首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the SCA7 gene. The disease primarily affects the cerebellum and the retina, but also many other central nervous system (CNS) structures as the disease progresses. Ataxin-7, encoded by the SCA7 gene, is a protein of unknown function expressed in many tissues including the CNS. In normal brain, ataxin-7 is found in the cytoplasm and/or nucleus of neurons, but in SCA7 brain ataxin-7 accumulates in intranuclear inclusions. Ataxin-7 is expressed ubiquitously, but mutation leads to neuronal death in only certain areas of the brain. This selective pattern of degeneration might be explained by interaction with a partner that is specifically expressed in vulnerable cells. We used a two-hybrid approach to screen a human retina cDNA library for ataxin-7-binding proteins, and isolated R85, a splice variant of Cbl-associated protein (CAP). R85 and CAP are generated by alternative splicing of the gene SH3P12 which we localized on chromosome 10q23-q24. The interaction between ataxin-7 and the SH3P12 gene products (SH3P12GPs) was confirmed by pull-down and co-immunoprecipitation. SH3P12GPs are expressed in Purkinje cells in the cerebellum. Ataxin-7 colocalizes with full-length R85 (R85FL) in co-transfected Cos-7 cells and with one of the SH3P12GPs in neuronal intranuclear inclusions in brain from a SCA7 patient. We propose that this interaction is part of a physiological pathway related to the function or turnover of ataxin-7. Its role in the pathophysiological process of SCA7 disease is discussed.  相似文献   

3.
Spinocerebellar ataxia type 7 (SCA7) belongs to a group of neurological disorders caused by a CAG repeat expansion in the coding region of the associated gene. To gain insight into the pathogenesis of SCA7 and possible functions of ataxin-7, we examined the subcellular localization of ataxin-7 in transfected COS-1 cells using SCA7 cDNA clones with different CAG repeat tract lengths. In addition to a diffuse distribution throughout the nucleus, ataxin-7 associated with the nuclear matrix and the nucleolus. The location of the putative SCA7 nuclear localization sequence (NLS) was confirmed by fusing an ataxin-7 fragment with the normally cytoplasmic protein chicken muscle pyruvate kinase. Mutation of this NLS prevented protein from entering the nucleus. Thus, expanded ataxin-7 may carry out its pathogenic effects in the nucleus by altering a matrix-associated nuclear structure and/or by disrupting nucleolar function.  相似文献   

4.
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by ataxia and selective neuronal cell loss caused by the expansion of a translated CAG repeat encoding a polyglutamine tract in ataxin-7, the SCA7 gene product. To gain insight into ataxin-7 function and to decipher the molecular mechanisms of neurodegeneration in SCA7, a two-hybrid assay was performed to identify ataxin-7 interacting proteins. Herein, we show that ataxin-7 interacts with the ATPase subunit S4 of the proteasomal 19S regulatory complex. The ataxin-7/S4 association is modulated by the length of the polyglutamine tract whereby S4 shows a stronger association with the wild-type allele of ataxin-7. We demonstrate that endogenous ataxin-7 localizes to discrete nuclear foci that also contain additional components of the proteasomal complex. Immunohistochemical analyses suggest alterations either of the distribution or the levels of S4 immunoreactivity in neurons that degenerate in SCA7 brains. Immunoblot analyses demonstrate reduced levels of S4 in SCA7 cerebella without evident alterations in the levels of other proteasome subunits. These results suggest a role for S4 and ubiquitin-mediated proteasomal proteolysis in the molecular pathogenesis of SCA7.  相似文献   

5.
6.
7.
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.  相似文献   

8.
A novel protein with RNA-binding motifs interacts with ataxin-2   总被引:6,自引:0,他引:6  
Spinocerebellar ataxia type 2 (SCA2) is caused by expansion of a polyglutamine tract in ataxin-2, a protein of unknown function. Using the yeast two-hybrid system, we identified a novel protein, A2BP1 (ataxin-2 binding protein 1) which binds to the C-terminus of ataxin-2. Northern blot analysis showed that A2BP1 was predominantly expressed in muscle and brain. By immunocfluorescent staining, A2BP1 and ataxin-2 were both localized to the trans -Golgi network. Immunocytochemistry showed that A2BP1 was expressed in the cytoplasm of Purkinje cells and dentate neurons in a pattern similar to that seen for ataxin-2 labeling. Western blot analysis of subcellular fractions indicated enrichment of A2BP1 in the same fractions as ataxin-2. Sequence analysis of the A2BP1 cDNA revealed an RNP motif that is highly conserved among RNA-binding proteins. A2BP1 had striking homology with a human cDNA clone, P83A20, of unknown function and at least two copies of A2BP1 homologs are found in the Caenorhabditis elegans genome database. A2BP1 and related proteins appear to form a novel gene family sharing RNA-binding motifs.  相似文献   

