首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. MATERIALS AND METHODS: It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. RESULTS: SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). DISCUSSION: The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. CONCLUSIONS: These data raise the issue of the influence of such compounds on sensorimotor gating in humans.  相似文献   

2.
Interaction at dopamine D4 receptors may improve cognitive function, which is highly impaired in individuals with schizophrenia, but comparative studies of recent antipsychotics in cellular models of D4 receptor activation are lacking. Here, we report the in-vitro profile of over 30 ligands at recombinant hD4.4 receptors. In [35S]GTPgammaS binding experiments using membranes of CHO-hD4.4 cells, apomorphine, preclamol and the selective D4 agonists, ABT724, CP226269, Ro-10-5824 and PD168077, behaved as partial agonists (Emax 20-60% vs. dopamine), whereas L745870 and RBI257, displayed antagonist properties. The 'conventional' antipsychotic, haloperidol and the 'atypicals', clozapine and risperidone, exhibited antagonist properties, while 'third generation' compounds bifeprunox, SLV313 and F15063, acted as partial agonists (10-30%). Aripiprazole and SSR181507 slightly stimulated [35S]GTPgammaS binding at micromolar concentrations. In Xenopus laevis oocytes co-expressing hD4.4 receptors with G-protein-coupled inwardly rectifying potassium (GIRK) channels, apomorphine, preclamol, ABT724, CP226269, and PD168077 stimulated GIRK currents (Emax 70-80%). The 5-HT1A receptor ligands, WAY100635 and flibanserin, also exhibited partial agonist activity (30% and 15%, respectively). Haloperidol, clozapine, olanzapine and nemonapride did not stimulate GIRK currents, whereas aripiprazole, bifeprunox, SLV313 and F15063, but not SSR181507, exhibited partial agonism (Emax 20-35%). In-vitro responses depended on experimental conditions: increasing NaCl concentration (30 mm to 100 mm) reduced agonist efficacy in [35S]GTPgammaS binding, whereas decreasing the amount of hD4.4 cRNA injected into oocytes (from 2.0 to 0.5 ng/oocyte) reduced agonist efficacy of several compounds. These data indicate that, unlike conventional or 'atypical' antipsychotics, several 'third generation' agents display D4 receptor partial agonism that may be sufficient to influence physiological D4 receptor activity in vivo.  相似文献   

3.
Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the antipsychotics will depend on the relative 5-HT1A/D2 affinities and on 5-HT1A agonist efficacy of the drugs.  相似文献   

4.
Compounds possessing 5-HT(1A) agonist properties attenuate catalepsy induced by D(2) receptor blockade. Here we examined the role of 5-HT(1A) receptor agonism in the reduced cataleptogenic potential of several novel antipsychotic agents in the crossed leg position (CLP) and the bar catalepsy tests in rats. When administered alone, ziprasidone produced marked catalepsy, whereas aripiprazole, bifeprunox, SLV313, SSR181507 and sarizotan did not. However, when 5-HT(1A) receptors were blocked with the selective antagonist, WAY100635 (0.63 mg/kg, SC), robust cataleptogenic properties of SLV313, bifeprunox and sarizotan were unmasked and the catalepsy induced by ziprasidone was accentuated. In contrast, only modest catalepsy was induced by aripiprazole and SSR181507, even following a higher dose of WAY100635 (2.5 mg/kg). This suggests that these compounds possess other anti-cataleptic properties, such as partial agonism at dopamine D(2) receptors. The capacity to reverse neuroleptic-induced catalepsy was investigated in interaction studies with haloperidol (2.5 mg/kg, SC). Whereas ziprasidone and aripiprazole did not markedly reduce the effects of haloperidol, SLV313 and sarizotan attenuated CLP catalepsy. In contrast, SSR181507 and bifeprunox potently inhibited both CLP and bar catalepsy. Taken together, these data show that 5-HT(1A) receptor activation reduces the cataleptogenic potential of novel antipsychotic agents but indicate marked diversity in the contribution of 5-HT(1A) and/or other mechanisms to the profiles of the drugs.  相似文献   

