首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
1alpha,24(R)-Dihydroxyvitamin D3 [1alpha,24(R)(OH)2D3], a synthetic vitamin D3 analog, has been developed as a drug for topical use in the treatment of psoriasis. At present, the target tissue metabolism of 1alpha,24(R)(OH)2D3 is not understood completely. In our present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in the isolated perfused rat kidney. The results indicated that 1alpha,24(R)(OH)2D3 is metabolized in rat kidney into several metabolites, of which 1alpha,24(R),25-trihydroxyvitamin D3, 1alpha,25-dihydroxy-24-oxovitamin D3, 1alpha,23(S),25-trihydroxy-24-oxovitamin D3, and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D3 are similar to the previously known metabolites of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. In addition to these aforementioned metabolites, we also identified two new metabolites, namely 1alpha-hydroxy-24-oxovitamin D3 and 1alpha,23-dihydroxy-24-oxovitamin D3. The two new metabolites do not possess the C-25 hydroxyl group. Thus, the metabolism of 1alpha,24(R)(OH)2D3 into both 25-hydroxylated and non-25-hydroxylated metabolites suggests that 1alpha,24(R)(OH)2D3 is metabolized in the rat kidney through two pathways. The first pathway is initiated by C-25 hydroxylation and proceeds further via the C-24 oxidation pathway. The second pathway directly proceeds via the C-24 oxidation pathway without prior hydroxylation at the C-25 position. Furthermore, we demonstrated that rat kidney did not convert 1alpha-hydroxyvitamin D3 [1alpha(OH)D3] into 1alpha,25(OH)2D3. This finding indicates that the rat kidney does not possess the classical vitamin D3-25-hydroxylase (CYP27) activity. However, from our present study it is apparent that prior hydroxylation of 1alpha(OH)D3 at the C-24 position in the 'R' orientation allows 25-hydroxylation to occur. At present, the enzyme responsible for the C-25 hydroxylation of 1alpha,24(R)(OH)2D3 is unknown. Our observation that the side chain of 1alpha,24(R)(OH)2D3 underwent 24-ketonization and 23-hydroxylation even in the absence of the C-25 hydroxyl group suggests that 1alpha,25(OH)2D3-24-hydroxylase (CYP24) can perform some steps of the C-24 oxidation pathway without prior C-25 hydroxylation. Thus, we speculate that CYP24 may be playing a dual role in the metabolism of 1alpha,24(R)(OH)2D3.  相似文献   

2.
Several novel A-ring modified analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] have been synthesized in order to investigate the structure-function relationships of 1alpha,25(OH)2D3. We synthesized A-ring modified analogs which contain a methyl group on C-2 of the A-ring. There are eight 2-methyl diastereomers, which differ in the stereochemistry of the methyl group on C-2 and the hydroxyl groups on C-1 and C-3. Further our biological activity studies of the 2-methyl diastereomers indicated that the potency of each analog is highly dependent on the stereochemistry of the A-ring substituents [Konno et al., Biorg. Med. Chem. Letts. 8(2), 151-156 (1998); Nakagawa et al., Biochem. Pharmacol. 60(12), 1937-1947 (2000)]. For example, the VDR binding affinities exhibited by the 1alpha-isomers are significantly higher than those exhibited by the 1beta-isomers. Furthermore, out of all the 1alpha-isomers, the 2alpha-methyl isomers, when compared to the corresponding 2beta-methyl isomers, showed much higher potency in inducing cell differentiation of HL-60 cells, but failed to stimulate apoptosis. In contrast the 2beta-methyl isomers strongly stimulated apoptosis. At present it is unknown how the addition of the 2-methyl modification to the hormone, 1alpha,25(OH)2D3 alters its metabolism in target tissues. Previously, we reported that 1alpha,25(OH)2D3 is metabolized in rat osteosarcoma (UMR 106) cells via both the C-24 oxidation and the C-3 epimerization pathways. Therefore, we studied the metabolism of the four 1alpha,2-methyl diastereomers in UMR 106 cells. Our results indicated that in UMR 106 cells, all four diastereomers were metabolized into several polar metabolites via the C-24 oxidation pathway. Thus, the presence of the 2-methyl group on the A-ring did not inhibit the metabolism of the analogs via the C-24 oxidation pathway. However, it is significant to note that the 2-methyl group prevented the metabolism of the analogs via the C-3 epimerization pathway. In summary, we report that the 2-methyl group interferes with the action of the enzyme(s) involved in C-3 epimerization, but not with the enzyme 1alpha,25(OH)2D3-24-hydroxylase, which is responsible for C-24 oxidation pathway.  相似文献   

