首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nodal and Nodal-related proteins activate the Activin-like signal pathway and play a key role in the formation of mesoderm and endoderm in vertebrate development. Recent studies have shown additional activities of Nodal-related proteins apart from the canonical Activin-like signal pathway. Here we report a novel function of Nodal-related proteins using cleavage mutants of Xenopus nodal-related genes (cmXnr2 and cmXnr5), which are known to be dominant-negative inhibitors of nodal family signaling. cmXnr2 and cmXnr5 inhibited both BMP signaling and Wnt signaling without activating the Activin-like signal in animal cap assays. Pro region construct of Xnr2 and Xnr5 did not inhibit Xwnt8, and pro/mature region chimera mutant cmActivin-Xnr2 and cmActivin-Xnr5 also did not inhibit Xwnt8 activity. These results indicate that the pro domains of Xnr2 and Xnr5 are necessary, but not sufficient, for Wnt inhibition, by Xnr family proteins. In addition, Western blot analysis and immunohistochemistry analysis revealed that the unprocessed Xnr5 protein is stably produced and secreted as effectively as mature Xnr5 protein, and that the unprocessed Xnr5 protein diffused in the extracellular space. These results suggest that unprocessed Xnr2 and Xnr5 proteins may be involved in inhibiting both BMP and Wnt signaling and are able to be secreted to act on somewhat distant target cells, if these are highly produced.  相似文献   

3.
Epithelial stem cells (EP-SCs) located in the bulge region of a hair follicle (HF) have the potential to give rise to hair follicle stem/progenitor cells that migrate down to regenerate HFs. Bone morphogenetic protein (BMP) signaling has been shown to regulate the HF cycle by inhibiting anagen induction. Here we show that active BMP signaling functions to prevent EP-SC activation and expansion. Dynamic expression of Noggin, a BMP antagonist, releases EP-SCs from BMP-mediated restriction, leading to EP-SC activation and initiation of the anagen phase. Experimentally induced conditional inactivation of the BMP type IA receptor (Bmpr1a) in EP-SCs leads to overproduction of HF stem/progenitor cells and the eventual formation of matricomas. This genetic manipulation of the BMP signaling pathway also reveals unexpected activation of beta-catenin, a major mediator of Wnt signaling. We propose that BMP activity controls the HF cycle by antagonizing Wnt/beta-catenin activity. This is at least partially achieved by BMP-mediated enhancement of transforming growth factor-beta-regulated epithelial cell-specific phosphatase (PTEN) function. Subsequently, PTEN, through phosphatidyl inositol 3-kinase-Akt, inhibits the activity of beta-catenin, the convergence point of the BMP and Wnt signaling pathways.  相似文献   

4.
By conditional gene ablation in mice, we found that beta-catenin, an essential downstream effector of canonical Wnt signaling, is a key regulator of formation of the apical ectodermal ridge (AER) and of the dorsal-ventral axis of the limbs. By generation of compound mutants, we also show that beta-catenin acts downstream of the BMP receptor IA in AER induction, but upstream or parallel in dorsal-ventral patterning. Thus, AER formation and dorsal-ventral patterning of limbs are tightly controlled by an intricate interplay between Wnt/beta-catenin and BMP receptor signaling.  相似文献   

5.
6.
Recent studies have postulated that distinct regulatory cascades control myogenic differentiation in the head and the trunk. However, although the tissues and signaling molecules that induce skeletal myogenesis in the trunk have been identified, the source of the signals that trigger skeletal muscle formation in the head remain obscure. Here we show that although myogenesis in the trunk paraxial mesoderm is induced by Wnt signals from the dorsal neural tube, myogenesis in the cranial paraxial mesoderm is blocked by these same signals. In addition, BMP family members that are expressed in both the dorsal neural tube and surface ectoderm are also potent inhibitors of myogenesis in the cranial paraxial mesoderm. We provide evidence suggesting that skeletal myogenesis in the head is induced by the BMP inhibitors, Noggin and Gremlin, and the Wnt inhibitor, Frzb. These molecules are secreted by both cranial neural crest cells and by other tissues surrounding the cranial muscle anlagen. Our findings demonstrate that head muscle formation is locally repressed by Wnt and BMP signals and induced by antagonists of these signaling pathways secreted by adjacent tissues.  相似文献   

