首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Rationale

Adult rats emit ultrasonic calls at around 22 and 50 kHz, which are often elicited by aversive and rewarding stimuli, respectively. Dopamine (DA) plays a role in aspects of both reward and aversion.

Objective

The purpose of this study is to investigate the effects of DA receptor subtype-selective agonists on 22- and 50-kHz call rates.

Methods

Ultrasonic calls were recorded in adult male rats that were initially screened with amphetamine to eliminate low 50-kHz callers. The remaining subjects were tested after acute intraperitoneal or subcutaneous injection of the following DA receptor-selective agonists and antagonists: A68930 (D1-like agonist), quinpirole (D2-like agonist), PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH 39166 (D1-like antagonist), L-741,626 (D2 antagonist), NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist). The indirect DA/noradrenaline agonist amphetamine served as a positive control.

Results

As expected, amphetamine strongly increased 50-kHz call rates. In contrast, D1-, D2-, and D3-selective DA receptor agonists, when given alone, inhibited calling; combinations of D1- and D2-like agonists also decreased call rate. Given alone, the D1-like and D3 antagonists significantly decreased call rate, with a similar trend for the D2 antagonist. Agonist–antagonist combinations also decreased calling. The D4 agonist and antagonist did not significantly affect 50-kHz call rates. Twenty-two-kilohertz calls occurred infrequently under all drug conditions.

Conclusion

Following systemic drug administration, tonic pharmacological activation of D1-like or D2-like DA receptors, either alone or in combination, does not appear sufficient to induce 50-kHz calls. Dopaminergic transmission through D1, D2, and D3 receptors appears necessary for spontaneous calling.  相似文献   

2.

Rationale

Elevated impulsivity is often observed in patients with depression. We recently found that milnacipran, an antidepressant and a serotonin/noradrenaline reuptake inhibitor, could enhance impulse control in rats. However, the neural mechanisms underlying the effects of milnacipran on impulsive action remain unclear. Milnacipran increases not only extracellular serotonin and noradrenaline but also dopamine specifically in the medial prefrontal cortex, which is one of the brain regions responsible for impulsive action.

Objectives

Our goal was to identify whether D1- and/or D2-like receptors in the infralimbic cortex (IL), the ventral portion of the medial prefrontal cortex, mediates the milnacipran-enhanced impulse control in a three-choice serial reaction time task.

Methods

The rats were bilaterally injected with SCH23390, a selective D1-like receptor antagonist (0.3 or 3 ng/side) or eticlopride, a selective D2-like receptor antagonist (0.3 or 1 μg/side) into the IL after acute intraperitoneal administration of milnacipran (10 mg/kg).

Results

Intra-IL SCH23390 injections reversed the milnacipran-enhanced impulse control, whereas injections of eticlopride into the IL failed to block the effects of milnacipran on impulsive action.

Conclusions

This is the first report that demonstrates a critical role for D1-like receptors of the IL in milnacipran-enhanced control of impulsive action.  相似文献   

3.

Rationale

Endogenous opioids could play a major role in the mesocorticolimbic dopamine (DA) responses to stress challenge. However, there is still no direct evidence of an influence of endogenous opioids on any of these responses.

Objective

We assessed whether and how endogenous opioids modulate fluctuations of mesocortical and mesoaccumbens DA tone in rats during a first experience with restraint stress.

Method

We first evaluated the effects of systemic naltrexone (NTRX) on DA outflow in the medial prefrontal cortex (mpFC) and in the nucleus accumbens (NAc) through dual-probe microdialysis. Second, we assessed the effect of perfusion, through reverse microdialysis, of direct DA receptor agonists in mpFC on NAc DA outflow in NTRX-pretreated stressed rats. Finally, we tested the effects of ventral tegmental area (VTA) perfusion of NTRX, the selective mu1 antagonist naloxonazine and the selective delta antagonist naltrindole on mpFC and NAc DA outflow in stressed rats, with multiple probe experiments.

