首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antiangiogenic therapy is a promising strategy for the treatment of cancer since tumor development and metastases require angiogenesis. Vascular endothelial growth factor (VEGF) is one of the most important factors in tumor angiogenesis. In the present study, we investigated the antitumor effect of an adenovirus (AdVEGF-ExR) expressing the extracellular domain of the human VEGF receptor (flt-1) using two different urological tumor/mouse systems. RENCA, a renal cell carcinoma of BALB/c origin, and MBT-2, a poorly differentiated transitional carcinoma of C3H/He origin, were used. Both types of tumor were in vitro infected with AdVEGF-ExR and inoculated subcutaneously into the abdomens of syngenenic mice, and tumor growth was measured twice weekly. In some experiments, BALB/c mice with established RENCA tumors were injected intramuscularly with AdVEGF-ExR as a therapeutic model. The cytotoxicity of spleen cells from the tumor-rejected mice was assessed by 51Cr-release assay. Although the in vitro cell growth of either MBT-2 or RENCA was not affected by infection with AdVEGF-ExR, the in vivo growth of both AdVEGF-ExR-infected tumors was significantly suppressed in the syngeneic mice. In addition, although 2 of 5 mice rejected the AdVEGF-ExR-infected RENCA, tumor-specific cytotoxic T lymphocytes were not generated from their spleen cells, thus suggesting no cellular immune response. In a therapeutic model, intramuscular injections of AdVEGF-ExR at a remote site also significantly suppressed the growth of the subcutaneously established RENCA. These results indicate that the adenovirus-mediated expression of a soluble VEGF receptor can be an effective therapy for urological cancer treatment; however, such VEGF-targeted gene therapy is not necessarily accompanied by subsequent antitumor T cell immunity.  相似文献   

2.
Tumor growth and metastasis are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) plays an important role in the angiogenesis of numerous solid malignancies including colon cancer. Evidence from preclinical and clinical studies indicates VEGF is the predominant angiogenic factor in human colon cancer and is associated with formation of metastases and poor prognosis. Based on these results, it was hypothesized that inhibition of VEGF receptor activity could inhibit colon cancer liver metastasis. To test this hypothesis, the authors evaluated the ability of a small molecule inhibitor specific for the tyrosine kinase VEGF receptor Flk-1/KDR (SU5416) or multiple tyrosine kinase receptors (SU6668) to inhibit tumor angiogenesis and metastasis in a model of colon cancer hepatic metastasis. Both SU5416 and SU6668 inhibited metastases, microvessel formation, and cell proliferation while increasing tumor cell and endothelial cell apoptosis. These results showed that targeting the VEGF receptor/ligand system is a rational approach to inhibiting tumor growth and prolonging survival.  相似文献   

3.
We investigated the molecular mechanisms of angiogenesis in experimental brain metastasis. Cells from six different human cancer cell lines (proven to produce visceral metastasis) were injected into the internal carotid artery of nude mice. Colon carcinoma (KM12SM) and lung adenocarcinoma (PC14PE6 and PC14Br) cells produced large, fast-growing parenchymal brain metastases, whereas lung squamous cell carcinoma (H226), renal cell carcinoma (SN12PM6), and melanoma (TXM13) cells produced only a few slow-growing brain metastases. Rapidly progressing brain metastases contained many enlarged blood vessels. The expression of VEGF mRNA and protein by the tumor cells directly correlated with angiogenesis and growth of brain metastasis. Causal evidence for the essential role of VEGF in this process was provided by transfecting PC14PE6 and KM12SM cells with antisense-VEGF165 gene, which significantly decreased the incidence of brain metastasis. In contrast, transfection of H226 human lung squamous carcinoma cells with sense-VEGF121 or sense-VEGF165 neither enhanced nor inhibited formation of brain metastases. Collectively, the results indicate that VEGF expression is necessary but not sufficient for the production of brain metastasis and that the inhibition of VEGF represents an important therapeutic target.  相似文献   