3.
1. To clarify the possibility that the metabolism of 26,27-hexafluoro-1 alpha,25-dihydroxyvitamin D3 [F6-1,25(OH)2D3] to 26,27-hexafluoro-1 alpha,23(S),25-trihydroxyvitamin D3 [F6-1,23,25(OH)3D3 and that of F6-1,23,25(OH)3D3 to 26,27-hexafluoro-23-oxo-1 alpha,25-dihydroxyvitamin D3 [F6-23-oxo-1,25(OH)2D3] are catalysed by 25-hydroxyvitamin D3 24-hydroxylase (CYP24), ROS17/2.8 cells transfected with a plasmid expressing CYP24 [pSVL-CYP24(+)] and a corresponding blank plasmid [pSLV-CYP24R(-)] were used. 2. Incubation of [1 beta-3H]-F6-1,25(OH)2D3 for 2 and 5 days with ROS17/2.8 cells transfected with pSVL-CYP24(+) generated a metabolite that co-migrated with authentic F6-1,23,25(OH)3D3 in both normal phase and reversed-phase HPLC systems. 3. Incubation of [1 beta-3H]-F6-1,23,25(OH)3D3 for 5 days with pSVL-CYP24(+)- transfected ROS 17/2.8 cells generated a metabolite that co-migrated with authentic F6-23-oxo-1,25(OH)2D3. In contrast, the metabolites F6-1,23,25(OH)3D3 or F6-23-oxo-1,25(OH)2D3 were not generated in the cells transfected with pSVL-CYP24R(-). 4. The results indicate that CYP24 catalyses the conversion of F6-1,25(OH)2D3 to F6-1,23,25(OH)3D3 and that of F6-1,23,25(OH)3D3 to F6-23-oxo-1,25(OH)2D3.  相似文献   

4.
26,26,26,27,27,27-Hexafluoro-1alpha,25(OH)2 vitamin D3, a hexafluorinated analog of 1alpha,25(OH)2 vitamin D3, has been reported to be several times more potent than the parent compound with respect to some vitamin D actions. The reason for enhanced biological activity in the bones, kidneys, and small intestine appears to be related to F6-1alpha,25(OH)2 vitamin D3 metabolism to ST-232 (26,26,26,27,27,27-hexafluoro-1alpha,23S,25-trihydroxyvitamin D3), a bioactive 23S-hydroxylated form that is resistant to further metabolism. We compared the disposition and metabolism of [1beta-3H]F6-1alpha,25(OH)2 vitamin D3 and [1beta-3H]1alpha,25(OH)2 vitamin D3 in parathyroid glands of rats intravenously administered with labeled compounds at a dose of 10 microg/kg. In the [1beta-3H]F6-1alpha,25(OH)2 vitamin D3-dosed group, radioactivity was highly detected in the kidneys, parathyroid glands, and the small intestine. The radioactivity in the parathyroid glands remained high until 48 h postdosing, with values of 2.5, 8.4, and 14.6 times higher at 6, 24, and 48 h postdosing than after dosing with [1beta-3H] 1alpha,25(OH)2 vitamin D3. In the group given [1beta-3H]F6-1alpha,25(OH)2 vitamin D3, the unchanged compound was mainly detected with a small amount of ST-232 at 6 h postdosing. At the 24- and 48-h time points, over half of the radioactivity was observed as ST-232, and additionally, ST-233, the 23-oxo form, accounted for a small amount at the 48-h time point. The present study demonstrated local retention of [1beta-3H]F6-1alpha,25(OH)2 vitamin D3 and the bioactive metabolite ST-232 in parathyroid glands after intravenous administration. The findings may indicate one of the reasons for the higher potency of F6-1alpha,25(OH)2 vitamin D3 than 1alpha,25(OH)2 vitamin D3 in parathyroid.  相似文献   