Results

Systemic NTRX, at behaviorally effective doses, selectively prevented the increase of mpFC DA levels and the reduction of NAc DA levels observable during prolonged restraint. Local co-perfusion of D1 and D2 agonists in mpFC recovered inhibition of NAc DA in NTRX-pretreated restrained rats. Finally, intra-VTA perfusion of either NTRX or the mu1 antagonist, but not the delta antagonist, mimicked the effects of systemic NTRX.

Conclusion

During prolonged experience with a novel unavoidable/uncontrollable stressor, endogenous opioids, through stimulation of mu1 receptors in the VTA, elevate mesocortical DA tone thus reducing DA tone in the NAc DA.  相似文献   

4.

Rationale

Available neurochemical probes that lower brain dopamine (DA) levels in man are limited by their tolerability and efficacy. For instance, the acute lowering of brain tyrosine is well tolerated, but only modestly lowers brain DA levels. Modification of tyrosine depletion to robustly lower DA levels would provide a superior research probe.

Objectives

The objective of this study was to determine whether the subthreshold stimulation of presynaptic DA receptors would potentiate tyrosine depletion-induced effects on extracellular DA levels in the medial prefrontal cortex (MPFC) and striatum of the rat.

Methods

We administered quinpirole, a predominantly DA type 2 (D2R) receptor agonist, into the MPFC and striatum by reverse dialysis. A tyrosine- and phenylalanine-free neutral amino acid mixture [NAA(?)] IP was used to lower brain tyrosine levels. DA levels in the microdialysate were measured by HPLC with electrochemical detection.

Results

Quinpirole dose-dependently lowered DA levels in MPFC as well as in the striatum. NAA(?) alone transiently lowered DA levels (80 % baseline) in the striatum, but had no effect in MPFC. The co-administration of NAA(?) and a subthreshold concentration of quinpirole (6.25 nM) lowered DA levels (50 % baseline) in both the MPFC and striatum. This effect was blocked by the mixed D2R/D3R antagonist haloperidol at IP doses that on their own did not affect DA levels (10.0 nmol/kg in the MPFC and 0.10 nmol/kg in the striatum).

Conclusions

Pharmacological stimulation of inhibitory D2R receptors during tyrosine depletion markedly lowers the extracellular DA levels in the MPFC and striatum. The data suggest that combining tyrosine depletion with a low dose of a DA agonist should robustly lower brain regional DA levels in man.  相似文献   

5.

Rationale

Studies support differential roles of dopamine receptor subfamilies in the rewarding and reinforcing properties of drugs of abuse, including ethanol. However, the roles these receptor subfamilies play in ethanol reward are not fully delineated.

Objective

To examine the roles of dopamine receptor subfamilies in the acquisition of ethanol-induced conditioned place preference (CPP), we pretreated animals systemically with antagonist drugs selective for dopamine D1-like (SCH-23390) and D2-like (raclopride) receptors prior to ethanol conditioning trials.

Methods

Effects of raclopride (0–1.2 mg/kg) and SCH-23390 (0–0.3 mg/kg) on the acquisition of ethanol-induced CPP were examined in DBA/2J mice (experiments 1 and 2). Based on significant effects of SCH-23390, we then determined if SCH-23390 (0.3 mg/kg) produced a place preference on its own (experiment 3). To evaluate whether SCH-23390 impaired learning, we used a conditioned place aversion (CPA) paradigm and pretreated animals with SCH-23390 (0–0.3 mg/kg) before conditioning sessions with LiCl (experiment 4).

Results

Whereas raclopride (0–1.2 mg/kg) did not affect acquisition, SCH-23390 (0.1–0.3 mg/kg) impaired the development of ethanol-induced CPP. SCH-23390 (0.3 mg/kg) did not produce place preference when tested alone and SCH-23390 (0.1–0.3 mg/kg) did not perturb the acquisition of LiCl-induced CPA.

Conclusions

Our results support a role for dopamine D1-like but not D2-like receptors in ethanol’s unconditioned rewarding effect as indexed by CPP. Blockade of D1-like receptors did not affect aversive learning in this procedure.  相似文献   

6.

