首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMPA/kainate receptor-mediated excitotoxicity is believed to play a pathogenic role in amyotrophic lateral sclerosis. To further characterize the mechanisms involved in AMPA/kainate receptor-mediated motoneuron injury, we investigated the influence of spinal glial cells on kainate-induced motoneuron death in vitro. A motoneuron-enriched neuronal population was obtained from embryonic mouse spinal cord by metrizamide density centrifugation. This population was cultured either on a pre-established glial feeder layer of ventral spinal origin (coculture) or in glia-free conditions (monoculture). Glial feeder layers significantly enhanced basal survival of neurons, and supported neuronal differentiation as judged by neuronal morphology and expression of the motoneuron markers peripherin and SMI-32. Neuronal vulnerability to kainate was two- to three-fold higher in coculture than in monoculture, and increased significantly with time in coculture. The effects of glial feeder layers on neuronal basal survival, differentiation and kainate vulnerability were not mimicked by conditioned medium from glial cells. The increase in neuronal kainate vulnerability with time in coculture was associated with a marked rise in the proportion of cocultured neurons possessing Ca2+-permeable AMPA/kainate receptors, as determined by kainate-activated Co2+-uptake. Neurons in monoculture were unstained by kainate-activated Co2+-uptake. Neurons were immunoreactive to specific antibodies against the AMPA receptor subunits GluR1 and GluR2 both in monoculture and coculture. This study indicates that motoneuron differentiation in coculture is associated with increased vulnerability to kainate and increased expression of Ca2+-permeable AMPA/kainate receptors. In this paradigm glial cells support basal survival and differentiation of neurons, but potentiate kainate-induced neuronal death.  相似文献   

2.
Glutamate receptors guide the proliferation, migration, and differentiation of glial cells. Here, we characterize AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) and NMDA receptor protein expression and function and mRNA expression in hippocampal glial cultures. By immunocytochemistry, GluR2 (the subunit that limits the Ca(2+) permeability of AMPA receptors) exhibited prominent labeling in hippocampal glial cultures. Double-labeling of GluR2 with GFAP and with A2B5 revealed GluR2 subunit expression on type-1 and type-2 astrocyte lineage cells. GluR1 subunit expression was more prominent in type-1 than in type-2 astrocytes. To characterize functional properties of glutamate receptors expressed in cultured hippocampal astrocytes, we performed whole-cell patch clamp recording. Application of L-glutamate, AMPA, and kainate, but not NMDA, to small, rounded cells (morphologically identified as type-2 astrocytes) elicited inward currents which were blocked by the AMPA/kainate antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX). Cyclothiazide potentiated AMPA- and kainate-elicited currents, indicative of AMPA-preferring receptors. Current voltage analysis indicated that type-2 astrocyte AMPA receptors were electrically linear, indicative of GluR2-containing, Ca(2+)-impermeable AMPA receptors. By Northern blot analysis, GluR1 mRNA was highest in astrocyte cultures from cerebellum and hippocampus and moderate in astrocyte cultures from neocortex and striatum. GluR3 mRNA was detectable in astrocyte cultures from cerebellum and neocortex. GluR2 and NR1 mRNA expression were not detected in astrocytes cultured from any brain region examined. In situ hybridization studies showed wide expression of GluR1 mRNA in cultured astrocytes; GluR2 and GluR3 mRNAs were near background levels. Thus, cultured type-2 astrocytes express functional AMPA receptors in a cell-specific and region-specific manner, consistent with their role in neuronal-glial communication.  相似文献   