4.
Increased vascular endothelial growth factor (VEGF) expression is associated with colon cancer metastases. We hypothesized that inhibition of VEGF receptor activity could inhibit colon cancer liver metastases. BALB/c mice underwent splenic injection with CT-26 colon cancer cells to generate metastases. Mice received daily i.p. injections of vehicle, tyrosine kinase inhibitor for Flk-1/KDR (SU5416) or tyrosine kinase inhibitor for VEGF, basic fibroblast growth factor, and platelet-derived growth factor receptors (SU6668). SU5416 and SU6668 respectively inhibited metastases (48.1% and 55.3%), microvessel formation (42.0% and 36.2%), and cell proliferation (24.4% and 27.3%) and increased tumor cell (by 2.6- and 4.3-fold) and endothelial cell (by 18.6- and 81.4-fold) apoptosis (P<0.001). VEGF receptor inhibitors increased endothelial cell apoptosis, suggesting that VEGF may serve as an endothelial survival factor.  相似文献   

5.
PURPOSE: Recent studies indicated that RUNX3 exhibits potent antitumor activity. However, the underlying molecular mechanisms of this activity remain unclear. In the present study, we used a gastric cancer model to determine the effect of RUNX3 expression on tumor angiogenesis. EXPERIMENTAL DESIGN: The effects of increased RUNX3 expression on vascular endothelial growth factor (VEGF) expression in and angiogenic potential of human gastric cancer cells were determined in vitro and in animal models. RUNX3 and VEGF expression was determined in 120 human gastric cancer specimens and their relationship was analyzed. RESULTS: RUNX3 gene transfer suppressed VEGF expression in human gastric cancer cells. Down-regulation of VEGF expression correlated with a significantly impaired angiogenic potential of human gastric cancer cells. Furthermore, RUNX3 restoration inhibited tumor growth and metastasis in animal models, which was consistent with inhibition of angiogenesis as determined by evaluating VEGF expression and tumor microvessel formation. In gastric cancer specimens, loss or decrease in RUNX3 expression inversely associated with increased VEGF expression and elevated microvessel formation. CONCLUSIONS: Our clinical and experimental data provide a novel molecular mechanism for the antitumor activity of RUNX3 and may help design effective therapy targeting RUNX3 pathway to control gastric cancer growth and metastasis.  相似文献   

6.
Cancer metastasis is infrequently evaluated in vivo, probably because of the few available models and the technical challenges associated with the detection of metastases. Here we show that the growth and metastases of HT1080 fibrosarcoma, A549 lung adenocarcinoma, and RENCA murine renal cancer cell lines in five different in vivo models can be successfully monitored by labeling the cells with luciferase prior to their implantation and then detecting their bioluminesence after injecting luciferin. We also used this in vivo imaging system to successfully demonstrate that YM529, a third generation bisphosphonate, inhibited the growth of sarcoma metastases in bone. We believe the models we have established in combination with the in vivo imaging system will be highly useful for future studies of metastasis and the testing of anti-metastatic therapies.  相似文献   

7.
Primary tumors and metastases require blood vessel formation to support their continued growth and eventual metastasis. They use existing vasculature during initial growth but eventually must orchestrate the development and maintenance of new vessels--a process termed angiogenesis--to grow beyond a small size and spread. Angiogenesis is regulated by a number of soluble factors, the relative proportions of which can exacerbate or inhibit the process. Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis, produced by the majority of human solid tumors. Inhibitors of VEGF might have an impact on the growth and metastasis of these cancers. The relevance of this strategy to the treatment of colorectal cancer was first successfully demonstrated in human clinical trials using a monoclonal antibody against VEGF. A potent antiangiogenic soluble recombinant decoy, VEGF Trap is a protein constructed from VEGF receptor-binding domains linked to an immunoglobulin G(1) constant region. It possesses an affinity for VEGF that is significantly higher than that of the monoclonal antibody. VEGF Trap has demonstrated marked efficacy in halting angiogenesis and shrinking tumors in preclinical animal models and is currently being studied in phase I clinical trials in humans with advanced solid malignancies.  相似文献   