5.
Dopamine D2 receptor antagonists induce hyperprolactinemia depending on the extent of D2 receptor blockade. We compared the effects of the new antipsychotic agents SSR181507 ((3-exo)-8-benzoyl-N-[[(2 s)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo[3.2.1]octane-3-methanamine monohydrochloride), bifeprunox (DU127090: 1-(2-Oxo-benzoxazolin-7-yl)-4-(3-biphenyl)methylpiperazinemesylate) and SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]-piperazine) with those of aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butyloxy)-3,4-dihydro-2(1 H)-quinolinone), clozapine and haloperidol, on functional measures of dopamine D2 receptor activity in vitro and in vivo: [35S]-GTPgammaS binding to membranes from Sf9 insect cells expressing human dopamine D2 Long (hD2 L) receptors, and serum prolactin levels in the rat. All compounds antagonized apomorphine-induced G protein activation at dopamine hD2 L receptors. Antagonist potencies of aripiprazole, bifeprunox and SLV313 were similar to haloperidol (pK(b) = 9.12), whereas SSR181507 (8.16) and clozapine (7.35) were less potent. Haloperidol, SLV313 and clozapine were silent antagonists but SSR181507, bifeprunox and aripiprazole stimulated [35S]-GTPgammaS binding by 17.5%, 26.3% and 25.6%, respectively, relative to 100 microM apomorphine (Emax = 100%). pEC50s were: SSR181507, 8.08; bifeprunox, 8.97; aripiprazole, 8.56. These effects were antagonized by raclopride. Following oral administration in vivo, the drugs increased prolactin release to different extents. SLV313 and haloperidol potently (ED50 0.12 and 0.22 mg/kg p.o., respectively) stimulated prolactin release up to 86 and 83 ng/ml. Aripiprazole potently (ED50 0.66 mg/kg p.o.) but partially (32 ng/ml) induced prolactin release. SSR181507 (ED50 4.9 mg/kg p.o.) also partially (23 ng/ml) enhanced prolactin release. Bifeprunox only weakly increased prolactin at high doses (13 ng/ml at 40 mg/kg) and clozapine only affected prolactin at the highest dose tested (41 ng/ml at 40 mg/kg). Prolactin levels of the corresponding vehicle-treated animals were <4.3 ng/ml. These data show that (1) SSR181507, aripiprazole and bifeprunox, but not SLV313, are partial agonists at dopamine hD2 L receptors in vitro; (2) SSR181507, bifeprunox and aripiprazole exhibit reduced prolactin release in vivo compared with drugs that are neutral antagonists at dopamine D2 receptors.  相似文献   

6.
5-HT7 receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D2 and 5-HT1A sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT7a receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT7a receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK B values which correlated with their pK i as determined by competition binding vs [3H]5-CT. The selective 5-HT7 receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK B) was ziprasidone > tiospirone > SSR181507 ≥ clozapine ≥ olanzapine > SLV-314 > SLV-313 ≥ aripiprazole ≥ chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT7a cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT7a properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT7 receptors may influence their antipsychotic profile.  相似文献   

7.
Antipsychotic drugs act preferentially via dopamine D(2) receptor blockade, but interaction with serotonin 5-HT(1A) receptors has attracted interest as additional target for antipsychotic treatment. As receptor internalisation is considered crucial for drug action, we tested the propensity of antipsychotics to internalise human (h)D(2S) receptors and h5-HT(1A) receptors. Agonist-induced internalisation of hemaglutinin (HA)-tagged hD(2S) and HA-h5-HT(1A) receptors expressed in HEK293 cells was increased by coexpression of G-protein coupled receptor kinase 2 and beta-arrestin2. At the HA-hD(2S) receptor, dopamine, quinpirole and bromocriptine behaved as full agonists, while S(-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine [(-)-3PPP] and sarizotan were partial agonists. The typical antipsychotic, haloperidol, and the atypical compounds, olanzapine, nemonapride, ziprasidone and clozapine did not internalise HA-hD(2S) receptors, whereas aripiprazole potently internalised these receptors (>50% relative efficacy). Among antipsychotics with combined D(2)/5-HT(1A) properties, bifeprunox and (3-exo)-8-benzoyl-N-[[(2S)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo-[3.2.1]octane-3-methanamine (SSR181507) partially internalised HA-hD(2S) receptors, piperazine, 1-(2,3-dihydro-1,4-benzodioxin-5-yl)-4-[[5-(4-fluorophenyl)-3-pyridinyl]methyl (SLV313) and N-[(2,2-dimethyl-2,3-dihydro-benzofuran-7-yloxy)ethyl]-3-(cyclopent-1-enyl)-benzylamine (F15063) were inactive. At the HA-h5-HT(1A) receptor, serotonin, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)-8-OH-DPAT] and sarizotan were full agonists, buspirone acted as partial agonist. (-)-Pindolol showed little activity and no internalising properties were manifested for the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635). Most antipsychotics induced HA-h5-HT(1A) receptor internalisation, with an efficacy rank order: nemonapride>F15063>SSR181507>bifeprunox approximately SLV313 approximately ziprasidone>aripiprazole and potencies: SLV313>SSR181507 approximately F15063>bifeprunox approximately nemonapride approximately aripiprazole>ziprasidone. Interestingly, the internalisation induced by clozapine was only minimal, whereas aripirazole and bifeprunox were more potent for internalisation than for G-protein activation. These different profiles of antipsychotics for receptor internalisation may help to evaluate their potential therapeutic impact in the treatment of schizophrenia.  相似文献   