3.
4.
5.
We used long-range organotypic cultures of auditory nuclei in the chick hindbrain to test the development of glutamate receptor activity in auditory neurons growing in a tissue environment that includes early deprivation of peripheral glutamatergic input, subsequent to removal of the otocyst. Cultures started at embryonic day (E)5, and lasted from 6 h to 15 days. Neuronal migration, clustering and axonal extension from the nucleus magnocellularis (NM) to the nucleus laminaris (NL) partially resembled events in vivo . However, the distinctive laminar organization of the NL was not observed. Glutamate receptor (GluR) activity was tested with optical recordings of intracellular Ca2+ in the NM. α-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)/kainate receptors had Ca2+ responses with a time course similar to that in control slices. Peak amplitude, however, was significantly lower. N -methyl- d -aspartate (NMDA)-mediated Ca2+ responses were higher in 2-day cultures (E5 + 2d) than in E7 explant controls, returning later to control values. Metabotropic GluRs did not elicit Ca2+ responses at standard agonist doses. Blocking NMDA or AMPA/kainate receptors with specific antagonists for 10 days in culture did not limit neuronal survival. Blocking metabotropic GluRs resulted in complete neuronal loss. Thus, ionotropic GluRs are not required for NM neuronal survival. However, their activity during development is affected when neurons grow in an in vitro environment that includes prevention of arrival of peripheral glutamatergic input.  相似文献   

6.
7.
Damage to oligodendrocytes caused by glutamate release contributes to mental or physical handicap in periventricular leukomalacia, spinal cord injury, multiple sclerosis, and stroke, and has been attributed to activation of AMPA/kainate receptors. However, glutamate also activates unusual NMDA receptors in oligodendrocytes, which can generate an ion influx even at the resting potential in a physiological [Mg2+]. Here, we show that the clinically licensed NMDA receptor antagonist memantine blocks oligodendrocyte NMDA receptors at concentrations achieved therapeutically. Simulated ischaemia released glutamate which activated NMDA receptors, as well as AMPA/kainate receptors, on mature and precursor oligodendrocytes. Although blocking AMPA/kainate receptors alone during ischaemia had no effect, combining memantine with an AMPA/kainate receptor blocker, or applying the NMDA blocker MK-801 alone, improved recovery of the action potential in myelinated axons after the ischaemia. These data suggest NMDA receptor blockers as a potentially useful treatment for some white matter diseases and define conditions under which these blockers may be useful therapeutically. Our results highlight the importance of developing new antagonists selective for oligodendrocyte NMDA receptors based on their difference in subunit structure from most neuronal NMDA receptors.  相似文献   

8.
We determined whether embryonic stem (ES) cells could provide a model system for examining neuronal death mediated by glutamate receptors. Although limited evidence indicates that normal neurons can be derived from mouse ES cells, there have been no studies examining pathophysiological responses in mouse ES cell systems. Mouse ES cells, induced down a neural lineage by retinoic acid (RA), were found to have enhanced long-term survival when plated onto a layer of cultured mouse cortical glial cells. In these conditions, the ES cells differentiated into neural cells that appeared normal morphologically and displayed normal features of immunoreactivity when tested for neuron-specific elements. Varying the culture medium generated cultures of mixed neuronal/glial cells or enriched in oligodendrocytes. These cultures were viable for at least four weeks. Real-time PCR analysis of N-methyl-D-aspartate (NMDA) receptor subunits revealed an appropriate age-in-vitro dependent pattern of expression. Neurons derived from ES cells were vulnerable to death induced by a 24-h exposure to the selective glutamate receptor agonists NMDA, kainate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). This vulnerability to agonist-induced death increased with age in vitro, and related closely to expression of receptor subunits, as it does in cultured primary neurons. Experiments with selective receptor antagonists showed that glutamate receptors mediated the NMDA- and kainate-induced death. Neuronal differentiated ES cells therefore exhibited an excitotoxic response resembling that displayed by central nervous system (CNS) neurons. Thus, ES cells, which are very amenable to genetic manipulation, provide a valid system for studying glutamate receptor-mediated toxicity at the molecular level.  相似文献   