Rationale

We recently suggested that dopamine on D1-like receptors is involved in the activation of goal-directed responses and the level of response activation is “reboosted” on the basis of an evaluation process involving D2-like receptors assessing “response efficacy”. A main piece of evidence in support of this hypothesis was the observation of an “extinction mimicry” effect in the time course of licking bursts after dopamine D2-like receptor blockade in rats licking for sucrose.

Objectives

The aim of this study was to determine whether the pattern of licking observed with sucrose as a reward could be reproduced in rats licking for a different reward (0.9 % NaCl).

Materials and methods

We investigated the effects of the dopamine D1-like receptor antagonist SCH 23390 (0.01–0.04 mg/kg) and of the dopamine D2-like receptor antagonist raclopride (0.025–0.25 mg/kg) on the microstructure of licking for a 0.9 % NaCl solution in 12-h water-deprived rats in 30-min sessions.

Results

As previously observed with sucrose as a reward, raclopride reduced the size of licking bursts and produced on the burst number time course an “extinction mimicry” effect, while SCH 23390 reduced licking exclusively by reducing burst number.

Conclusions

These results are consistent with the proposed hypothesis and provide support to the use of the study of licking microstructure as a valid model not only for the investigation of the mechanisms governing ingestive behaviour but also for the investigation of the mechanisms underlying behavioural activation and the related evaluation processes.  相似文献   

7.

Rationale

Systemic amphetamine (AMPH) administration increases the rate of 50-kHz ultrasonic vocalizations (USVs) in adult rats and preferentially enhances the ‘trill’ subtype; these effects of AMPH critically depend on noradrenergic transmission, but the possible contributions of dopamine are unclear.

Objective

To assess the role of dopamine in 50-kHz USVs emitted drug-free and following systemic AMPH administration.

Methods

Adult male Long–Evans rats pre-selected for high AMPH-induced calling rates were tested with AMPH (1 mg/kg, intraperitoneal (IP)) and saline following pretreatment with the following dopamine receptor antagonists: SCH 23390 (0.005–0.02 mg/kg, subcutaneous (SC)), SCH 39166 (0.03–0.3 mg/kg, SC), haloperidol (0.1, 0.2 mg/kg, IP), sulpiride (20–80 mg/kg, SC), raclopride (0.1–0.5 mg/kg, SC), clozapine (4 mg/kg, SC), risperidone (0.5 mg/kg, SC), and pimozide (1 mg/kg, IP). The dopamine and noradrenaline reuptake inhibitors (GBR 12909 and nisoxetine, respectively) were also tested, alone and in combination.

Results

SCH 23390, SCH 39166, haloperidol, and raclopride dose-dependently inhibited vocalizations under AMPH and suppressed the proportion of trill calls. Sulpiride, however, had no discernable effect on call rate or profile, even at a high dose that reduced locomotor activity. Single doses of clozapine, risperidone, and pimozide all markedly decreased calling under saline and AMPH. Finally, GBR 12909 and nisoxetine failed to promote 50-kHz USVs detectably or alter the subtype profile, when tested alone or in combination.

Conclusions

The rate of 50-kHz USVs and the call subtype profile following systemic AMPH administration depends on dopaminergic neurotransmission through D1-like and D2-like receptors. However, inhibiting dopamine and/or noradrenaline reuptake appears insufficient to induce calling.  相似文献   

8.

Purpose

A novel PEGylated and heparinized magnetic iron oxide nano-platform (DNPH) was synthesized for simultaneous magnetic resonance imaging (MRI) and tumor targeting.

Methods

Starch-coated magnetic iron oxide nanoparticles (“D”) were crosslinked, aminated (DN) and then simultaneously PEGylated and heparinized with different feed ratios of PEG and heparin (DNPH1-4). DNPH products were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID). The magentic targeting of DNPH3, with appropriate amounts of conjugated PEG and heparin, in a mouse 9L-glioma subcutaneous tumor model was confirmed by magnetic resonance imaging (MRI)/electron spin resonance (ESR).