8.
VEGF反义RNA对人食管癌细胞生长转移的抑制作用   总被引:1,自引:0,他引:1  
潘立峰  单保恩  郑宝军  李巧霞 《肿瘤》2006,26(4):327-330
目的:探讨研究血管内皮生长因子(vascularendothelialgrowthfactor,VEGF)反义RNA在抑制恶性肿瘤生长和转移及抗肿瘤血管生成治疗中的意义。方法:采用脂质体法将反义VEGFcDNA质粒转染入食管癌细胞TE1;MTT法检测细胞增殖情况;原位杂交和RTPCR技术检测VEGF的表达水平,FCM分析细胞周期,并对转染前后细胞进行裸鼠体内生长转移等生物学行为实验。结果:转染反义VEGFcDNA质粒的TE1细胞中VEGF表达水平降低,与对照组比较,裸鼠体内成瘤时间延长,肿瘤生长速度减慢,质量和体积差异有显著性意义(P<0.05)。结论:VEGF反义RNA能抑制食管癌TE1细胞VEGF表达,对裸鼠体内TE1细胞的生长有抑制作用,有望成为食管癌基因治疗的优选基因之一。  相似文献   

9.
Zhang L  Hannay JA  Liu J  Das P  Zhan M  Nguyen T  Hicklin DJ  Yu D  Pollock RE  Lev D 《Cancer research》2006,66(17):8770-8778
To better elucidate the role of vascular endothelial growth factor (VEGF)(165) in soft tissue sarcoma (STS) growth, metastasis, and chemoresistance, we generated stably transfected human STS cell lines with VEGF(165) to study the effect of VEGF(165) on STS cells in vitro and the effect of culture medium from these cells on human umbilical vascular endothelial cells. Severe combined immunodeficient mice bearing xenografts of transfected cell lines were used to assess the effect of VEGF overexpression and the effect of VEGF receptor (VEGFR) 2 inhibition on STS growth, metastasis, and response to doxorubicin. VEGF(165)-transfected xenografts formed highly vascular tumors with shorter latency, accelerated growth, enhanced chemoresistance, and increased incidence of pulmonary metastases. Blockade of VEGFR2 signaling using DC101 anti-VEGFR2 monoclonal antibody enhanced doxorubicin chemoresponse; this combined biochemotherapy inhibited tumor growth and decreased pulmonary metastases without overt toxicity. Combined therapy reduced microvessel counts while increasing vessel maturation index. VEGF overexpression did not affect on the sarcoma cells per se; however, conditioned medium from VEGF transfectants caused increased endothelial cell proliferation, migration, and chemoresistance. Addition of DC101 induced endothelial cell sensitivity to doxorubicin and suppressed the activity of matrix metalloproteinases secreted by endothelial cells. We therefore conclude that VEGF is a critical determinant of STS growth and metastasis and that STS chemoresistance, in our model, is a process induced by the interplay between STS cells and tumor-associated endothelial cells. STS growth and metastasis can be interrupted by combined low-dose doxorubicin and anti-VEGFR2, a strategy that attacks STS-associated endothelial cells. In the future, such therapeutic approaches may be useful in treating STS before the development of clinically apparent metastases.  相似文献   