9.
Cultured astrocytes from neonatal rat cerebral hemispheres are depolarized by the excitatory neurotransmitter glutamate. In this study we have used selective agonists of different neuronal glutamate receptor subtypes, namely, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate type, to characterize pharmacologically the glutamate receptor in astrocytes. The agonists of the neuronal quisqualate receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) and quisqualate, depolarized the membrane. Kainate, an agonist of the neuronal kainate receptor, depolarized astrocytes more effectively than quisqualate. Combined application of kainate and quisqualate depolarized astrocytes to a level which was intermediate to that evoked by quisqualate and kainate individually. Agonists activating the neuronal NMDA receptor, namely NMDA and quinolinate, were ineffective. Application of NMDA did not alter the membrane potential even in combination with glycine or in Mg2+-free solution, conditions under which neuronal NMDA receptor activation is facilitated. The nonselective agonists L-cysteate, L-homocysteate, and beta-N-oxalylamino-L-alanine (BOAA) mimicked the effect of glutamate. Dihydrokainate, a blocker of glutamate uptake, did not, and several antagonists of neuronal glutamate receptors only slightly affect the glutamate response. These findings suggest that astrocytes express one type of glutamate receptor which is activated by both kainate and quisqualate, lending further support to the notion that cultured astrocytes express excitatory amino acid receptors which have some pharmacological similarities to their neuronal counterparts.  相似文献   

10.
Initial studies found glutamate injury to murine spinal cultures (14–17 days in vitro) to reflect contributions of both NMDA and AMPA/kainate receptors. Subsequent experiments found the spinal cultures to be more sensitive than cortical cultures to injury from prolonged low level kainate exposures, and, unlike cortical cultures, to be significantly damaged by relatively brief (30–60 min) kainate exposures. This rapidly triggered kainate damage to spinal neurons is Ca2+-dependent. Also, more than 40% of spinal neurons (in comparison to about 15% of cortical neurons) are subject to kainate-activated Co2+ uptake (CoPsu2+ (+) neurons), a histochemical technique that labels neurons with Ca2+-permeable AMPA/kainate channels. These spinal Co2+ (+) neurons are very sensitive to Ca2+-dependent kainate injury, and show greater kainate-induced elevations in intracellular Ca2+ concentrations ([Ca2+]i) than other spinal neurons during low level kainate exposures. Thus, the heightened vulnerability of spinal neurons to kainate toxicity may at least in part reflect the large proportion that possess Ca2+ permeable AMPA/kainate channels, permitting receptor activation to trigger rapid Ca2+ influx and overwhelm the cells Ca2+ homeostatic capabilities.  相似文献   

11.
Recently, we could demonstrate that 'complex' glial cells in mouse hippocampal slices express glutamate receptor channels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate subtypes. In the present study, we further characterized this glial receptor. Since voltage-clamp control is imperfect and diffusion barriers hinder the quantitative analysis of the receptor currents in situ , the patch-clamp technique was applied to glial cells acutely isolated from the mouse hippocampal CA1 stratum radiatum subregion. A concentration-clamp technique was used which enabled very fast exchange of the extracellular solutions. Thus, it was possible to characterize the transient receptor currents with high time resolution. Application of L-glutamate, AMPA and L-homocysteate induced rapidly activating and fast desensitizing receptor currents in the suspended glial cells. In contrast, kainate induced non-desensitizing currents. The corresponding dose-response curve revealed a half-maximum of current activation at 350 μM. The current/voltage relationship of the kainate-evoked response was linear, with a reversal potential at ∼9 mV. Analysis of the reversal potential in solutions containing high concentrations of CaCl2 confirmed earlier in situ data by demonstrating significant Ca2+ permeability of the glial glutamate receptor channels in the hippocampus. The kainate-induced receptor currents were markedly increased by cyclothiazide, a substance which selectively potentiates glutamate receptors of the AMPA subtype. We conclude that glial cells of the juvenile hippocampus mainly express heteromeric high-affinity AMPA receptors. Most probably, the receptor channels are assembled from the low Ca2+-permeable glutamate receptor-2 subunit together with Ca2+-permeable AMPA-preferring subunits.  相似文献   