Results

DNPH3 showed long circulating properties in vivo (half-life >8 h, more than 60-fold longer than that of parent D) and low reticuloendothelial system (RES) recognition in liver and spleen. Protamine, a model cationic protein, was efficiently loaded onto DNPH3 with a maximum loading content of 26.4 μg/mg Fe. Magnetic capture of DNPH3 in tumor site with optimized conditions (I.D. of 12 mg/kg, targeting time of 45 min) was up to 29.42 μg Fe/g tissue (12.26% I.D./g tissue).

Conclusion

DNPH3 showed the potential to be used as a platform for cationic proteins for simultaneous tumor targeting and imaging.  相似文献   

9.

Rationale

Previous research suggests that the acute anorectic effect of cannabinoid CB1 receptor antagonist/inverse agonists may be secondary to response competition from the compulsive scratching and grooming syndrome characteristic of these agents.

Objectives

As the pruritic effect of rimonabant can be attenuated by the opioid receptor antagonist naloxone, these studies test the prediction that naloxone co-treatment should prevent acute rimonabant anorexia.

Methods

Two experiments comprehensively profiled the behavioural effects of an anorectic dose of rimonabant (1.5 mg/kg) in the absence or presence of naloxone (experiment 1: 0.01 or 0.1 mg/kg; experiment 2: 0.05 mg/kg).

Results

In both experiments, rimonabant not only significantly suppressed food intake and time spent eating but also induced compulsive scratching and grooming. In experiment 1, although the lower dose of naloxone seemed to weakly attenuate the effects of rimonabant both on ingestive and compulsive behaviours, the higher dose more strongly suppressed the compulsive elements but did not significantly affect the anorectic response. The results of experiment 2 showed that naloxone at a dose which markedly attenuated rimonabant-induced grooming and scratching did not alter the effects of the compound on food intake or time spent feeding. The apparent independence of the ingestive and compulsive effects of rimonabant was confirmed by the observation that despite a ‘normalising’ effect of naloxone co-treatment on behavioural structure (BSS), the opioid antagonist did not impact the suppressant effect of rimonabant on peak feeding.

Conclusion

The acute anorectic response to rimonabant would not appear to be secondary to compulsive scratching and grooming.  相似文献   

10.

Rationale

Drug-associated environmental stimuli elicit craving in humans and drug-seeking in animals.

Objectives

We tested the hypothesis that Pavlovian-conditioned alcohol-seeking is mediated by dopamine, using rats from two vendors.

Methods

Male, Long–Evans rats (220–240 g) from Charles River (St-Constant, QC, Canada) and Harlan Laboratories (Indianapolis, IN, USA) received 21 sessions of intermittent, 24-h access to ethanol (15 %, v/v) and water in the home-cage. Subsequently, rats were trained to discriminate between one conditioned stimulus (CS+) that was paired with ethanol (0.2 ml per CS+) and a second stimulus (CS?) that was not. Entries into a fluid port where ethanol was delivered were recorded. Next, rats were exposed to a different context where cues and ethanol were withheld. At test, responding to the CS+ and CS? without ethanol was assessed in the second, non-alcohol context. Injections (1 ml/kg; s.c.) of the dopamine D1-receptor antagonist SCH 23390 (0, 3.33, and 10 μg/kg) or dopamine D2-receptor antagonist eticlopride (0, 5, and 10 μg/kg) were administered before test.

Results

Home-cage alcohol consumption was higher in Harlan rats than Charles River rats. At test, saline-treated rats responded more to the alcohol-predictive CS+ than the CS?. While SCH 23390 attenuated CS+ responding in rats from both vendors, eticlopride reduced CS+ responding in Harlan rats only. Subsequently, SCH 23390 but not eticlopride attenuated CS+ responding when the CS+ was again paired with ethanol.

Conclusions

These results indicate important differences in alcohol consumption in Long–Evans rats from different suppliers, and highlight a novel role for dopamine in Pavlovian-conditioned alcohol-seeking.  相似文献   

11.

Rationale

The striatopallidal medium spiny neurons have been viewed as a final common path for drug reward, and the ventral pallidum (VP) as a convergent point for hedonic and motivational signaling. The medium spiny neurons are GABAergic, but they colocalize enkephalin.