10.
BACKGROUND: Vascular endothelial growth factor C (VEGF-C) stimulates tumor lymphangiogenesis (i.e., formation of lymphatic vessels) and metastasis to regional lymph nodes by interacting with VEGF receptor 3 (VEGFR-3). We sought to determine whether inhibiting VEGFR-3 signaling, and thus tumor lymphangiogenesis, would inhibit tumor metastasis. METHODS: We used the highly metastatic human lung cancer cell line NCI-H460-LNM35 (LNM35) and its parental line NCI-H460-N15 (N15) with low metastatic capacity. We inserted genes by transfection and established a stable N15 cell line secreting VEGF-C and a LNM35 cell line secreting the soluble fusion protein VEGF receptor 3-immunoglobulin (VEGFR-3-Ig, which binds VEGF-C and inhibits VEGFR-3 signaling). Control lines were transfected with mock vectors. Tumor cells were implanted subcutaneously into severe combined immunodeficient mice (n = 6 in each group), and tumors and metastases were examined 6 weeks later. In another approach, recombinant adenoviruses expressing VEGFR-3-Ig (AdR3-Ig) or beta-galactosidase (AdLacZ) were injected intravenously into LNM35 tumor-bearing mice (n = 14 and 7, respectively). RESULTS: LNM35 cells expressed higher levels of VEGF-C RNA and protein than did N15 cells. Xenograft mock vector-transfected LNM35 tumors showed more intratumoral lymphatic vessels (15.3 vessels per grid; 95% confidence interval [CI] = 13.3 to 17.4) and more metastases in draining lymph nodes (12 of 12) than VEGFR-3-Ig-transfected LNM35 tumors (4.1 vessels per grid; 95% CI = 3.4 to 4.7; P<.001, two-sided t test; and four lymph nodes with metastases of 12 lymph nodes examined). Lymph node metastasis was also inhibited in AdR3-Ig-treated mice (AdR3-Ig = 0 of 28 lymph nodes; AdLacZ = 11 of 14 lymph nodes). However, metastasis to the lungs occurred in all mice, suggesting that LNM35 cells can also spread via other mechanisms. N15 tumors overexpressing VEGF-C contained more lymphatic vessels than vector-transfected tumors but did not have increased metastatic ability. CONCLUSIONS: Lymph node metastasis appears to be regulated by additional factors besides VEGF-C. Inhibition of VEGFR-3 signaling can suppress tumor lymphangiogenesis and metastasis to regional lymph nodes but not to lungs.  相似文献   

11.
Cancer cells and their associated tumors have long been considered to exhibit unregulated proliferation or growth. However, a substantial body of evidence indicates that tumor growth is subject to both positive and negative regulatory controls. Here, we describe a novel property of tumor growth regulation that is neither species nor tumor-type specific. This property, functionally a type of feedback control, is triggered by the encapsulation of neoplastic cells in a growth-restricting hydrogel composed of an agarose matrix with a second coating of agarose to form 6- to 8-mm diameter macrobeads. In a mouse cell model of renal adenocarcinoma (RENCA cells), this process resulted in selection for a stem cell-like subpopulation which together with at least one other cell subpopulation drove colony formation in the macrobeads. Cells in these colonies produced diffusible substances that markedly inhibited in vitro and in vivo proliferation of epithelial-derived tumor cells outside the macrobeads. RENCA cells in monolayer culture that were exposed to RENCA macrobead-conditioned media exhibited cell-cycle accumulation in S phase due to activation of a G(2)/M checkpoint. At least 10 proteins with known tumor suppression functions were identified by analysis of RENCA macrobead-conditioned media, the properties of which offer opportunities to further dissect the molecular basis for tumor growth control. More generally, macrobead culture may permit the isolation of cancer stem cells and other cells of the stem cell niche, perhaps providing strategies to define more effective biologically based clinical approaches to treat neoplastic disease.  相似文献   

