首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple myeloma (MM) is a plasma cell malignancy preliminary localized in the bone marrow and characterized by its capacity to disseminate. IL-6 and IGF-1 have been shown to mediate proliferative and anti-apoptotic signals in plasmocytes. However, in primary plasma-cell leukemia (PCL) and in end-stage aggressive extramedullar disease, the cytokine requirement for both effects may be not mandatory. This suggests that constitutive activation of signaling pathways occurs. One of the signaling pathways whose deregulation may play an oncogenic role in MM is the phosphatidylinositol 3-kinase (PI 3-K) pathway. In human growth factor-independent MM cell lines OPM2 and RPMI8226, we show that the PI 3-K inhibitors LY294002 and Wortmannin strongly inhibited cell proliferation, whereas inhibition of the mammalian Target Of Rapamycin (mTOR)/P70-S6-kinase (P70(S6K)) pathway with rapamycin or of the Mitogen-Activated Protein Kinase (MAPK) pathway with PD98059 had minimal effect on proliferation. In both cell lines, constitutive activation of the PI 3-K/Akt/FKHRL-1, mTOR/P70(S6K) and MAPK pathways was detected. LY294002 inhibited phosphorylation of Akt, FKHRL-1 and P70(S6K) but had no effect on ERK1/2 phosphorylation, indicating that the PI 3-K and MAPK pathways are independent. IGF-1 but not IL-6 increased phosphorylation of Akt, FKHRL-1 and P70(S6K). Purified plasmocytes from four patients with MM and two patients with primary PCL were studied. In three of them including the two patients with PCL, constitutive phosphorylation of Akt, FKHRL-1 and P70(S6K) was present, inhibited by LY294002 and enhanced by IGF-1. In these patients with constitutive Akt activation, normal PTEN expression was detected. PI 3-K inhibition induced caspase-dependent apoptosis as confirmed by inhibition with the large spectrum caspase inhibitor Z-VAD-FMK and cleavage of pro-caspase-3. Both cell lines spontaneously expressed Skp2 and cyclin D1 proteins at high levels but no p27(Kip1) protein. In the presence of LY294002, cell-cycle arrest in G0/G1 was observed, p27(Kip1) protein expression was up-regulated whereas the expression of both Skp2 and cyclin D1 dramatically diminished. PI 3-K-dependent GSK-3alpha/beta constitutive phosphorylation was also detected in OPM2 cells that may contribute to high cyclin D1 expression. Overall, our results suggest that PI 3-K has a major role in the control of proliferation and apoptosis of growth factor-independent MM cell lines. Most of the biological effects of PI 3-K activation in these cell lines may be mediated by the opposite modulation of p27(Kip1) and Skp2 protein expression. Moreover, constitutive activation of this pathway is a frequent event in the biology of MM in vivo and may be more frequently observed in PCL.  相似文献   

2.
Although c-Jun NH(2)-terminal kinase (JNK) is activated by treatment with therapeutic agents, the biologic sequelae of inhibiting constitutive activation of JNK has not yet been clarified. In this study, we examine the biologic effect of JNK inhibition in multiple myeloma (MM) cell lines. JNK-specific inhibitor SP600125 induces growth inhibition via induction of G1 or G2/M arrest in U266 and MM.1S multiple myeloma cell lines, respectively. Neither exogenous IL-6 nor insulin-like growth factor-1 (IGF-1) overcome SP600125-induced growth inhibition, and IL-6 enhances SP600125-induced G2/M phase in MM.1S cells. Induction of growth arrest is mediated by upregulation of p27(Kip1), without alteration of p53 and JNK protein expression. Importantly, SP600125 inhibits growth of MM cells adherent to bone marrow stromal cells (BMSCs). SP600125 induces NF-kappaB activation in a dose-dependent fashion, associated with phosphorylation of IkappaB kinase alpha (IKKalpha) and degradation of IkappaBalpha. In contrast, SP600125 does not affect phosphorylation of STAT3, Akt, and/or ERK. IKK-specific inhibitor PS-1145 inhibits SP600125-induced NF-kappaB activation and blocks the protective effect of SP600125 against apoptosis. Our data therefore demonstrate for the first time that inhibiting JNK activity induces growth arrest and activates NF-kappaB in MM cells.  相似文献   