12.
Release of [3H]arachidonic acid mediated by excitatory amino acid (EAA) receptors was investigated from prelabelled primary cultures of hippocampal neurons and astroglial cells. Treatment with N-methyl-D-aspartate (NMDA), quisqualate (QA) and kainate resulted in age- and dose-dependent stimulation of [3H]arachidonic acid release. During development, the maximum response for NMDA was observed relatively earlier (at 7 days) than those for QA and kainate (at 14 days) in the hippocampal neuronal cultures. The half maximal effects were obtained at about 15 microM NMDA at all ages studied and about 0.5 microM QA at 14 and 20 days. At optimum concentrations NMDA- and QA-induced releases were additive. Unlike with neurons, treatment with all the 3 EAA receptor agonists, NMDA, QA and kainate, had no significant effect on [3H]arachidonate release in hippocampal astroglial cells. In cultured 14-day-old neurons, the increases in NMDA- and QA-mediated [3H]arachidonic acid release were completely blocked by the NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid, and the ionotropic QA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. But the iontropic QA receptor agonist alpha-amino-3-hydroxy-5-methyl-isoxazole-4- propionic acid (AMPA) had no significant effect on [3H]arachidonate release, indicating that interaction between ionotropic QA and metabolotropic QA receptors may be essential for optimal QA-mediated arachidonic acid release. At physiological concentrations of Mg2+ (1.2 mM), AMPA was found to potentiate NMDA-induced release of [3H]arachidonic acid; the effect appeared to be related to a removal of Mg2+ blockade mediated by mild depolarisation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Steroid hormones systematically affect numerous neuronal targets, thus influencing, in a permanent or a transitory manner, the way the brain reacts to external and internal stimuli. The hippocampus is an important brain region for learning and memory and the glutamatergic intrahippocampal pathway plays a major role in performing such functions. We applied quantitative in vitro receptor autoradiography to examine how the in vivo hormone milieu affects the densities of AMPA, kainate, and NMDA receptors in the hippocampus of adult male rats and females in estrus and diestrus. All three examined receptor types presented significant gender-specific differences in their densities. The hippocampus of male rats contains significantly more AMPA, kainate, and NMDA receptors than that of female rats. Female rats in diestrus have significantly higher AMPA receptor densities than female rats in estrus. AMPA changes occurred to the same extent in CA1-3 and in the dentate gyrus. Significant differences in the densities of NMDA receptors were observed in the CA1-3 regions, whereas kainate receptor differences were restricted to the CA1 region. These results further support that steroid hormones, through their modulation of AMPA and NMDA receptors, may be involved in the control of synaptic efficacy and, therefore, influence learning and memory.  相似文献   