8.
The dopamine D1/D2 agonist apomorphine (0.63 mg/kg) disrupted prepulse inhibition (PPI) of acoustic startle in rats, a model of sensorimotor gating deficits observed in schizophrenia. All current antipsychotics, which antagonize D2 receptors, prevent this apomorphine-induced deficit. A novel class of antipsychotics possesses, in addition to D2 antagonist property, various levels of 5-HT1A agonist activity. Considering that the latter itself produces PPI deficits, it appeared necessary to assess the potential of this novel class of antipsychotics to reverse apomorphine-PPI deficits. Potent D2 antagonists, like haloperidol (0.63-2.5 mg/kg), risperidone (0.63-10 mg/kg), and olanzapine (0.63-40 mg/kg) prevented apomorphine PPI disruption. The atypical antipsychotics, clozapine (40 mg/kg), nemonapride (0.01-2.5 mg/kg), ziprasidone (10 mg/kg), and aripiprazole (0.01 and 10 mg/kg), which all exhibit 5-HT1A agonist properties, reversed PPI deficits at some doses only, whereas the anti-dyskinetic agent sarizotan (0.16-10 mg/kg), an efficacious 5-HT1A agonist, did not. New generation antipsychotics with marked 5-HT1A agonist properties, such as SLV313 and SSR181507 (0.0025-10 mg/kg and 0.16-10 mg/kg, respectively) did not reverse these deficits whereas bifeprunox (0.04-2.5 mg/kg) did. To reveal the contribution of 5-HT1A agonist properties in the lack of effects of SLV313 and SSR181507, we pretreated rats with the 5-HT1A antagonist WAY100635 (0.63 mg/kg). Under these conditions, significant reversal of PPI deficit was observed, indicating that D2 antagonist properties of SLV313 and SSR181507 are now sufficient to overcome the disruptive effects of apomorphine. To summarize, antipsychotics possessing agonist efficacy at 5-HT1A receptors exhibit diverse profiles against apomorphine-induced PPI deficits, depending on the balance between D2 and 5-HT1A activities, suggesting that they may display distinct activity on some aspects of gating deficits in schizophrenic patients.  相似文献   

9.
The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.  相似文献   

10.
Considerable interest has arisen in identifying antipsychotic agents with improved efficacy against negative symptoms, such as social withdrawal. In rats, a social interaction deficit can be induced by the NMDA antagonist phencyclidine (PCP). Here, we examined the effects of antipsychotics, reported to exert dual 5-HT(1A)/D(2) actions, on PCP-induced social interaction deficits. Drugs were administered daily for 3 days in combination with either vehicle or PCP (2.5mg/kg, SC) and social interaction was measured on the last day of drug treatment. Pairs of unfamiliar rats receiving the same treatment were placed in a large open field for 10 min and the number of social behaviors were scored. The results indicate that: (1) PCP significantly reduced social interaction by over 50% compared with vehicle-treated controls; (2) haloperidol (0.0025-0.16 mg/kg, SC) and clozapine (0.04-10mg/kg, IP) did not reverse PCP-induced social interaction deficits; (3) the substituted benzamide remoxipride reversed PCP-induced deficits at 0.63 and 2.5mg/kg (4) the 5-HT(1A) agonist 8-OH-DPAT was inactive (at 0.01-0.63 mg/kg, SC); (5) among compounds reported to exert dual 5-HT(1A)/D(2) actions, SSR181507 (at 0.16 mg/kg, SC) and aripiprazole (at 0.04 and 0.16 mg/kg, IP), but not ziprasidone (0.04-2.5mg/kg, IP), SLV313 (0.0025-0.16 mg/kg, SC) or bifeprunox (0.01-0.63 mg/kg, IP), significantly reversed PCP-induced social interaction deficits; and (6) the 5-HT(1A) receptor antagonist WAY100635 blocked the effects of SSR181507 and aripiprazole. These findings indicate that the balance of activity at 5-HT(1A) and D(2) receptors profoundly influences the activity of antipsychotics in this model of social withdrawal, and their potential benefit on at least some of the negative symptoms of schizophrenia.  相似文献   