3.
4.
The newly discovered member of the tumor necrosis factor superfamily, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been identified as an apoptosis-inducing agent in sensitive tumor cells but not in the majority of normal cells, and hence it is of potential therapeutic application. However, many tumor cells are resistant to Apo2L/TRAIL-mediated apoptosis. Various chemotherapeutic drugs have been shown to sensitize tumor cells to members of the tumor necrosis factor family. However, it is not clear whether sensitization by drugs and sensitivity to drugs are related or distinct events. This study examined whether an Adriamycin-resistant multiple myeloma (MM) cell line (8226/Dox40) can be sensitized by Adriamycin (ADR) to Apo2L/TRAIL-mediated apoptosis. Treatment with the combination of Apo2L/TRAIL and subtoxic concentrations of ADR resulted in synergistic cytotoxicity and apoptosis for both the parental 8226/S and the 8226/Dox40 tumor cells. Adriamycin treatment modestly up-regulated Apo2L/TRAIL-R2 (DR5) and had no effect on the expression of Fas-associated death domain, c-FLIP, Bcl-2, Bcl(xL), Bax, and IAP family members (cIAP-1, cIAP-2, XIAP, and survivin). The protein levels of pro-caspase-8 and pro-caspase-3 were not affected by ADR, whereas pro-caspase-9 and Apaf-1 were up-regulated. Combination treatment with Apo2L/TRAIL and ADR resulted in significant mitochondrial membrane depolarization and activation of caspase-9 and caspase-3 and apoptosis. Because ADR is shown to sensitize ADR-resistant tumor cells to Apo2L/TRAIL, these findings reveal that ADR can still signal ADR-resistant tumor cells, resulting in the modification of the Apo2L/TRAIL-mediated signaling pathway and apoptosis. These in vitro findings suggest the potential application of combination therapy of Apo2L/TRAIL and subtoxic concentrations of sensitizing chemotherapeutic drugs in the clinical treatment of drug-resistant/Apo2L/TRAIL-resistant multiple myeloma.  相似文献   

5.
TRAIL is a member of the tumor necrosis factor superfamily which induces apoptosis in cancer but not in normal cells. Akt1 promotes cell survival and blocks apoptosis. The scope of this paper was to investigate whether a HL60 human leukemia cell clone (named AR) with constitutively active Akt1 was resistant to TRAIL. We found that parental (PT) HL60 cells were very sensitive to a 6 h incubation in the presence of TRAIL and died by apoptosis. In contrast, AR cells were resistant to TRAIL concentrations as high as 2 microg/ml for 24 h. Two pharmacological inhibitors of PI3K, Ly294002 and wortmannin, restored TRAIL sensitivity of AR cells. AR cells stably overexpressing PTEN had lower Akt1 activity and were sensitive to TRAIL. Conversely, PT cells stably overexpressing a constitutive active form of Akt1 became TRAIL resistant. TRAIL activated caspase-8 but not caspase-9 or -10 in HL60 cells. We did not observe a protective effect of Bcl-X(L) or Bcl-2 against the cytotoxic activity of TRAIL, even though TRAIL induced cleavage of BID. There was a close correlation between TRAIL sensitivity and intranuclear presence of the p50 subunit of NF-kappaB. Higher levels of the FLICE inhibitory protein, cFLIP(L), were observed in TRAIL-resistant cells. Both the cell permeable NF-kappaB inhibitor SN50 and cycloheximide lowered cFLIP(L)expression and restored sentivity of AR cells to TRAIL. Our results suggest that Akt1 may be an important regulator of TRAIL sensitivity in HL60 cells through the activation of NF-kappaB and up-regulation of cFLIP(L) synthesis.  相似文献   