14.
The developmental expression of calcium (Ca2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non-N-methyl-D-aspartate (non-NMDA) receptors. At a concentration of 500 μM, AMPA was found to stimulate cobalt uptake only late in development, resulting in staining of 2.7% ± 0.3% of the neurons maintained in culture for 12 days in vitro (DIV). When AMPA receptor desensitization was blocked with 50 μM cyclothiazide, the developmental profile of cobalt uptake mediated by 25 μM AMPA changed dramatically. The cobalt staining now appeared in young cultures (5 DIV), and the percentage of stained cells increased from 3.4% ± 0.2% at 5 DIV to 21.7% ± 1.6% at 12 DIV. The effect of 200 μM kainate was similar to that seen with 25 μM AMPA plus 50 μM cyclothiazide, resulting in 17.7% ± 0.3% stained neurons at 12 DIV. The cobalt uptake was specific to AMPA and kainate receptors because NMDA receptors and voltage-gated calcium channels were found not to mediate any cobalt staining. In addition, 10 μM 6-nitro-7-sulphamoylbenzo- [f]-quinoxaline-2,3-dione (NBQX) was able to prevent all staining at 5 and 8 DIV and most of the staining at 12 DIV, indicating that the non-NMDA ionotropic glutamate receptors are involved in cobalt uptake into the neurons. The AMPA receptor-selective antagonist GYKI 53655 was used to differentiate between cobalt influx through AMPA- or kainate-preferring receptors. After pretreatment with concanavalin A (con A), an inhibitor of kainate receptor desensitization, cobalt uptake was assessed after stimulation by 200 μM kainate in the presence of 25 μM GYKI 53655. No cobalt staining was observed under these conditions, indicating that most if not all of the cobalt influx induced by kainate was mediated through AMPA receptor channels. J. Neurosci. Res. 54:273–281, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Ionotropic glutamate receptors mediate fast forms of excitatory synaptic transmission in mature neurons and may play critical roles in neuronal development. However, the developmental stage at which neuronal cells begin to express functional receptors and their roles in lineage progression remain unclear. In the present study, neural precursor cells were isolated from the cortical neuroepithelium of embryonic day 13 rats, and rapidly expanded in serum-free medium in response to basic fibroblast growth factor. RT-PCR revealed the presence of mRNAs encoding AMPA(A), AMPA(C), KA(1), KA(2), NMDA(1), and NMDA(2D) subunits after 3 days in culture. The functional expression of AMPA/kainate and NMDA receptors was investigated using Ca(2+) imaging and whole-cell patch-clamp recording techniques in cells pulse-labeled with bromodeoxyuridine (BrdU) for 1-4 hr. The recorded cells were then double-immunostained for BrdU incorporation and neuron-specific beta-tubulin (TuJ1). The results show that AMPA/kainate and NMDA induced increases in cytosolic Ca(2+) and inward currents only in differentiating neurons. In contrast, proliferating (BrdU(+)TuJ1(-)) cells failed to respond to any ionotropic glutamate receptor agonists. Interestingly, Ca(2+) imaging revealed that a subpopulation of BrdU(+)TuJ1(+) cells also responded to AMPA, indicating the emergence of functional ionotropic AMPA/kainate receptors during terminal cell division and the earliest commitment to neuronal cell lineage. These in vitro results were supported by flow cytometric sorting of AMPA-responsive cells pulse-labeled with BrdU for 1 hr in vivo, which revealed that functional AMPA receptors appear in BrdU(+)TuJ1(+) cells under physiological conditions and may play a role in terminal cell division.  相似文献   

16.
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N‐methyl‐d ‐aspartate (NMDA) receptors, (2) toxicity mediated by α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R,10S)‐(+)‐5‐methyl‐10,11‐dihydro‐5H‐dibenzo[a,d]cyclohepten‐5,10‐imine (MK‐801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1‐(4‐Aminophenyl)‐3‐methylcarbamyl‐4‐methyl‐3,4‐dihydro‐7,8‐ethylenedioxy‐5H‐2,3benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate‐ and domoate‐mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK‐801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures. J. Neurosci. Res. 55:208–217, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Systemic administration of the potassium channel blocker 4-aminopyridine (4-AP) elicits acute convulsions. Synchronized tonic–clonic activity develops during the first hour after the treatment. However, subsequent chronic spontaneous seizures do not appear which suggests changes in neuronal excitability. The aim of our present work was to evaluate alterations in the glutamatergic transmission in the somatosensory cortex of rats following daily, brief convulsions elicited by 4-AP treatment. Changes in general neuronal excitability and pharmacological sensitivity of glutamate receptors were tested in ex vivo electrophysiological experiments on brain slices. In parallel studies quantitative changes in subunit composition of glutamate receptors were determined with immunohistoblot technique, together with the analysis of kainate induced Co2+ uptake. The results of our coordinated electrophysiological, receptor-pharmacological and histoblot studies demonstrated that repeated, daily, short convulsions resulted in a significant decrease of the general excitability of the somatosensory cortex together with changes in ionotropic glutamate receptor subunits. The relative inhibitory effect of the AMPA receptor antagonist, however, did not change. The NMDA receptor antagonist exerted somewhat stronger effect in the slices from convulsing animals. 4-AP pretreatment resulted in the attenuation of kainate induced Co2+ uptake, which suggests either reduction in non-NMDA receptors numbers or reduction in their Ca2+ permeability. Repeated seizures decreased GluR1–4 AMPA receptor subunit levels in all cortical layers with a relaitve increase in GluR1 subunits. While the principle NR1 NMDA receptor subunit showed no significant change, the staining density of NR2A subunit increased. These changes in ionotropic glutamate receptors are consistent with reduced excitability at glutamatergic synapses following repeated 4-AP induced seizures.  相似文献   

