not limited to erythropoeitic organs. Expression in the colon and testis suggests that NF-E2 may participate in the regulation of genes other than globin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号