12.
L Lu  ST Luo  HS Shi  M Li  HL Zhang  SS He  Y Liu  Y Pan  L Yang 《Oncology reports》2012,28(4):1332-1338
Vascular endothelial growth factor (VEGF) is an important signaling protein and a predominant mediator of angiogenesis in tumor growth and metastasis. Therefore, antagonism of the VEGF pathway results in inhibition of abnormal angiogenesis, then suppression of tumor growth and metastasis. VEGF-Trap, a high-affinity soluble decoy receptor, is currently in phase II clinical trails, and has demonstrated more efficacy in different types of solid tumors by intravenous injection every two weeks. In our study, we used recombinant AAV2 as a delivery vehicle to achieve long-lasting expression of VEGF Trap protein in a mouse model for the first time. We report that AAV2-VEGF-Trap can be safely administered and sustained expression in?vivo via a single intravenously administration, simultaneously suppressing primary tumor growth and preventing the pulmonary metastases of 4T1 tumors. Decreased microvessel density and increased tumor cell apoptosis were observed in the treatment group. AAV2-VEGF-Trap can obviously decrease not only the concentration of VEGF in sera, but also the concentration of other angiogenic factors, such as aFGF, bFGF, angiopoietin-1 and others. These studies suggest that AAV-mediated long-term expression of VEGF-Trap is a useful and safe tool to block tumor progression and inhibit spontaneous pulmonary metastases.  相似文献   

13.
PURPOSE: The purpose of this study was to develop antagonists specific for the vascular endothelial growth factor receptor 1 (VEGFR1) and to investigate the effects of the antagonists on the VEGF-induced endothelial cell functions and tumor progression. EXPERIMENTAL DESIGN: Hexapeptides that inhibit binding of VEGFR1 and VEGF were identified through screening of synthetic peptide library. A selected peptide, anti-Flt1, was investigated for binding specificity with various receptors and ligand peptides. Effects of the peptide on proliferation, cell migration, and fibrin gel-based angiogenesis of endothelial cells were also investigated. The activity of anti-Flt1, in vivo, was evaluated for inhibition of tumor growth and metastasis in VEGF-secreting cancer cell-implanted mice by s.c. injections of the peptide. RESULTS: Here, we report on a short peptide that binds to VEGFR1 and prevents binding of VEGF. A hexapeptide, anti-Flt1 (Gly-Asn-Gln-Trp-Phe-Ile or GNQWFI), was identified from peptide libraries. The anti-Flt1 peptide shows specificity toward binding to VEGFR1 and it inhibits binding of VEGF, placental growth factor (PlGF), and VEGF/PlGF heterodimer to VEGFR1. This peptide does not inhibit the proliferation of endothelial cells induced by VEGF and VEGF/PlGF heterodimer but it effectively blocks VEGF-induced migration of endothelial cells and their capacity to form capillary-like structures on fibrin gel-based in vitro angiogenesis system. Furthermore, growth and metastasis of VEGF-secreting tumor cells were also significantly inhibited by s.c. injections of anti-Flt1 peptide in nude mice. Accordingly, VEGF-induced migration and capillary formation are mediated through VEGFR1, and these processes may play an important role in the growth and metastasis of VEGF-secreting tumors. CONCLUSIONS: We show that a peptide (anti-Flt1) specific for VEGFR1 inhibits growth and metastasis of tumor that secretes VEGF. The effects on endothelial cell functions, in vitro, indicate that the anticancer activity of anti-Flt1 peptide with reduced blood vessel density could also be due to the blocking of VEGFR1-mediated endothelial cell migration and tube formation. Although the effects of anti-Flt1 peptide still remain to be further characterized, the receptor 1-specific peptide antagonist, anti-Flt1, has potential as a therapeutic agent for various angiogenesis-related diseases, especially cancer.  相似文献   

14.
血管内皮生长因子抗体对肿瘤转移的抑制作用   总被引:6,自引:1,他引:5  
Wang G  Yang Z  Shou C 《中华肿瘤杂志》1997,19(6):407-409
目的探讨阻断血管内皮生长因子(vascularendothelialgrowthfactor,VEGF)是否可以抑制肿瘤的转移。方法应用IVTA2MA-891津白Ⅱ小鼠自发乳腺癌模型进行抗肿瘤转移的研究,此模型伴有高自发肺转移。结果Northern杂交及免疫组化证实,该乳腺癌原发灶及肺转移灶均可表达VEGF,且以后者为高。接种肿瘤后第9天,以VEGF抗体处理荷瘤小鼠,可明显抑制原发肿瘤的生长(44.0%,P<0.05),而对肺转移灶数目及转移灶大小的抑制率分别达73.0%和83.7%。结论VEGF抗体对肿瘤转移的抑制有潜在的应用价值。  相似文献   