Objective

The present study investigated the role of the GABAergic mechanisms of the VP in ethanol consumption.

Methods

The effects of bilateral microinjections of GABAA and GABAB receptor agonists and antagonists into the VP on voluntary ethanol consumption were monitored in alcohol-preferring Alko alcohol rats given 90 min limited access to ethanol in their home cages every other day. The influences of coadministration of GABA and opioid receptor modulators were also studied.

Results

The GABAA receptor agonist muscimol (1–10 ng/site) decreased ethanol intake dose-dependently, while administration of the GABAA receptor antagonist bicuculline (10–100 ng) had an opposite effect. The GABAB receptor agonist baclofen (3–30 ng) also suppressed ethanol intake, but the GABAB receptor antagonist saclofen (0.3–3 μg) failed to modify it. Animals coadministered with bicuculline (30 ng) and baclofen (30 ng) consumed ethanol significantly less than those treated with bicuculline alone. Coadministration of the μ-receptor agonist D-Ala2,N-Me-Phe4,Glyol5-enkephalin (DAMGO, 0.1 μg) with bicuculline counteracted, whereas the μ-receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, 1 μg) enhanced the bicuculline-induced increase of ethanol intake. When given alone, DAMGO decreased while CTOP increased ethanol intake.

Conclusions

The study provides evidence for the ventral pallidal GABAergic mechanisms participating in the regulation of ethanol consumption and supports earlier work suggesting a role for pallidal opioidergic transmission in ethanol reward.  相似文献   

12.

Rationale

Oxytocin (OXT) has been proposed as a potential therapeutic agent for post-traumatic stress disorder (PTSD).

Objectives

We aimed to verify whether pharmacological manipulation of the brain OXT system affects cued fear conditioning and fear extinction.

Methods

Male rats and mice were intracerebroventricularly administered synthetic OXT (rats, 0.1 or 1.0 μg/5 μl; mice, 0.1 or 0.5 μg/2 μl) and/or an OXT receptor antagonist (OXTR-A; rats, 0.75 μg/5 μl) either prior to fear conditioning or extinction training.

Results

Preconditioning administration of OXT did not affect fear conditioning in rats, but decreased fear expression and facilitated fear extinction. In contrast, preconditioning blockade of OXT neurotransmission by OXTR-A did not affect fear conditioning or fear expression, but impaired fear extinction. When administered before extinction training, OXT impaired fear extinction in both rats and mice, indicating that the effects of OXT on fear extinction are conserved across species. This impairment was OXTR-mediated, as the inhibitory effect of OXT on fear extinction was abolished by prior treatment with OXTR-A. The impaired fear extinction was not a result of reduced locomotion in rats, whereas an apparent decrease in fear expression and facilitation of fear extinction with the higher OXT dose in mice was the result of behavioral hyperactivity.

Conclusions

These results suggest that increasing OXT neurotransmission during traumatic events is likely to prevent the formation of aversive memories. In contrast, OXT treatment before fear extinction training, which would be the comparable timepoint for psychotherapy in PTSD patients, rather delays fear extinction and, therefore, caution is needed before recommending OXT for the treatment of PTSD.  相似文献   

13.

Rationale

An effective and safe treatment of insomnia in patients with neuropathic pain remains an unmet need. Melatonin and its analogs have been shown to have both analgesic and hypnotic effects; however, capacity of them on sleep disturbance with neuropathic pain as well as the precise mechanism is unclear.

Objective

The present study evaluated effects of piromelatine, a novel melatonin receptor agonist, on sleep disturbance in a neuropathic pain-like condition as well as the underlying mechanisms.

Methods

A mouse model of chronic neuropathic pain induced by partial sciatic nerve ligation (PSL) was employed. The antinociceptive and hypnotic effects of piromelatine were evaluated by measurement of thermal hyperalgesia, mechanical allodynia, and electroencephalogram (EEG) recordings in PSL mice. Pharmacological approaches were used to clarify the mechanisms of action of piromelatine.