5.
Calcipotriol (MC 903) is a novel analogue of the physiologically active metabolite of vitamin D3, 1 alpha,25-dihydroxycholecalciferol [1,25(OH)2D3]. MC 903 and 1,25(OH)2D3 have similar effects on cell proliferation and cell differentiation in vitro using the human histiocytic lymphoma cell line U 937, but in vivo MC903 has 100-200 times less effect on calcium metabolism. To elucidate this difference, the pharmacokinetic profiles after a single intravenous dose (50 micrograms/kg) of the two compounds to rats were compared. The area under the serum level/time curve (AUC) was more than 100 times higher for 1,25(OH)2D3 than for MC903 and the rate of clearance was more than 100 times higher for MC903 than for 1,25(OH)D3. Serum from MC903 or 1,25(OH)2D3 dosed rats (i.v. 10 micrograms/kg) was investigated for biological activities by incubation of U 937 cells with serum collected 0-24 hr after drug administration. Serum from MC903 dosed rats had an effect only when collected shortly after dosing, whereas serum from 1,25(OH)2D3 dosed rats had an effect when collected up to 4 hr after dosing. The biological effects on the U937 cells of the two major metabolites of MC903 (MC 1046 and MC 1080) were investigated. The metabolites had effects that were more than 100 times weaker than those of the parent compound. The effect of MC903 on proliferative disorders, its fast elimination and the formation of inactive metabolites makes MC903 suitable for topical treatment of psoriasis.  相似文献   

6.
Our previous study demonstrated that 25-hydroxy-19-nor-vitamin D(3) [25(OH)-19-nor-D(3)] inhibited the proliferation of immortalized noncancerous PZ-HPV-7 prostate cells similar to 1 alpha,25-dihydroxyvitamin D(3) [1 alpha,25(OH)(2)D(3)], suggesting that 25(OH)-19-nor-D(3) might be converted to 1 alpha,25-dihydroxy-19-nor-vitamin D(3) [1 alpha,25(OH)(2)-19-nor-D(3)] by CYP27B1 before exerting its antiproliferative activity. Using an in vitro cell-free model to study the kinetics of CYP27B1-dependent 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) and 25-hydroxyvitamin D(3) [25(OH)D(3)] and CYP24A1-dependent hydroxylation of 1 alpha,25(OH)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3), we found that k(cat)/K(m) for 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) was less than 0.1% of that for 25(OH)D(3), and the k(cat)/K(m) value for 24-hydroxylation was not significantly different between 1 alpha,25(OH)(2)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3). The data suggest a much slower formation and a similar rate of degradation of 1 alpha,25(OH)(2)-19-nor-D(3) compared with 1 alpha,25(OH)(2)D(3). We then analyzed the metabolites of 25(OH)D(3) and 25(OH)-19-nor-D(3) in PZ-HPV-7 cells by high-performance liquid chromatography. We found that a peak that comigrated with 1 alpha,25(OH)(2)D(3) was detected in cells incubated with 25(OH)D(3), whereas no 1 alpha,25(OH)(2)-19-nor-D(3) was detected in cells incubated with 25(OH)-19-nor-D(3). Thus, the present results do not support our previous hypothesis that 25(OH)-19-nor-D(3) is converted to 1 alpha,25(OH)(2)-19-nor-D(3) by CYP27B1 in prostate cells to inhibit cell proliferation. We hypothesize that 25(OH)-19-nor-D(3) by itself may have a novel mechanism to activate vitamin D receptor or it is metabolized in prostate cells to an unknown metabolite with antiproliferative activity without 1 alpha-hydroxylation. Thus, the results suggest that 25(OH)-19-nor-D(3) has potential as an attractive agent for prostate cancer therapy.  相似文献   

7.
Low-level exposure to lead impairs longitudinal growth in children and in experimental animals. The proposed mechanisms include decreased osteocalcin secretion in response to 1 alpha,25-(OH)2 vitamin D3 and decreased response to insulin-like growth factor-I. The interaction of lead, 1 alpha,25-(OH)2 vitamin D3, and insulin-like growth factor-I was investigated in an osteoblast-like cell line from rat osteosarcoma, ROS 17/2.8. Cells were cultured 24 hr in a serum-free medium with lead, 1 alpha,25-(OH)2 vitamin D3, and insulin-like growth factor-I. 1 alpha,25-(OH)2 vitamin D3 (10 nM) evoked a 4-5 X increase in osteocalcin secretion and a 100% increase in cellular alkaline phosphatase activity but no increase in DNA/cell layer. Insulin-like growth factor-I (92.5 ng/ml) evoked a 100% increase of osteocalcin secretion and a 20% increase in cellular DNA contents but no change in cellular alkaline phosphatase activity. Basal and stimulated cellular osteocalcin secretion, cellular alkaline phosphatase activity, and DNA contents were significantly inhibited by addition of 1-10 microM lead. The data are consistent with a toxic effect of lead on osteoblastic function and the cellular responses to 1 alpha,25-(OH)2 vitamin D3 and insulin-like growth factor-I. This interaction may be relevant to impaired childhood growth at low levels of lead exposure.  相似文献   