7.
Wnt signaling pathways are involved during various stages in the development of many species. In Xenopus, the accumulation of beta-catenin on the dorsal side of embryo is required for induction of the organizer, while the head structure formation requires inhibition of Wnt signaling. Here, we report a role for xIdax, a negative regulator of Wnt signaling. XIdax is expressed in neural tissues at the neurula stage, and in the restricted region of the tadpole brain. Ectopic expression of xIdax inhibits the target gene expression, suggesting that xIdax can inhibit canonical Wnt signaling. To examine the function of xIdax, a morpholino oligo for xIdax (xIdaxMO) was designed. An injection into an animal pole cell caused a loss of forebrain. The anterior neural marker expression is decreased in xIdaxMO-injected embryo, suggesting that xIdax is required for anterior neural development. Moreover, a negative regulator that acts downstream of xIdax rescued this defect. We propose that Idax functions are dependent on the canonical Wnt pathway and are crucial for the anterior neural development.  相似文献   

8.
Embryonic myogenesis pathways in muscle regeneration.   总被引:4,自引:0,他引:4  
Embryonic myogenesis involves the staged induction of myogenic regulatory factors and positional cues that dictate cell determination, proliferation, and differentiation into adult muscle. Muscle is able to regenerate after damage, and muscle regeneration is generally thought to recapitulate myogenesis during embryogenesis. There has been considerable progress in the delineation of myogenesis pathways during embryogenesis, but it is not known whether the same signaling pathways are relevant to muscle regeneration in adults. Here, we defined the subset of embryogenesis pathways induced in muscle regeneration using a 27 time-point in vivo muscle regeneration series. The embryonic Wnt (Wnt1, 3a, 7a, 11), Shh pathway, and the BMP (BMP2, 4, 7) pathway were not induced during muscle regeneration. Moreover, antagonists of Wnt signaling, sFRP1, sFRP2, and sFRP4 (secreted frizzled-related proteins) were significantly up-regulated, suggesting active inhibition of the Wnt pathway. The pro-differentiation FGFR4 pathway was transiently expressed at day 3, commensurate with expression of MyoD, Myogenin, Myf5, and Pax7. Protein verification studies showed fibroblast growth factor receptor 4 (FGFR4) protein to be strongly expressed in differentiating myoblasts and newly formed myotubes. We present evidence that FGF6 is likely the key ligand for FGFR4 during muscle regeneration, and further suggest that FGF6 is released from necrotic myofibers where it is then sequestered by basal laminae. We also confirmed activation of Notch1 in the regenerating muscle. Finally, known MyoD coactivators (MEF2A, p/CIP, TCF12) and repressors (Twist, Id2) were strongly induced at appropriate time points. Taken together, our results suggest that embryonic positional signals (Wnt, Shh, and BMP) are not induced in postnatal muscle regeneration, whereas cell-autonomous factors (Pax7, MRFs, FGFR4) involving muscle precursor proliferation and differentiation are recapitulated by muscle regeneration.  相似文献   

9.
The low-density lipoprotein (LDL) receptor family is a large evolutionarily conserved group of transmembrane proteins. It has been shown that LDL receptor family members can also function as direct signal transducers or modulators for a broad range of cellular signaling pathways. We have identified a novel mode of signaling pathway integration/coordination that occurs outside cells during development that involves an LDL receptor family member. Physical interaction between an extracellular protein (Wise) that binds BMP ligands and an Lrp receptor (Lrp4) that modulates Wnt signaling, acts to link these two pathways. Mutations in either Wise or Lrp4 in mice produce multiple, but identical abnormalities in tooth development that are linked to alterations in BMP and Wnt signaling. Teeth, in common with many other organs, develop by a series of epithelial-mesenchymal interactions, orchestrated by multiple cell signaling pathways. In tooth development, Lrp4 is expressed exclusively in epithelial cells and Wise mainly in mesenchymal cells. Our hypothesis, based on the mutant phenotypes, cell signaling activity changes and biochemical interactions between Wise and Lrp4 proteins, is that Wise and Lrp4 together act as an extracellular mechanism of coordinating BMP and Wnt signaling activities in epithelial-mesenchymal cell communication during development.  相似文献   