6.
Apo2 Ligand or Tumour Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (Apo2L/TRAIL) is a member of the TNF gene superfamily that selectively induces apoptosis in tumor cells of diverse origins through engagement of death receptors. We have recently demonstrated that Type I interferons (IFN-alpha and beta) induce apoptosis in multiple myeloma (MM) cell lines and in plasma cells from MM patients. Moreover, Apo2L selectively induces apoptosis of patient MM tumor cells while sparing non-malignant cells. Apo2L induction is one of the earliest events following IFN administration in these cells. IFNs activate Caspases and the mitochondrial-dependent apoptotic pathway mediated by Apo2L production. Cell death induced by IFNs and Apo2L can be blocked by a dominant-negative Apo2L receptor, DRS, and is regulated by members of the Bcl-2 family of proteins. This review is focused on the apoptotic signaling pathways regulated by Apo2L and Bcl-2-family proteins and summarizes what is known about their clinical role.  相似文献   

7.
Although TRAIL/Apo2L preferably induces apoptosis in tumour cells without toxicity in normal cells, many tumour cell types display TRAIL/Apo2L resistance. Whether TRAIL/Apo2L in combination with chemotherapy may overcome TRAIL/Apo2L resistance while maintaining tumour selectivity remains to be determined. Here, we report that while ActD, DOX and CDDP sensitised both OS and Ewing's tumour cell lines and normal cells (hOBs, synovial cells, fibroblasts) to TRAIL/Apo2L-induced apoptosis, the combination of etoposide (VP16) and TRAIL/Apo2L was selectively active on tumour cells without affecting normal cells. Sensitisation of OS cells and hOBs to TRAIL/Apo2L did not correlate with a compatible change in the gene expression profile of the receptors for TRAIL/Apo2L determined by quantitative real-time RT-PCR. Also, sensitisation of the TRAIL/Apo2L death pathway did not rely entirely on the chemotherapy-induced, caspase-dependent cytotoxicity. Further, chemotherapy did not cause a compatible change in expression levels of proteins such as Bcl-2, Bcl-x(L), Bax, cIAP2, XIAP and survivin. However, ActD, DOX and CDDP downregulated expression of cFLIP in OS cells as well as expression of p21 in normal hOBs. Interestingly, while VP16 also extinguished cFLIP in OS cells, which were sensitised for TRAIL/Apo2L by VP16, VP16 induced cFLIP and enhanced p21 levels in normal hOBs, which remained refractory to VP16 plus TRAIL/Apo2L. Together, our data reveal that TRAIL/Apo2L combined with certain chemotherapeutic drugs is toxic to bone tumour and normal human cells and suggest that cotreatment with TRAIL/Apo2L and VP16 provides an attractive approach for selective killing of tumour cells while leaving unaffected normal cells.  相似文献   

8.
9.
10.
Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a tumor necrosis factor superfamily member that induces apoptosis through the death receptors DR4 and/or DR5 in various cancer cell types but not in most normal cells. Several lung cancer cell lines express DR4 and DR5 and undergo apoptosis in vitro in response to Apo2L/TRAIL. We investigated the efficacy of recombinant soluble human Apo2L/TRAIL and its interaction with chemotherapy in xenograft models based on human NCI-H460 non-small cell lung carcinoma cells. In vitro, Taxol enhanced caspase activation and apoptosis induction by Apo2L/TRAIL. In vivo, Apo2L/TRAIL or Taxol plus carboplatin chemotherapy partially delayed progression of established subcutaneous tumor xenografts, whereas combined treatment caused tumor regression and a substantially longer growth delay. Apo2L/TRAIL, chemotherapy, or the combination of both inhibited growth of preformed orthotopic lung parenchymal tumors versus control by 60%, 57%, or 97%, respectively (all P < 0.01; n = 8-10). Furthermore, combination treatment improved day-90 survival relative to control (7 of 15 versus 1 of 15; P = 0.0003 by Mantel-Cox) as well as to Apo2L/TRAIL (3 of 14; P = 0.031) or chemotherapy (3 of 15; P = 0.035). These studies provide evidence for in vivo activity of Apo2L/TRAIL against lung tumor xenografts and underscore the potential of this ligand for advancing current lung cancer treatment strategies.  相似文献   