8.
This study was undertaken to determine whether 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)(2)D(3)], an active metabolite of vitamin D, protects dopaminergic neurons against the neurotoxic effects of glutamate and dopaminergic toxins using rat mesecephalic culture. Brief glutamate exposure elicited cytotoxicity in both dopaminergic and non-dopaminergic neurons. Pretreatment, but not co-administration, of 1 alpha,25-(OH)(2)D(3) protected both types of neurons against the cytotoxicity of glutamate in a concentration- and time-dependent manner. The neuroprotective effect of 1 alpha,25-(OH)(2)D(3) was inhibited by the protein synthesis inhibitor, cycloheximide. To investigate the mechanisms of these neuroprotective effects, we examined the effects of 1 alpha,25-(OH)(2)D(3) on neurotoxicity induced by calcium ionophore and reactive oxygen species (ROS). Pretreatment with 1 alpha,25-(OH)(2)D(3) protected both types of neurons against the cytotoxicity induced by A23187 in a concentration-dependent manner. Furthermore, 24-h pretreatment with 1 alpha,25-(OH)(2)D(3) concentration-dependently protected both types of neurons from ROS-induced cytotoxicity. A 24-h incubation with 1 alpha,25-(OH)(2)D(3) inhibited the increase in intracellular ROS level following H(2)O(2) exposure. A 24-h exposure to 1-methyl-4-phenylpyridium ion (MPP(+)) or 6-hydroxydopamine (6-OHDA) exerted selective neurotoxicity on dopaminergic neurons, and these neurotoxic effects were ameliorated by 1 alpha,25-(OH)(2)D(3). These results suggest that 1 alpha,25-(OH)(2)D(3) provides protection of dopaminergic neurons against cytotoxicity induced by glutamate and dopaminergic toxins by facilitating cellular functions that reduce oxidative stress.  相似文献   

9.
Recently, we demonstrated that some A-ring-modified vitamin D3 analogs had unique biological activity. Of these analogs, 2alpha-propoxy-1alpha,25(OH)2D3 (C3O1) and 2alpha-(3-hydroxypropoxy)-1alpha,25(OH)2D3 (O2C3) were examined for metabolism by CYP27A1 and CYP24A1. Surprisingly, CYP27A1 catalyzed the conversion from C3O1 to O2C3, which has 3 times more affinity for vitamin D receptor than C3O1. Thus, the conversion from C3O1 to O2C3 by CYP27A1 is considered to be a metabolic activation process. Five metabolites were detected in the metabolism of C3O1 and O2C3 by human CYP24A1 including both C-23 and C-24 oxidation pathways. On the other hand, three metabolites of the C-24 oxidation pathway were detected in their metabolism by rat CYP24A1, indicating a species-based difference in the CYP24A1-dependent metabolism of C3O1 and O2C3 between humans and rats. Kinetic analysis revealed that the Km and kcat values of human CYP24A1 for O2C3 are, respectively, approximately 16 times more and 3 times less than those for 1alpha,25(OH)2D3. Thus, the catalytic efficiency, kcat/Km, of human CYP24A1 for O2C3 is only 2% of 1alpha,25(OH)2D3. These results and a high calcium effect of C3O1 and O2C3 in animal experiments using rats suggest that C3O1 and O2C3 are promising for clinical treatment of osteoporosis.  相似文献   