10.
11.
In the developing spinal cord, signals from the roof plate are required for the development of three classes of dorsal interneuron: D1, D2, and D3, listed from dorsal to ventral. Here, we demonstrate that absence of Wnt1 and Wnt3a, normally expressed in the roof plate, leads to diminished development of D1 and D2 neurons and a compensatory increase in D3 neuron populations. This occurs without significantly altered expression of BMP and related genes in the roof plate. Moreover, Wnt3a protein induces expression of D1 and D2 markers in the isolated medial region of the chick neural plate, and Noggin does not interfere with this induction. Thus, Wnt signaling plays a critical role in the specification of cell types for dorsal interneurons.  相似文献   

12.
Wnt antagonism initiates cardiogenesis in Xenopus laevis   总被引:13,自引:0,他引:13       下载免费PDF全文
Heart induction in Xenopus occurs in paired regions of the dorsoanterior mesoderm in response to signals from the Spemann organizer and underlying dorsoanterior endoderm. These tissues together are sufficient to induce heart formation in noncardiogenic ventral marginal zone mesoderm. Similarly, in avians the underlying definitive endoderm induces cardiogenesis in precardiac mesoderm. Heart-inducing factors in amphibians are not known, and although certain BMPs and FGFs can mimic aspects of cardiogenesis in avians, neither can induce the full range of activities elicited by the inducing tissues. Here we report that the Wnt antagonists Dkk-1 and Crescent can induce heart formation in explants of ventral marginal zone mesoderm. Other Wnt antagonists, including the frizzled domain-containing proteins Frzb and Szl, lacked this activity. Unlike Wnt antagonism, inhibition of BMP signaling did not promote cardiogenesis. Ectopic expression of GSK3beta, which inhibits beta-catenin-mediated Wnt signaling, also induced cardiogenesis in ventral mesoderm. Analysis of Wnt proteins expressed during gastrulation revealed that Wnt3A and Wnt8, but not Wnt5A or Wnt11, inhibited endogenous heart induction. These results indicate that diffusion of Dkk-1 and Crescent from the organizer initiate cardiogenesis in adjacent mesoderm by establishing a zone of low Wnt3A and Wnt8 activity.  相似文献   

13.
The neural crest is a multipotent embryonic cell population that arises from neural ectoderm and forms derivatives essential for vertebrate function. Neural crest induction requires an ectodermal signal, thought to be a Wnt ligand, but the identity of the Wnt that performs this function in amniotes is unknown. Here, we demonstrate that Wnt6, derived from the ectoderm, is necessary for chick neural crest induction. Crucially, we also show that Wnt6 acts through the non-canonical pathway and not the beta-catenin-dependant pathway. Surprisingly, we found that canonical Wnt signaling inhibited neural crest production in the chick embryo. In light of studies in anamniotes demonstrating that canonical Wnt signaling induces neural crest, these results indicate a significant and novel change in the mechanism of neural crest induction during vertebrate evolution. These data also highlight a key role for noncanonical Wnt signaling in cell type specification from a stem population during development.  相似文献   

14.
Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial-mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation.  相似文献   