9.
Spinocerebellar ataxia-1 (SCA1) is caused by the expansion of a polyglutamine repeats within the disease protein, ataxin-1. The mutant ataxin-1 precipitates as large intranuclear aggregates in the affected neurons. These aggregates may protect neurons from mutant protein and/or trigger neuronal degeneration by encouraging recruitment of other essential proteins. Our previous studies have shown that calcium binding protein calbindin-D28k (CaB) associated with SCAl pathogenesis is recruited to ataxin-l aggregates in Purkinje cells of SCAl mice. Since our recent findings suggest that tissue transglutaminase 2 (TG2) may be involved in crosslinking and aggregation of ataxin-l, the present study was initiated to determine if TG2 has any role in CaB-ataxin-l interaction. The guinea pig TG2 covalently crosslinked purified rat brain CaB. Time dependent progressive increase in aggregation produced large multimers, which stayed on top of the gel. CaB interaction with ataxin-l was studied using HeLa cell lysates expressing GFP and GFP tagged ataxin-l with normal and expanded polyglutamine repeats (Q2, Q30 and Q82). The reaction products were analyzed by Western blots using anti-polyglutamine, CaB or GFP antibodies. CaB interacted with ataxin-1 independent of TG2 as the protein-protein crosslinker DSS stabilized CaB-ataxin-l complex. TG2 crosslinked CaB preferentially with Q82 ataxin-1. The crosslinking was inhibited with EGTA or TG2 inhibitor cystamine. The present data indicate that CaB may be a TG2 substrate. In addition, aggregates of mutant ataxin-l may recruit CaB via TG2 mediated covalent crosslinking, further supporting the argument that ataxin-l aggregates may be toxic to neurons.  相似文献   

10.
Autosomal dominant spinocerebellar ataxias (SCA) form a group of clinically and genetically heterogeneous neurodegenerative disorders. The defect responsible for SCA3/Machado-Joseph disease (MJD) has been identified as an unstable and expanded (CAG)n trinucleotide repeat in the coding region of a novel gene of unknown function. The MJD1 gene product, ataxin-3, exists in several isoforms. We generated polyclonal antisera against an alternate carboxy terminus of ataxin-3. This isoform, ataxin-3c, is expressed as a protein of approximately 42 kDa in normal individuals but is significantly enlarged in affected patients confirming that the CAG repeat is part of the ataxin-3c isoform and is translated into a polyglutamine stretch, a feature common to all known CAG repeat disorders. Ataxin-3 like immunoreactivity was observed in all human brain regions and peripheral organs studied. In neuronal cells of control individuals, ataxin-3c was expressed cytoplasmatically and had a somatodendritic and axonal distribution. In SCA3 patients, however, C-terminal ataxin-3c antibodies as well as antiataxin-3 monoclonal antibodies (1H9) and anti-ubiquitin antibodies detected intranuclear inclusions (NIs) in neuronal cells of affected brain regions. A monoclonal antibody, 2B6, directed against an internal part of the protein, barely detected these NIs implying proteolytic cleavage of ataxin-3 prior to its transport into the nucleus. These findings provide evidence that the alternate isoform of ataxin-3 is involved in the pathogenesis of SCA3/MJD. Intranuclear protein aggregates appear as a common feature of neurodegenerative polyglutamine disorders.  相似文献   

11.
Among the eight progressive neurodegenerative diseases caused by polyglutamine expansions, spinocerebellar ataxia type 7 (SCA7) is the only one to display degeneration in both brain and retina. We show here that mice overexpressing full-length mutant ataxin-7[Q90] either in Purkinje cells or in rod photoreceptors have deficiencies in motor coordination and vision, respectively. In both models, although with different time courses, an N-terminal fragment of mutant ataxin-7 accumulates into ubiquitinated nuclear inclusions that recruit a distinct set of chaperone/proteasome subunits. A severe degeneration is caused by overexpression of ataxin-7[Q90] in rods, whereas a similar overexpression of normal ataxin-7[Q10] has no obvious effect. The degenerative process is not limited to photoreceptors, showing secondary alterations of post-synaptic neurons. These findings suggest that proteolytic cleavage of mutant ataxin-7 and trans-neuronal responses are implicated in the pathogenesis of SCA7.  相似文献   