10.
The compound 26,26,26,27,27,27-F(6)-1alpha,25(OH)(2)D(3) is a hexafluorinated analog of the active form of Vitamin D(3). The enhanced biological activity of F(6)-1alpha,25(OH)(2)D(3) is considered to be related to a decreased metabolic inactivation of the compound in target tissues such as the kidneys, small intestine, and bones. Our previous study demonstrated that CYP24 is responsible for the metabolism of F(6)-1alpha,25(OH)(2)D(3) in the target tissues. In this study, we compared the human and rat CYP24-dependent metabolism of F(6)-1alpha,25(OH)(2)D(3) by using the Escherichia coli expression system. In the recombinant E. coli cells expressing human CYP24, bovine adrenodoxin and NADPH-adrenodoxin reductase, F(6)-1alpha,25(OH)(2)D(3) was successively converted to F(6)-1alpha,23S,25(OH)(3)D(3), F(6)-23-oxo-1alpha,25(OH)(2)D(3), and the putative ether compound with the same molecular mass as F(6)-1alpha,25(OH)(2)D(3). The putative ether was not observed in the recombinant E. coli cells expressing rat CYP24. These results indicate species-based difference between human and rat CYP24 in the metabolism of F(6)-1alpha,25(OH)(2)D(3). In addition, the metabolite with a cleavage at the C(24)z.sbnd;C(25) bond of F(6)-1alpha,25(OH)(2)D(3) was detected as a minor metabolite in both human and rat CYP24. Although F(6)-1alpha,23S,25(OH)(3)D(3) and F(6)-23-oxo-1alpha,25(OH)(2)D(3) had a high affinity for Vitamin D receptor, the side-chain cleaved metabolite and the putative ether showed extremely low affinity for Vitamin D receptor. These findings indicate that human CYP24 has a dual pathway for metabolic inactivation of F(6)-1alpha,25(OH)(2)D(3) while rat CYP24 has only one pathway. Judging from the fact that metabolism of F(6)-1alpha,25(OH)(2)D(3) in rat CYP24-harboring E. coli cells is quite similar to that in the target tissues of rat, the metabolism seen in human CYP24-harboring E. coli cells appear to exhibit the same metabolism as in human target tissues. Thus, this recombinant system harboring human CYP24 appears quite useful for predicting the metabolism and efficacy of Vitamin D analogs in human target tissues before clinical trials.  相似文献   

11.
Using new steroidal side-chain-lengthened 26,27-dialkyl analogues of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3], we manipulated the synthesis of thromboxane and thromboxane-producing enzymes, cyclo-oxygenase and thromboxane synthase, in human promyelocytic leukemia (HL-60) cells in serum-free culture. The order of potency of the analogues for stimulating thromboxane B2 synthetic activity from arachidonic acid (reflecting combined cyclo-oxygenase activity and thromboxane synthase activity) and from prostaglandin H2 (thromboxane synthase activity only) as well as for cyclo-oxygenase induction was 1 alpha,25-(OH)2D3 > or = 1 alpha,25-(OH)2-26,27-CH3)2D3 > 1 alpha,25-(OH)2-26,27-(C2H5)2D3 > 1 alpha,25-(OH)2-26,27-(C3H7)2D3. These results suggest that there are functional and structural limits to the chain length of C-26 and C-27 dialkyl groups flanking the C-25-OH group in the 1 alpha,25-(OH)2D3 molecule for expressing thromboxane synthetic activity in HL-60 cells. Removal of the C-1 alpha-OH group from 1 alpha,25-(OH)2D3 led to markedly decreased thromboxane synthetic activity in HL-60 cells. These structure-activity relationships indicate that both the C-25-OH and C-1 alpha-OH groups in the 1 alpha,25-(OH)2D3 molecule are essential for expressing thromboxane synthesis in HL-60 cells. Also, the rank order for stimulating thromboxane synthesis correlated well with the binding affinity of these dialkyl analogues for the 1 alpha,25-(OH)2D3 receptor of HL-60 cells, suggesting a 1 alpha,25-(OH)2D3 receptor-mediated induction mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Using six different cultured cell models representing osteoblast, intestine, kidney and keratinocyte, we have demonstrated that 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) is metabolized into 3-epi-1alpha,25(OH)2D3 in vitamin D-target cells. Although differences existed in the amount of 3-epi-1alpha,25(OH)2D3 formed with different cell types, it was apparent that 1alpha,25(OH)2D3 was subjected to metabolism both through the C24-oxidation and 3-epimerization pathways. Time course and dose response studies showed that the production of 3-epi-1alpha,25(OH)2D3 was enzymatic. It is interesting to note that this epimerization proceeded from 3beta towards 3alpha unidirectionally, and this conversion was not inhibited by ketoconazole. These data suggest that cytochrome P450 related enzymes including the 24-hydroxylase would not affect this reaction. The biological activity of 3-epi-1alpha,25(OH)2D3 was found to be lower than the native 1alpha,25(OH)2D3 in suppressing of proliferation of HL-60 cells, while the affinity of 3-epi-1alpha,25(OH)2D3 for vitamin D-binding protein was 2.5-fold higher than that of 1alpha,25(OH)2D3. The results indicate that 3-epimerization may change the pharmacokinetics and catabolism of 1alpha,25(OH)2D3 in vitamin D-target cells.  相似文献   