11.
A new generation of proven or potential antipsychotics, including aripiprazole, bifeprunox, SSR181507 and SLV313, exhibit agonist actions at serotonin 5-HT1A receptors, but little comparative data are available on their pharmacological profiles. Here, we compared in mice the in vivo antipsychotic-like vs cataleptogenic activities of these compounds with those of drugs that exhibit little interaction at 5-HT1A receptors, such as haloperidol, olanzapine and risperidone. All the drugs dose-dependently reduced apomorphine-induced climbing or sniffing and, with the exception of ziprasidone, produced complete suppression of these responses. In the bar catalepsy test, when administered alone, haloperidol, olanzapine and risperidone produced marked catalepsy, whereas, at doses up to 40 mg/kg, aripiprazole, SLV313, SSR181507, and sarizotan produced little or no catalepsy. The latter compounds, therefore, displayed a large separation between doses with 'antipsychotic-like' and those with cataleptogenic actions. When 5-HT1A receptors were blocked by pretreatment with WAY100635 (2.5 mg/kg, s.c.), cataleptogenic properties of SSR181507 and sarizotan were unmasked, and the catalepsy induced by bifeprunox was enhanced. In the case of aripiprazole and SLV313, although WAY100635 produced upward shifts in their dose-response, the magnitude of catalepsy appeared to reach an asymptotic plateau, suggesting that other mechanisms may be involved in their low cataleptogenic liability. The present data confirm that 5-HT1A receptor activation reduces or even completely prevents the cataleptogenic potential of novel antipsychotic agents. Further, they indicate that the balance of affinity and/or efficacy between D2 and 5-HT1A receptors profoundly influences their pharmacological activities, and will likely impact their therapeutic profiles.  相似文献   

12.
The atypical antipsychotic bifeprunox is a partial dopamine D(2) and 5-HT(1A) receptor agonist. Using in-vivo electrophysiological and behavioural paradigms in the rat, the effects of bifeprunox and aripiprazole were assessed on ventral tegmental area (VTA) dopamine and dorsal raphe serotonin (5-HT) cell activity and on foot shock-induced ultrasonic vocalisation (USV). In VTA, bifeprunox and aripiprazole decreased (by 20-50%) firing of dopamine neurons. Interestingly, bursting activity was markedly reduced (by 70-100%), bursting being associated with a larger synaptic dopamine release than single spike firing. Both ligands reduced inhibition of firing rate induced by the full dopamine receptor agonist apomorphine, whereas the D(2) receptor antagonist haloperidol prevented these inhibitory effects, confirming partial D(2)-like agonistic properties. On 5-HT neurons, bifeprunox was more potent than aripiprazole to suppress firing activity. The 5-HT(1A) receptor antagonist WAY-100,635 prevented their effects. In the USV test of anxiolytic-like activity, bifeprunox had higher potency than aripiprazole to reduce vocalisations. Both WAY-100,635 and haloperidol reversed the effects of both agonists. The present in-vivo study shows that bifeprunox is a potent partial D(2)-like and 5-HT(1A) receptor agonist reducing preferentially the phasic activity of dopamine neurons. Thus, bifeprunox would be expected to be an effective compound against positive and negative symptoms of schizophrenia.  相似文献   