Results

PSL significantly lowered thermal and mechanical latencies and decreased non-rapid eye movement (NREM) sleep, and PSL mice exhibited sleep fragmentation. Treatment with 25, 50, or 100 mg/kg of piromelatine significantly prolonged thermal and mechanical latencies and increased NREM sleep. Moreover, the antinociceptive effect of piromelatine was prevented by melatonin antagonist luzindole, opioid receptor antagonist naloxone, or 5HT1A receptor antagonist WAY-100635. The hypnotic effect of piromelatine was blocked by luzindole but neither by naloxone nor WAY-100635.

Conclusions

These data indicate that piromelatine is an effective treatment for both neuropathic pain and sleep disturbance in PSL mice. The antinociceptive effect of piromelatine is likely mediated by melatonin, opioid, and 5HT1A receptors; however, the hypnotic effect of piromelatine appears to be mediated by melatonin receptors.  相似文献   

14.

Rationale

Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats.

Objective

The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats and whether alterations in D2High receptors are responsible for this effect.

Methods

In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100 % dimethyl sulfoxide, DMSO) was bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(?)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2-specific binding and D2High receptors using [3H]-domperidone.

Results

Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups while increasing the proportion of D2High receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2High receptors than adolescent or adult rats.

Conclusions

DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2High receptors.  相似文献   

15.

Rationale

Alpha-7 nicotinic acetylcholine receptor (nAChR) agonists may ameliorate cognitive deficits in schizophrenia, in part, because of their ability to enhance dopaminergic and cholinergic neurotransmission.

Objectives

In the current study, the effects of partial nAChR agonist and 5-HT3 receptor antagonist RG3487 (previously R3487/MEM3454) on dopamine (DA) and acetylcholine (ACh) effluxes in rat prefrontal cortex (mPFC) and hippocampus (HIP) were investigated in awake, freely moving rats.

Results

R3487/MEM3454, at doses of 0.1–10 mg/kg, s.c., enhanced DA and ACh effluxes in rat mPFC and (HIP), with a peak effect at 0.3- to 0.6-mg/kg doses, producing a bell-shaped dose–response curve. Pretreatment with the selective nAChR antagonist, methyllycaconitine (1.0 mg/kg), completely blocked RG3487-induced (0.45 mg/kg) DA but not ACh efflux, while the selective 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (1.0 mg/kg) partially inhibited cortical ACh but not DA efflux. RG3487 (0.45 mg/kg) combined with atypical antipsychotic drug (APD) risperidone (0.1 mg/kg), but not typical APD haloperidol (0.1 mg/kg), induced a significantly greater increase in HIP ACh efflux. Their combined effect on DA efflux was additive. RG3487, combined with other atypical APDs, namely aripiprazole (0.3 mg/kg), olanzapine (1.0 mg/kg), and quetiapine (30 mg/kg), also produced additive effects on DA efflux.

Conclusions

These results suggest that RG3487 enhances DA efflux by nAChR stimulation, whereas ACh efflux is primarily mediated via 5-HT3 receptor antagonism, and that RG3487 alone or as augmentation may improve cognitive impairment in schizophrenia.  相似文献   

16.

Rationale

Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied.

Objectives

The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported.

Methods

Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5–48 h after the last injection.

Results

METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions.

Conclusions

A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.  相似文献   

17.

Rationale

Conditioned behavioral responses to discrete drug-associated cues can be modulated by the environmental context in which those cues are experienced, a process that may facilitate relapse in humans. Rodent models of drug self-administration have been adapted to reveal the capacity of contexts to trigger drug seeking, thereby enabling neurobiological investigations of this effect.

Objectives

We tested the hypothesis that dopamine transmission in the nucleus accumbens, a neural structure that mediates reinforcement, is necessary for context-induced reinstatement of responding for ethanol-associated cues.