12.
Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is a member of the CAG/polyglutamine repeat disease family. In this family of disorders, a normally polymorphic CAG repeat becomes expanded, resulting in expression of an expanded polyglutamine domain in the disease gene product. Experimental models of polyglutamine disease implicate the nucleus in pathogenesis; however, the link between intranuclear expression of expanded polyglutamine and neuronal dysfunction remains unclear. Here we demonstrate that ataxin-3, the disease protein in SCA3/MJD, adopts a unique conformation when expressed within the nucleus of transfected cells. The monoclonal antibody 1C2 is known preferentially to bind expanded polyglutamine, but we find that it also binds a fragment of ataxin-3 containing a normal glutamine repeat. In addition, expression of ataxin-3 within the nucleus exposes the glutamine domain of the full-length non-pathological protein, allowing it to bind the monoclonal antibody 1C2. Fractionation and immunochemical experiments indicate that this novel conformation of intranuclear ataxin-3 is not due to proteolysis, suggesting instead that association with nuclear protein(s) alters the structure of full-length ataxin-3 which exposes the polyglutamine domain. This conformationally altered ataxin-3 is bound to the nuclear matrix. The pathological form of ataxin-3 with an expanded polyglutamine domain also associates with the nuclear matrix. These data suggest that an early event in the pathogenesis of SCA3/MJD may be an altered conformation of ataxin-3 within the nucleus that exposes the polyglutamine domain.  相似文献   

13.
Machado-Joseph disease (MJD) is a fatal, dominant neurodegenerative disorder. MJD results from polyglutamine repeat expansion in the MJD-1 gene, conferring a toxic gain of function to the ataxin-3 protein. In this study, we aimed at overexpressing ataxin-3 in the rat brain using lentiviral vectors (LV), to generate an in vivo MJD genetic model and, to study the disorder in defined brain regions: substantia nigra, an area affected in MJD, cortex and striatum, regions not previously reported to be affected in MJD. LV encoding mutant or wild-type human ataxin-3 was injected in the brain of adult rats and the animals were tested for behavioral deficits and neuropathological abnormalities. Striatal pathology was confirmed in transgenic mice and human tissue. In substantia nigra, unilateral overexpression of mutant ataxin-3 led to: apomorphine-induced turning behavior; formation of ubiquitinated ataxin-3 aggregates; alpha-synuclein immunoreactivity; and loss of dopaminergic markers (TH and VMAT2). No neuropathological changes were observed upon wild-type ataxin-3 overexpression. Mutant ataxin-3 expression in striatum and cortex, resulted in accumulation of misfolded ataxin-3, and within striatum, loss of neuronal markers. Striatal pathology was confirmed by observation in MJD transgenic mice of ataxin-3 aggregates and substantial reduction of DARPP-32 immunoreactivity and, in human striata, by ataxin-3 inclusions, immunoreactive for ubiquitin and alpha-synuclein. This study demonstrates the use of LV encoding mutant ataxin-3 to produce a model of MJD and brings evidence of striatal pathology, suggesting that this region may contribute to dystonia and chorea observed in some MJD patients and may represent a target for therapies.  相似文献   

14.
Immunolocalization of 14-3-3 protein isoforms, one of the interacters with ataxin 1, was investigated in spinocerebellar ataxia type 1 (SCA 1) brains using isoform-specific antibodies. Samples from the pons and from the cerebellum of four SCA1 cases and three controls were studied. The intensity of the immunoreactivity (IR) and its subcellular topography were analyzed. In control subjects, granular immunoreactivity for an epitope common to all known isoforms of 14-3-3 proteins (14-3-3 COM) found in the cytoplasm of some pontine and dentate nucleus neurons was weak. It was observed in some Purkinje cells, while its intensity varied. Many nuclei of those neurons and Purkinje cells of SCA1 were intensely immunopositive for 14-3-3 COM, while it was less in their cytoplasm. Expanded polyglutamine epitope was colocalized to 14-3-3 COM epitope in some pontine neurons, sometimes accumulated in intranuclear inclusion-like structures. This findings support previous reports that 14-3-3 proteins stabilize mutant ataxin 1 in nucleus and possibly lead to neurodegeneration. However, nuclear localization of 14-3-3 proteins in SCA1 brains was dependent on its isoforms, i.e. pontine neurons intensely positive for beta, Purkinje cells for tau and dentate nucleus neurons for both, while all of those neurons were consistently positive for zeta isoform, although sigma isoform tended to be located in the cytoplasm. Nuclear accumulation and isoform- and region-dependent subcellular localizations of 14-3-3 proteins may be related to SCA1 pathology, which exhibits marked regional variability.  相似文献   