15.
BACKGROUND: Recent studies have suggested that vascular endothelial growth factor (VEGF), in addition to its proangiogenic properties, also functions as a survival factor for endothelial cells. The authors hypothesized that inhibition of VEGF activity by blockade of VEGF receptor-2 (R-2) function prevents angiogenesis and decreases tumor growth in colon carcinoma liver metastases. METHODS: Spleens of mice were injected with human colon carcinoma cells producing liver metastases. After 7 days of tumor growth, groups of mice received either antibody to VEGFR-2 (DC101) or phosphate-buffered saline (control). In a follow-up experiment, a similar treatment regimen was followed except that mice were sacrificed at 1-week intervals to assess the time course of endothelial cell and tumor cell apoptosis. RESULTS: After 21 days of therapy, the authors observed a significant decrease in vessel counts in liver metastases from human colon carcinoma in nude mice after therapy with VEGFR-2 antibody. Tumor cell apoptosis was increased significantly in the tumors of mice receiving DC101. Temporal studies with immunofluorescent double staining for the microvasculature and apoptotic cells revealed an increase in endothelial cell apoptosis that preceded an increase in tumor cell apoptosis. In vitro, treatment of human umbilical vein endothelial cells with antibody to VEGFR-2 produced a > 2.5-fold increase in endothelial cell apoptosis. CONCLUSIONS: Therapy targeting the VEGFR-2 inhibited tumor growth in a murine model of colon carcinoma liver metastasis. Surprisingly, this therapy did not only inhibit angiogenesis but also led to endothelial cell death. These findings suggest that VEGF, via VEGFR-2 signaling, functions as a survival factor for tumor endothelial cells in liver metastases from colon carcinoma.  相似文献   

16.
Lymph node metastasis is the most important prognostic factor of endometrial cancer. However, effective therapy has not been established against lymph node metastasis. In this study, we explored the efficacy of gene therapy targeting lymph node metastasis of endometrial cancer by suppressing the action of vascular endothelial growth factor (VEGF)‐C through soluble VEGF receptor‐3 (sVEGFR‐3) expression. For this purpose, we first conducted a model experiment by introducing sVEGFR‐3 cDNA into an endometrial cancer cell line HEC1A and established HEC1A/sVEGFR‐3 cell line with high sVEGFR‐3 expression. The conditioned medium of HEC1A/sVEGFR‐3 cells inhibited lymphatic endothelial cell growth in vitro, and sVEGFR‐3 expression in HEC1A cells suppressed in vivo lymph node and lung metastases without inhibiting the growth of a subcutaneously inoculated tumor. To validate the therapeutic efficacy, adeno‐associated virus vectors encoding sVEGFR‐3 were injected into the skeletal muscle of mice with lymph node metastasis. Lymph node and lung metastases of HEC1A cells were completely suppressed by the muscle‐mediated expression of sVEGFR‐3 using adeno‐associated virus vectors. These results suggest the possibility of gene therapy against lymph node and lung metastases of endometrial cancer by using muscle‐mediated expression of sVEGFR‐3.  相似文献   