13.
Two novel metabolites of the dipeptidyl peptidase inhibitor sitagliptin (MK-0431, (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)-butan-2-amine), were identified after purification from dog urine. The metabolites (referred to as M2 and M5) were characterized by hydrogen/deuterium exchange tandem mass spectrometry and NMR spectroscopy nuclear Overhauser effect experiments as the cis and trans stereoisomers formed by cyclization of the primary amino group with the alpha carbon of the piperazine ring, following oxidative desaturation.  相似文献   

14.
26,26,26,27,27,27-Hexafluoro-1alpha,25-dihydroxyvitamin D(3) [F(6)-1alpha, 25(OH)(2)D(3)], which is now clinically used as a drug for secondary hyperparathyroidism, is a hexafluorinated analog of the active form of vitamin D(3). Our previous studies demonstrated that CYP24A1 is responsible for the metabolism of F(6)-1alpha,25(OH)(2)D(3) in the target tissues and that F(6)-1alpha,25(OH)(2)D(3) was successively converted to F(6)-1alpha,23S,25(OH)(3)D(3) and F(6)-23-oxo-1alpha,25(OH)(2)D(3). In this study, we examined the metabolism of F(6)-1alpha,25(OH)(2)D(3),F(6)-1alpha,23S,25(OH)(3)D(3), and F(6)-23-oxo-1alpha,25(OH)(2)D(3) by human UDP-glucuronosyltransferases (UGTs). Of these compounds, F(6)-1alpha,23S,25(OH)(3)D(3) was remarkably glucuronidated both in human liver microsomes and in the recombinant system expressing human UGT. No significant interindividual differences were observed among 10 human liver samples. The recombinant system for 12 species of human UGTs revealed that F(6)-1alpha,23S,25(OH)(3)D(3) glucuronidation was specifically catalyzed by UGT1A3. The information obtained in this study seems very useful to predict the metabolism and efficacy of vitamin D analogs in human bodies before clinical trials. In addition, note that for the first time a possible probe substrate for UGT1A3 has been found.  相似文献   

15.
1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3] has been shown to exert both its nuclear vitamin D receptor (nVDR)-mediated genomic actions and membrane vitamin D receptor (mVDR)-mediated nongenomic actions. In this study, the effects of 1alpha,25(OH)2D3 and its analogues on transmembrane Ca2+ influx were examined in the growth phase of rat osteosarcoma ROS17/2.8 cells. Like BAYK8644 (2 x 10(-5)M), a well-known L-type Ca2+ channel agonist, 1alpha,25(OH)2D3 (10(-8)M) increased transmembrane influx of Ca2+ through voltage-dependent Ca2+ channels and increased intracellular Ca2+ concentration within 2 min of addition to the medium. The 1alpha,25(OH)2D3-induced Ca2+ influx was completely blocked by pre-treatment with nifedipine (2 x 10(-5)M), an L-type Ca2+ channel antagonist. Two vitamin D analogues, 22-oxa-1alpha,25(OH)2D3 (OCT, 10(-8) M) and 20-epi-22-oxa-24a, 26a,27a-trihomo-1alpha,25(OH)2D3 (KH1060, 10(-8)M), which were 3.8 and 3600-fold more active than 1alpha,25(OH)2D3 in stimulating differentiation on human promyelocytic leukemic HL-60 cells, respectively, also increased intracellular Ca2+ concentration, while their Ca2+ channeling activities were similar to or significantly weaker than that of 1alpha,25(OH)2D3. Furthermore, the enhanced transmembrane Ca2+ influx induced by 1alpha,25(OH)2D3 (10(-8)M) or OCT (10(-8)M) was completely blocked by pre-treatment with the respective 1beta epimer [1beta,25(OH)2D3 and 1beta-OCT] at equal concentration. These findings suggest that 1alpha,25(OH)2D3 and its analogues modulate transmembrane Ca2+ influx in osteoblast-like cells by opening L-type Ca2+ channels which can recognize 1alpha-hydroxy analogues as agonists and 1beta-hydroxy analogues as antagonists.  相似文献   