15.
The accumulation of protein deposits in neurons, in vitro proteasome assays and over-expression studies suggest that impairment of the ubiquitin-proteasome system (UPS) may be a common mechanism of pathogenesis in polyglutamine diseases such as Huntington disease and spinocerebellar ataxias (SCAs). Using a knock-in mouse model that recapitulates the clinical features of human SCA7, including selective neuronal dysfunction, we assessed the UPS at cellular resolution using transgenic mice that express a green fluorescent protein (GFP)-based reporter substrate (Ub(G76V)-GFP) of the UPS. The levels of the reporter remained low during the initial phase of disease, suggesting that neuronal dysfunction occurs in the presence of a functional UPS. Late in disease, we observed a significant increase in reporter levels specific to the most vulnerable neurons. Surprisingly, the basis for the increase in Ub(G76V)-GFP protein can be explained by a corresponding increase in Ub(G76V)-GFP mRNA in the vulnerable neurons. An in vitro assay also showed normal proteasome proteolytic activity in the vulnerable neurons. Thus, no evidence for general UPS impairment or reduction of proteasome activity was seen. The differential increase of Ub(G76V)-GFP among individual neurons directly correlated with the down-regulation of a marker of selective pathology and neuronal dysfunction in SCA7. Furthermore, we observed a striking inverse correlation between the neuropathology revealed by this reporter and ataxin-7 nuclear inclusions in the vulnerable neurons. Altogether, these data show a protective role against neuronal dysfunction for polyglutamine nuclear inclusions and exclude significant impairment of the UPS as a necessary step for polyglutamine neuropathology.  相似文献   

16.
17.
By means of two-colour immunocytochemistry using a mouse monoclonal antibody directed against the rat liver glucocorticoid receptor (GR) and a rabbit polyclonal neuropeptide Y (NPY) antiserum combined with the biotin-avidin immunoperoxidase and a double immunofluorescence procedure, it has been possible to demonstrate nuclear GR immunoreactivity (IR) in neurons showing cytoplasmatic NPY IR in rat brain. The majority of NPY immunoreactive perikarya of the medial parvocellular part of the arcuate nucleus, locus coeruleus and the rostral and caudal part of the ventrolateral medulla oblongata contained strong nuclear GR IR. Many of the NPY immunoreactive neurons present in the subnuclei of the nucleus tractus solitarius also contained nuclear GR IR, while most of the NPY immunoreactive perikarya of the cerebral cortex and all of the neostriatum appeared to lack GR IR. These results indicate that NPY immunoreactive neurons in the upper and lower brain stem, but not in the cerebral cortex and in the neostriatum may be directly involved in mediating central effects of glucocorticoids.  相似文献   

18.
19.
The expansion of an unstable CAG repeat causes spinocerebellar ataxia type 1 (SCA1) and several other neurodegenerative diseases. How polyglutamine expansions render the resulting proteins toxic to neurons, however, remains elusive. Hypothesizing that long polyglutamine tracts alter gene expression, we found certain neuronal genes involved in signal transduction and calcium homeostasis sequentially downregulated in SCA1 mice. These genes were abundant in Purkinje cells, the primary site of SCA1 pathogenesis; moreover, their downregulation was mediated by expanded ataxin-1 and occurred before detectable pathology. Similar downregulation occurred in SCA1 human tissues. Altered gene expression may be the earliest mediator of polyglutamine toxicity.  相似文献   

20.
Transglutaminase type 2 (TG2) has recently been implicated in crosslinking of mutant huntingtin protein into aggregates. Here we show that TG2 also crosslinks spinocerebellar ataxia-1 (SCA1) gene product ataxin-1. HeLa cell lysates expressing GFP tagged ataxin-1 with 2, 30 or 82 glutamines showed covalent crosslinking of ataxin-1 when incubated with exogenously added TG2. This crosslinking was inhibited by TG2 inhibitor cystamine. SCA1 transgenic mice which overexpress the mutant ataxin-1 in cerebellar Purkinje cells showed elevated nuclear TG2 in the absence of ataxin-1 nuclear aggregates. The addition of purified TG2 to the nuclear extracts or addition of SCA1 nuclear TG2 to GFP-Q82 HeLa cell lysates resulted in the formation of insoluble aggregates. These data indicate that ataxin-1 is a substrate of TG2. Further, in SCA1 TG2 may translocate to the nucleus in response to nuclear accumulation of mutant ataxin-1 at early stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号