13.
Combining antagonist/partial agonist activity at dopamine D2 and agonist activity at serotonin 5-HT1A receptors is one of the approaches that has recently been chosen to develop new generation antipsychotics, including bifeprunox, SSR181507 and SLV313. There have been, however, few comparative data on their pharmacological profiles. Here, we have directly compared a wide array of these novel dopamine D2/5-HT1A and conventional antipsychotics in rat models predictive of antipsychotic activity. Potency of antipsychotics to antagonize conditioned avoidance, methylphenidate-induced behaviour and D-amphetamine-induced hyperlocomotion correlated with their affinity at dopamine D2 receptors. Potency against ketamine-induced hyperlocomotion was independent of affinity at dopamine D2 or 5-HT1A receptors. Propensity to induce catalepsy, predictive of occurrence of extrapyramidal side effects, was inversely related to affinity at 5-HT1A receptors. As a result, preferential D2/5-HT1A antipsychotics displayed a large separation between doses producing 'antipsychotic-like' vs. cataleptogenic actions. These data support the contention that 5-HT1A receptor activation greatly reduces or prevents the cataleptogenic potential of novel antipsychotics. They also emphasize that interactions at 5-HT1A and D2 receptors, and the nature of effects (antagonism or partial agonism) at the latter has a profound influence on pharmacological activities, and is likely to affect therapeutic profiles.  相似文献   

14.
Antipsychotics constitute efficacious augmenting agents in the treatment of anxiety disorders, including refractory obsessive-compulsive disorder. We examined the effects of 36 compounds, including typical, atypical and novel antipsychotics with dual dopamine D2/5-hydroxytryptamine 1A (D2/5-HT1A) actions on marble burying behavior in mice, a putative preclinical test for anxiety disorders. One hour after drug administration, male NMRI mice were placed individually in cages containing 20 marbles, and the total number of marbles buried after 30 min was counted. The selective serotonin reuptake inhibitors, citalopram (2.5-40 mg/kg), fluoxetine (2.5-10 mg/kg) and the benzodiazepine diazepam (2.5-10 mg/kg), reduced the number of buried marbles. The atypical antipsychotic, clozapine (0.16-10 mg/kg), but not its congener olanzapine, was effective in this test. Haloperidol, a typical antipsychotic, also reduced the number of buried marbles, albeit not in a dose-dependent manner. The atypical risperidone was partially active (0.16-0.63 mg/kg), as was the benzamide derivative, amisulpride, albeit at high (10-40 mg/kg) doses. Among the 'third-generation' antipsychotics possessing combined D2/5-HT1A properties, bifeprunox was active at 0.0025 mg/kg, whereas SLV313 and aripiprazole were active only at the highest doses (2.5 and 10 mg/kg, respectively). SSR181507, F15063 and the antidyskinetic agent, sarizotan, were without any effect. Among a series of receptor subtype-selective ligands, only the 5-HT1A agonist, (+)-8-OH-DPAT (0.63-2.5 mg/kg) and the 5-HT2A/2B/2C antagonist, ritanserin (0.63-2.5 mg/kg) were active. Among novel antipsychotics with dual D2/5-HT1A properties, only bifeprunox was able to potently reduce the number of buried marbles. Inhibition of marble burying behavior may result from the interplay of several receptor systems, including 5-HT2 receptor blockade, dopamine D2 partial agonism and serotonin 5-HT1A agonism.  相似文献   

15.
SSR181507, a dopamine D2 receptor antagonist/partial agonist and 5-HT1A receptor agonist, is active in animal models of schizophrenia. Furthermore, it shows activity in several anxiety and/or depression models (Depoortere et al. 2003). Presently, we sought to further characterize the latter two activities in rats, using a step-down passive avoidance procedure, a shock-induced ultrasonic vocalization (UV) test in adult subjects and a social interaction test.SSR181507 (0.3 & 1 mg/kg ip), but not the atypical antipsychotics clozapine and olanzapine, decreased the latency time to step-down from a “safety” platform. Effects of SSR181507 were reversed by the selective 5-HT1A receptor antagonist SL88.0338. SSR181507 also reduced UV (0.3 & 1 mg/kg ip), an effect not reversed by SL88.0338, and observed with olanzapine, haloperidol, fluoxetine and the 5-HT1A receptor agonists 8-OH-DPAT and buspirone, but not diazepam. Furthermore, SSR181507 remained active following 3 weeks of administration (1 mg/kg ip, once daily) in the UV test. Lastly, SSR181507 (3 mg/kg ip) potentiated social interaction, an effect shared by diazepam and buspirone, but not by olanzapine, clozapine, haloperidol and 8-OH-DPAT.These data further strengthen previous findings that the putative atypical antipsychotic SSR181507 has mixed antidepressant and anxiolytic activities.  相似文献   