15.
The canonical Wnt/β-catenin pathway plays an important role in hair cycle induction. Wnt5a is a non-canonical Wnt family member that generally antagonizes canonical Wnt signaling in other systems. In hair follicles, Wnt5a and canonical Wnt are both expressed in cells in the telogen stage. Wnt5a has been shown to be critical for controlling hair cell fate. However, the role that Wnt5a plays in the transition from the telogen to anagen stage is unknown. In this study, using whole-mount in situ hybridization, we show that Wnt5a is produced by several other cell types, excluding dermal papilla cells, throughout the hair cycle. For example, Wnt5a is expressed in bulge and secondary hair germ cells in the telogen stage. Our studies focused on the depilated 8-week-old mouse as a synchronized model of hair growth. Interestingly, overexpression of adenovirus Wnt5a in the dorsal skin of mice led to the elongation of the telogen stage and inhibition of the initiation of the anagen stage. However, following an extended period of time, four pelage hair types grew from hairless skin that was induced by Wnt5a, and the structure of these new hair shafts was normal. Using microarray analysis and quantitative arrays, we showed that the expression of β-catenin and some target genes of canonical Wnt signaling decreased after Wnt5a treatment. These data demonstrate that Wnt5a may inhibit the telogen stage to maintain a quiescent state of the hair follicle.  相似文献   

16.
Vertebrate dorsoventral patterning requires both Wnt8 and BMP signaling. Because of their multiple interactions, discerning roles attributable specifically to Wnt8 independent of BMP has been a challenge. For example, Wnt8 represses the dorsal organizer that negatively regulates ventral BMP signals, thus Wnt8 loss‐of‐function phenotypes may reflect the combined effects of reduced Wnt8 and BMP signaling. We have taken a loss‐of‐function approach in the zebrafish to generate embryos lacking expression of both Wnt8 and the BMP antagonist Chordin. wnt8;chordin loss‐of‐function embryos show rescued BMP signaling, thereby allowing us to identify Wnt8‐specific requirements. Our analysis shows that Wnt8 is uniquely required to repress prechordal plate specification but not notochord, and that Wnt8 signaling is not essential for specification of tailbud progenitors but is required for normal expansion of posterior mesoderm cell populations. Thus, Wnt8 and BMP signaling have independent roles during vertebrate ventrolateral mesoderm development that can be identified through loss‐of‐function analysis. Developmental Dynamics 239:2828–2836, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The vacuolar H(+) ATPase (v-ATPase) is crucial for endosome acidification, endocytosis, and trafficking in essentially all eukaryotic cells. Recent studies have shown that inhibition of the v-ATPase also leads to downregulation of important signaling pathways, including Notch and Wnt, which are key regulators of cell differentiation and tissue homeostasis across the animal kingdom. However, the requirement of endosome acidification and endocytosis in the transduction of Notch signaling is still highly debated. Moreover, no study has yet investigated the role of the v-ATPase during mammalian development. Here we show that expression of a dominant-negative subunit of the v-ATPase in neural precursors of the developing mouse cortex depleted neural stem cells by promoting their differentiation and the generation of neurons. Moreover, inhibition of the v-ATPase reduced endogenous Notch signaling and prevented the proliferative effect of a transmembrane, γ-secretase-dependent, active Notch without blocking the effects of its cytoplasmic intracellular domain (NICD). Our data are consistent with recent reports in Drosophila in which the v-ATPase has been suggested to be important for the transduction of Notch signaling. By extending these reports to mammalian embryos, our data may contribute to a better understanding of the role of the v-ATPase, endosome acidification, and endocytosis in signal transduction during neural stem cell differentiation and brain development.  相似文献   

18.
19.
20.
A relationship exists between defects in bone morphogenetic protein (BMP) signaling and formation of hamartoma and adenoma in the gastric epithelium; however, the role of BMP signaling in the progression of diffuse-type gastric carcinoma remains unknown. We investigated whether BMP functions as a tumor suppressor in human diffuse-type gastric carcinoma using three different human diffuse-type gastric carcinoma cell lines (OCUM-12, HSC-39, and OCUM-2MLN). Overexpression of the dominant-negative form of BMP-2/4-specific type I receptor (ALK-3) in OCUM-12 and HSC-39 cells accelerated their growth in vivo. BMP-4 induced cell cycle arrest in these cells via p21 induction through the SMAD pathway. Moreover, overexpression of the constitutively active form of ALK-3 in HSC-39 and OCUM-2MLN cells suppressed the proliferation of these cells in vitro and in vivo. Our findings suggest that BMP-2 and BMP-4 function as potent tumor suppressors in diffuse-type gastric carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号