18.
Addition of quisqualate (a heterocyclic analogue of glutamate) reduced [methyl-3H]thymidine incorporation and cell proliferation in primary cultures of rat cortical astrocytes. The inhibitory action of quisqualate was mimicked by glutamate and ibotenate, whereas kainate, N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) were inactive. These results suggest that activation of a specific class of excitatory amino acid receptors contributes to the regulation of growth and proliferation of glial cells in primary culture.  相似文献   

19.
OBJECTIVE: Multiple quantifiable biologic abnormalities have been localized to the hippocampus in schizophrenia. Alterations in glutamate-mediated transmission at N-methyl-D-aspartic acid (NMDA)-sensitive receptors in hippocampus have been implicated in the pathophysiology of the illness. The authors tested the hypothesis that glutamatergic transmission within and efferent from hippocampus is altered in schizophrenia. METHOD: The authors analyzed postmortem hippocampal tissue from individuals with schizophrenia and from healthy individuals. The tissue samples had been collected by two brain tissue banks, one in Maryland and the other in Melbourne, Australia. lonotropic receptor binding for the NMDA, kainate, and (3)H-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA) receptors was quantified by using usual radioligand techniques. In situ hybridization autoradiography was used to quantify mRNA for the NMDA receptor subunits NR1, NR2A, and NR2B. RESULTS: Ligand binding to the ionotropic glutamate receptors (NMDA, kainate, and AMPA) did not differ significantly overall or in any subregion between the schizophrenia tissue and the healthy comparison tissue. The only exception was AMPA receptor binding in hippocampal subregion CA2, which was slightly but significantly less in schizophrenia. However, the level of mRNA for the NMDA receptor subunits NR1 and NR2B was significantly different between groups; in several hippocampal subregions, the level of NR1 mRNA was lower and the level of NR2B mRNA higher in schizophrenia. CONCLUSIONS: Because the NR1 subunit of the NMDA receptor is critical to full receptor activity, a reduction of NR1 in hippocampus in schizophrenia suggests a functional impairment in glutamatergic transmission at the NMDA receptor, resulting in reduced glutamatergic transmission within and possibly efferent from the hippocampus in schizophrenia. This defect could underlie a hypoglutamatergic state in regions of limbic cortex, consistent with published results from other lines of research in schizophrenia.  相似文献   

20.
The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were therefore due to direct actions on glial cells. Glutamate-evoked responses were significantly reduced by the L-type Ca2+ channel blocker nimodipine, the group I/II metabotropic glutamate receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), and the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)2-amino-5-phosphonopentanoic acid (APV). However, glutamate-induced Ca2+ responses were not significantly reduced by the non-NMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). These results indicate that local application of glutamate increases intracellular Ca2+ levels in glial cells via the activation of L-type Ca2+ channels, NMDA receptors, and metabotropic glutamate receptors. Brief (1 s) tetanization of Schaffer collaterals produced increases in intracellular Ca2+ levels in glial cells that were dependent on the frequency of stimulation (> or =50 Hz) and on synaptic transmission (abolished by tetrodotoxin). These Ca2+ responses were also antagonized by the L-type Ca2+ channel blocker nimodipine and the metabotropic glutamate receptor antagonist MCPG. However, the non-NMDA receptor antagonist CNQX significantly reduced the Schaffer collateral-evoked Ca2+ responses, while the NMDA antagonist APV did not. Thus, these synaptically mediated Ca2+ responses in glial cells involve the activation of L-type Ca2+ channels, group I/II metabotropic glutamate receptors, and non-NMDA receptors. These findings indicate that increases in intracellular Ca2+ levels induced in glial cells by local glutamate application and by synaptic activity share similar mechanisms (activation of L-type Ca2+ channels and group I/II metabotropic glutamate receptors) but also have distinct components (NMDA vs. non-NMDA receptor activation, respectively). Therefore, neuron-glia interactions in rat hippocampus in situ involve multiple, complex Ca2+-mediated processes that may not be mimicked by local glutamate application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号