17.
肺一丸对小鼠移植瘤VEGF的表达及肺转移相关性研究   总被引:2,自引:0,他引:2  
目的 :探讨血管生成因子的表达对荷瘤小鼠肿瘤生长及肺转移的影响 ,以及肺一丸对其干预作用。方法 :采用LA795肺腺癌皮下接种T73 9小鼠模型。灌胃及腹腔给药法 ,观察中药肺一丸对肿瘤血管生成、VEGF的表达及肺转移的抑制作用。结果 :肺一丸能够抑制荷瘤小鼠肿瘤生长 ,高剂量抑瘤率为 49 6% ;降低血管密度 ,肺转移抑制率为 47 62 %。结论 :肺一丸能够通过调控肿瘤VEGF的表达 ,抑制肿瘤血管生成 ,起到抑制肿瘤生长和抗转移作用。  相似文献   

18.
Metastasis is the primary cause of death in patients with breast cancer. Overexpression of c-myc in humans correlates with metastases, but transgenic mice only show low rates of micrometastases. We have generated transgenic mice that overexpress both c-myc and vascular endothelial growth factor (VEGF) (Myc/VEGF) in the mammary gland, which develop high rates of pulmonary macrometastases. Gene expression profiling revealed a set of deregulated genes in Myc/VEGF tumors compared to Myc tumors associated with the increased metastatic phenotype. Cross-comparisons between this set of genes with a human breast cancer lung metastasis gene signature identified five common targets: tenascin-C(TNC), matrix metalloprotease-2, collagen-6-A1, mannosidase-alpha-1A and HLA-DPA1. Signaling blockade or knockdown of TNC in MDA-MB-435 cells resulted in a significant impairment of cell migration and anchorage-independent cell proliferation. Mice injected with clonal MDA-MB-435 cells with reduced expression of TNC demonstrated a significant decrease (P<0.05) in (1) primary tumor growth; (2) tumor relapse after surgical removal of the primary tumor and (3) incidence of lung metastasis. Our results demonstrate that VEGF induces complex alterations in tissue architecture and gene expression. The TNC signaling pathway plays an important role in mammary tumor growth and metastases, suggesting that TNC may be a relevant target for therapy against metastatic breast cancer.  相似文献   

19.
YM155, a small molecule inhibitor of the antiapoptotic protein survivin, has been developed as a potential anti-cancer drug. We investigated a combination therapy of YM155 and interleukin-2 (IL-2) in a mouse model of renal cell carcinoma (RCC). YM155 caused cell cycle arrest and apoptosis in renal cancer (RENCA) cells. Next, luciferase-expressing RENCA cells were implanted in the left kidney and the lung of BALB/c mice to develop RCC metastatic model. In this orthotopic renal and metastatic lung tumors models, YM155 and IL-2 additively decreased tumor weight, lung metastasis, and luciferin-stained tumor images. Also, the combination significantly suppressed regulatory T cells and myeloid-derived suppressor cells compared with single agent treatment. We suggest that a combination of YM155 and IL-2 can be tested as a potential therapeutic modality in patients with RCC.  相似文献   

20.
目的 观察成纤维细胞生长因子受体1(FGFR1)和血管内皮生长因子(VEGF)在肺鳞癌中的表达,并分析其与预后的相关性.方法 收集肺鳞癌组织标本135例和癌旁组织标本125例.采用免疫组织化学染色法检测不同肺组织中FGFR1和VEGF的表达水平,分析两者表达与临床病理参数的关系.肺鳞癌患者预后的影响因素采用Cox多因素分析.结果 肺鳞癌组织标本中FGFR1和VEGF的阳性表达率和表达水平均高于癌旁组织(P﹤0.05);在肺鳞癌组织中,FGFR1阳性表达与肿瘤分化程度、淋巴结转移、远处器官转移及TNM分期有关(P﹤0.05),VEGF阳性表达与肿瘤分化程度、淋巴结转移及TNM分期有关(P﹤0.05);Cox多因素分析结果显示,肿瘤分化程度、淋巴结转移、TNM分期、FGFR1及VEGF均为肺鳞癌预后的独立因素(P﹤0.05).结论 肺鳞癌患者的FGFR1和VEGF表达水平升高,并在肿瘤分化、淋巴结转移、TNM分期及预后中发挥重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号