Methods

Rats pressed one lever (active) for oral ethanol (0.1 ml; 10% v/v) in operant conditioning chambers distinguished by specific visual, olfactory, and tactile contextual stimuli. Ethanol delivery was paired with a discrete (4 s) light-noise stimulus. Responses on a second lever (inactive) were not reinforced. Behavior was then extinguished by withholding ethanol but not the discrete stimulus in a different context. Reinstatement, expressed as elevated responding for the discrete stimulus without ethanol delivery, was tested by placing rats into the prior self-administration context after administration of saline or the dopamine D1 receptor antagonist, SCH 23390 (0.006, 0.06, and 0.6 μg/side), into the nucleus accumbens core or shell.

Results

Compared with extinction responding, active lever pressing in saline-pretreated rats was enhanced by placement into the prior ethanol self-administration context. SCH 23390 dose-dependently reduced reinstatement after infusion into the core or shell.

Conclusion

These findings suggest a critical role for dopamine acting via D1 receptors in the nucleus accumbens in the reinstatement of responding for ethanol cues triggered by placement into an ethanol-associated context.  相似文献   

18.

Rationale

Accumulating evidence supports the involvement of the ventral striatum (VS) in spatial information processing. The multiple cortical glutamatergic and mesolimbic dopaminergic (DAergic) afferences on the same neurons in the ventral striatum provide the neuroanatomical substrate for glutamate and dopamine functional interaction. However, there is little evidence in the literature on how this interaction affects the ability to encode spatial information.

Objective

First, we evaluated the effect of intra-VS bilateral infusion of different doses of amphetamine (0.3, 0.75, and 1.5 μg/side) on the ability to detect spatial novelty in mice. Next, we examined the impact produced on the same abilities by intra-VS infusion of ineffective doses of amphetamine (0.3 μg/side) in association with N-methyl-d-aspartate (NMDA) (3.125 ng/side) or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) (0.25 ng/side) receptor antagonist.

Results

The results show that infusion of amphetamine impairs detection of spatial novelty, affecting also exploratory activity and marginally the detection of nonspatial novelty. In contrast, an association of subthreshold doses of amphetamine with NMDA or AMPA receptor antagonists exerted a selective effect on reactivity to a spatial change.

Conclusions

These findings demonstrate that enhanced DAergic activity in the VS enhances glutamate receptor antagonist-induced impairment in learning and memory.  相似文献   

19.

Rationale

Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear.

Objective

We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n?=?5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n?=?9).

Methods

Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and 4 days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days.

Results

ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs.

Conclusions

The results indicate that repeated treatment with a low-efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity.  相似文献   

20.

Rationale

The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions.

Objective

The potential of ondansetron (OND), Δ9-tetrahydrocannabinol (THC), chlordiazepoxide (CDP), CBDA, and co-administration of CBDA and tetrahydrocannabinolic acid (THCA) to reduce AN and modify locomotor activity was evaluated.

Materials and methods

Following four pairings of a novel context with lithium chloride (LiCl), the rats were given a test for AN. On the test trial, they received pretreatment injections of the following: vehicle, OND (0.1 or 1.0 mg/kg), THC (0.5 mg/kg), CBDA (0.0001, 0.001, 0.01, 0.1 mg/kg or 1.0 mg/kg), CDP (1, 5, or 10 mg/kg) or co-administration of subthreshold doses of CBDA (0.1 μg/kg), and THCA (5 μg/kg). Immediately following the AN test trial in all experiments, rats were given a 15 min locomotor activity test. Finally, the potential of CBDA (0.001, 0.01, 0.1, and 1 mg/kg) to attenuate conditioned freezing to a shock-paired tone was assessed.

Results

THC, CBDA, and CDP, but not OND, reduced contextually elicited gaping reactions. Co-administration of subthreshold doses of CBDA and THCA also suppressed AN, and this effect was blocked by pretreatment with either a cannabinoid receptor 1 (CB1) receptor antagonist or a 5-hydroxytryptamine 1A (5-HT1A) receptor antagonist. CDP (but not CBDA, THC or CBDA and THCA) also suppressed locomotor activity at effective doses. CBDA did not modify the expression of conditioned fear.

Conclusions

CBDA has therapeutic potential as a highly potent and selective treatment for AN without psychoactive or locomotor effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号