16.
Aripiprazole is a dopamine D/D3 and serotonin 5-HT1A receptor partial agonist which is approved for treatment of schizophrenia. We evaluated the pharmacological properties of aripiprazole, dopamine D2 receptor partial agonists and antipsychotics using forskolin-stimulated cAMP accumulation in cells expressing human dopamine D2 and D3 receptors. In cells expressing high densities of D2 receptor with high sensitivity for dopamine, the maximal agonist effects of partial agonists were higher than in cells expressing low densities of D2 receptor with low sensitivity for dopamine. Aripiprazole's intrinsic activities at D2 and D9 receptors were lower than those observed with partial agonists (terguride, bifeprunox, OPC-4392 and (-)-3-PPP), which demonstrated clinically suboptimal improvement of positive symptoms of schizophrenia patients, and higher than that of SDZ 208-912, which demonstrated incidence of extrapyramidal symptoms similar to haloperidol. Aripiprazole's appropriate intrinsic activities at D2 and D: receptors may contribute to desired results in a clinical profile. Antipsychotics (risperidone, olanzapine, amisulpride, sulpiride and perphenazine) which displayed antidepressive effects in schizophrenia patients behaved as preferential antagonists in cells expressing D2 receptors compared to cells expressing D3 receptors. Preferential antagonism at dopamine D2 receptors may play a role in the antidepressive effects of these antipsychotics.  相似文献   

17.
This study examined the role of dopamine D3 receptors in the stimulus generalization produced by 7-OH-DPAT and PD 128907 in rats trained to discriminate cocaine from saline. Twelve male Sprague-Dawley rats were trained to discriminate cocaine (10 mg/kg) from saline in a two-choice operant procedure using a FR20 schedule of water reinforcement. Stimulus generalization tests were administered with the D3-preferring agonists (+/-)-7-OH-DPAT (0.01-0.3 mg/kg), (+)-7-OH-DPAT (0.01-0.3 mg/kg), and PD 128907 (0.01-0.3 mg/kg), and the selective D2 agonist PNU-39156 (0.01-0.3 mg/kg). Complete generalization to cocaine was observed with (+/-)-7-OH-DPAT at doses that markedly suppressed response rate. Only partial stimulus generalization was observed with (+)-7-OH-DPAT and PD 128907 when these compounds were administered intraperitoneally, although subcutaneous injections of these compounds produced complete substitution. Response rate was also significantly reduced by these compounds. The selective D2 agonist, PNU-91356 also fully substituted for the cocaine cue and suppressed response rate in a dose-dependent manner. To ascertain the importance of D3 receptor actions in the stimulus generalization produced by (+/-)-7-OH-DPAT (0.1 mg/kg) and PD-128907 (0.3 mg/kg), the fairly selective D3 antagonist, PNU-99194A (2.5-20 mg/kg) was also tested in combination with these compounds. Although PNU-99194A partially attenuated the stimulus generalization produced by (+/-)-7-OH-DPAT, it failed to block PD-128907 substitution for cocaine. These results indicate at least some involvement of D3 receptors in the stimulus effects of (+/-)-7-OH-DPAT, although further investigations are clearly warranted. The present results also suggest that the cue properties of cocaine may be dissociated from the locomotor activating effects of this drug, because D3/D2 receptor agonists suppress locomotor activity but produce stimulus generalization to cocaine.  相似文献   