16.
17.
1. The metabolism of [3H]-S-(-)-cotinine in vivo has been investigated in the guinea pig. The quantitive determination of urinary metabolites has been carried out using a high-performance liquid radiochromagraphic procedure. Metabolite analysis of C- and N-oxidation products, and N-methylcotininium ion, were carried out on two chromatographic systems: (a) Partisil-10 SCX cation-exchange chromatography, and (b) Partisil-10 ODS reverse-phase chromatography. 2. 3-Hydroxycotinine was the major urinary metabolite of cotinine in the guinea pig, accounting for 57% of the total radioactivity in the urine. Cotinine-N-oxide constituted 18% of total metabolites in the urine, whereas neither nicotine nor the N-methylcotininium ion were detected as urinary metabolites of [3H]-S-(-)cotinine. S-(-)-Cotinine was extensively metabolized in the guinea pig; total recovery of radioactivity in 24 h urine was very high (greater than 95%) and very little cotinine was detected (less than 1%) in the urine. 3. Two unidentified metabolites of [3H]-S-(-)-cotinine were detected which collectively constituted approximately 20% of total urinary tritium.  相似文献   

18.
1. The in vivo urinary metabolites of 3H(+)-8-chloro-5(2,3- dihydrobenzofuran-7-yl)-7-methoxymethyloxy-3-methyl-2,3,4,5-tetrah ydro-1H-3- benzazepine isolated from Wistar rats have been characterized by mass spectrometry and n.m.r. spectroscopy. 2. Metabolites are formed by N-demethylation, hydroxylation of the dihydrobenzofuran moiety, and elimination of the methoxymethyl group followed by glucuronidation. All combinations of these metabolic pathways were found in the metabolites in urine. 3. In the faeces metabolites formed by hydroxylation of the dihydrobenzofuran moiety and elimination of the methoxymethyl moiety dominate, while N-demethylated metabolites are present only in small amounts. 4. The major plasma metabolite was formed by elimination of the methoxymethyl group followed by glucuronidation. Only minute amounts of other metabolites were present.  相似文献   

19.
In vivo liver metabolites of delta1-tetrahydrocannabinol (delta1-THC) were examined with a gas chromatograph--mass spectrometer--computer system as trimethylsilyl (TMS), [2H9]TMS and methyloxime-TMS derivatives. In addition to the reported monohydroxy, acid, and hydroxyacid metabolites, the following multiply substituted metabolites were identified: 2',7-, 3', 7-, and 6beta,7-dihydroxy-delta1-THC; 2',6alpha,7-, and 3',6alpha,7-trihydroxy-delta1-THC; 2'-, 3'-, and 7-hydroxy-6-oxo-delta1-THC, and 2',7- and 3',7-dihydroxy-6-oxo-delta1-THC. The ketones and hydroxyacids were reduced to common alcohols with lithium aluminium deuteride and the number of deuterium atoms in the product was used to distinguish the metabolic alcohols from those produced by reduction.  相似文献   

20.
2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeA alpha C can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study, the in vivo metabolism of MeA alpha C in rats was investigated. Rats were dosed with tritium-labeled MeA alpha C, and urine and feces were collected over 3 days. The metabolites of MeA alpha C were identified by high performance liquid chromatography-mass spectrometry and quantified by liquid scintillation counting. Conjugated metabolites were characterized by enzymatic hydrolyzes with beta-glucuronidase or arylsulfatase. The data showed that the metabolic pattern of MeA alpha C was similar in all rats. About 65% of the dose was excreted in urine and feces, and the major amount of MeA alpha C-metabolites was excreted during the first 24 h. Thirty-four percent of the dose was found in the rat urine samples collected to 24 h. In addition to unmetabolized MeA alpha C and two phase I metabolites, 6-OH-MeA alpha C and 7-OH-MeA alpha C, the following conjugated metabolites were identified: MeA alpha C-N(2)-glucuronide, A alpha C-3-CH(2)O-glucuronide, 3-carboxy-A alpha C and 3-carboxy-A alpha C-glucuronide, and sulfate and glucuronide conjugates of 6-OH-MeA alpha C and 7-OH-MeA alpha C. Also, a large amount of a rather unstable compound proposed to be of MeA alpha C-N1-glucuronide was found. About 21% of the dose was excreted in feces during the first 24 h, and MeA alpha C and 7-OH-MeA alpha C were the only compounds identified in feces. Any activated metabolites of MeA alpha C were not detected in rat urine or feces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号