18.
The pharmacology of aplindore (DAB-452) was characterized in CHO-K1 cells stably transfected with the human dopamine D(2) receptor short isoform (CHO-D(2s)) and in a behavioral model for post-synaptic agonism in rats. In [(3)H]-spiperone competition binding studies, aplindore showed high affinity for dopamine D(2) and D(3) receptors and low affinity for the dopamine D(4), serotonin (5-HT)(1A), 5-HT(2) receptors and the alpha1-adrenoceptor. The high potency partial agonist activity of aplindore was demonstrated in [(35)S]guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, extracellular signal-regulated kinase (ERK)-phosphorylation and intracellular calcium flux assay using fluorometric plate reader ([Ca(2+)](i)-FLIPR) format. The [Ca(2+)](i)-FLIPR assay was conducted with CHO-D(2S) receptor cells also stably expressing chimeric G(alphaq/o)-proteins. In all assay modalities, the potencies and intrinsic activities of aplindore were lower than dopamine and higher than aripiprazole. In contrast to the [(35)S]GTPgammaS binding and ERK-phosphorylation assays, the [Ca(2+)](i)-FLIPR assay was able to detect the low partial agonist activity of SDZ 208-912. In unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, aplindore induced contralateral turning, which was blocked by the dopamine D(2) receptor antagonist raclopride. The dopamine D(2) receptor selective partial agonist profile of aplindore suggests that it should be effective for the treatment of dopaminergic-based disorders, such as schizophrenia and Parkinson's disease.  相似文献   

19.
This study aimed to explore strain and species differences in the involvement of 5-HT1A receptors in the action of antipsychotic drugs, using prepulse inhibition (PPI), a model of sensory processing which is deficient in schizophrenia patients. We used automated startle boxes to compare the effect of the 5-HT1A receptor agonist, (+/-)-8-hydroxy-dipropyl-amino-tetralin (8-OH-DPAT), on PPI in three mouse strains. Balb/c mice were then pretreated with antipsychotics, treated with 8-OH-DPAT or saline, and tested for PPI. 8-OH-DPAT treatment dose dependently increased PPI in Balb/c mice, but had less effect in 129Sv and C57Bl/6 mice. In Balb/c mice, the effect of 8-OH-DPAT was blocked by the typical antipsychotic and dopamine D2 receptor antagonist, haloperidol and the third generation antipsychotic, aripiprazole, which has activity at both 5-HT1A and dopamine D2 receptors. The atypical antipsychotics, clozapine, olanzapine and risperidone, had lesser effects. Similar to our earlier studies in rats, the present PPI results suggest that 5-HT1A receptors are involved in the action of some antipsychotic drugs in mice. Despite strain and species differences in the magnitude and direction of the effect of 8-OH-DPAT, downstream dopamine D2 receptor activation seems to be an important mediator. These comparative results allow a theoretical framework of receptor interactions, which may guide further studies on the involvement of 5-HT1A receptors in schizophrenia.  相似文献   

20.
RATIONALE: The dopamine (DA) D3/2 agonist 7-OH-DPAT has been shown to attenuate the behavioral effects of the mu agonist morphine as well as the development of morphine tolerance. OBJECTIVES: To evaluate the effects of DA D3/2 agonists [7-OH-DPAT, (+)-PD128,907, quinelorane, (-)-quinpirole], a D1 agonist (SKF38393), a D1 antagonist [(+)-SCH23390], a DA antagonist (spiperone), and an indirect DA agonist (cocaine) on the antinociceptive effects of kappa agonists (spiradoline, U69,593, bremazocine) as well as the effects of D3/2 agonists on the diuretic effects of spiradoline. METHODS: Antinociception was determined using a warm water (50-55 degrees C) tail-withdrawal procedure and urine output was collected over a 2-h interval. RESULTS: The antinociceptive effects produced by the kappa agonists varied with the intensity of the nociceptive stimulus (water), as maximal or near maximal effects were obtained with spiradoline at 55 degrees C, U69,593 at 52 degrees C, and bremazocine at 50 degrees C water. 7-OH-DPAT produced a dose-dependent attenuation of the antinociceptive effects of spiradoline, U69,593, and bremazocine. Spiperone completely reversed the effects of 7-OH-DPAT on spiradoline antinociception. (+)-PD128,907 and quinelorane, but not (-)-quinpirole or the other DAergic agents examined, attenuated the antinociceptive effects of spiradoline in a dose- and time-dependent manner. The diuretic effects of spiradoline were attenuated by 7-OH-DPAT, (+)-PD128,907, quinelorane, and (-)-quinpirole, and this attenuation was reversed by spiperone. CONCLUSIONS: The present study demonstrated that some D3/2 agonists can modulate both the antinociceptive and diuretic effects of kappa agonists. These modulatory actions are similar to those obtained against the effects of mu agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号