11.
Caspase-mediated p65 cleavage promotes TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Kim HS  Chang I  Kim JY  Choi KH  Lee MS 《Cancer research》2005,65(14):6111-6119
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is cytotoxic to a wide variety of transformed cells, but not to most normal cells, implying potential therapeutic value against advanced cancer. However, signal transduction in TRAIL-mediated apoptosis is not clearly understood compared with other TNF family members. Specifically, it is not yet understood how TRAIL controls nuclear factor kappaB (NF-kappaB) activation and overcomes its anti-apoptotic effect. We explored the regulation of NF-kappaB activity by TRAIL and its role in apoptosis. TRAIL combined with IkappaBalpha-"superrepressor" induced potent apoptosis of SK-Hep1 hepatoma cells at low concentrations of TRAIL that do not independently induce apoptosis. Apoptosis by high concentrations of TRAIL was not affected by IkappaBalpha-superrepressor. Although TRAIL alone did not induce NF-kappaB activity, TRAIL combined with z-VAD significantly increased NF-kappaB activation. Analysis of the NF-kappaB activation pathway indicated that TRAIL unexpectedly induced cleavage of p65 at Asp97, which was blocked by z-VAD, accounting for all of these findings. p65 expression abrogated apoptosis and increased NF-kappaB activity in TRAIL-treated cells. Cleavage-resistant p65D97A further increased NF-kappaB activity in TRAIL-treated cells, whereas the COOH-terminal p65 fragment acted as a dominant-negative inhibitor. XIAP levels were increased by TRAIL in combination with z-VAD, whereas XIAP levels were decreased by TRAIL alone. Cleavage of p65 was also detected after FRO thyroid cancer cells were treated with TRAIL. These results suggest that TRAIL induces NF-kappaB activation, but simultaneously abrogates NF-kappaB activation by cleaving p65, and thereby inhibits the induction of anti-apoptotic proteins such as XIAP, which contributes to the strong apoptotic activity of TRAIL compared with other TNF family members.  相似文献   

12.
Combining of tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) with a chemotherapeutic drug, cisplatin, in ovarian carcinoma cell lines exerted potent anti-tumor effects that exceeded the effects of each drug alone. In order to investigate mechanisms of anti-tumor activity of cisplatin/Apo2L/TRAIL combination, we assessed in detail the molecular effects of cisplatin and Apo2L/TRAIL-activated cell death in two ovarian carcinoma cell lines, OVCAR3 and SKOV3, using cDNA array hybridization, Western blot and flow cytometry. We observed differential induction of apoptosis-related molecules by cisplatin and Apo2L/TRAIL. Cisplatin upregulated the expression of both death and decoy TRAIL receptors, as well as of TRAF5 and -6, downregulated the anti-apoptotic proteins, Bcl-2, and induced activation of caspases-3, -8 and -9. Apo2L/TRAIL induced the expression of pro-apoptotic proteins, Bad and Bax; downregulated the anti-apoptotic proteins, Bcl-2 and Bcl-xL; and activated caspases-3, -7, -8, -9 and -10. Cisplatin/Apo2L/TRAIL combination resulted in further downregulation of expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, as well as an increase in mitochondrial permeability transition and activation of caspases-3, -8, and -10. These data demonstrate positive cooperation of cisplatin and Apo2L/TRAIL and emphasize the potential clinical usefulness of cisplatin/Apo2L/TRAIL combination therapy.  相似文献   

13.
Novel therapies in multiple myeloma (MM) target not only the tumor cell but also the bone marrow (BM) microenvironment. Thalidomide (Thal), as well as derivative immunomodulatory drugs (IMiDs), directly induce apoptosis or G1 growth arrest in MM cell lines and patient's MM cells which are resistant to melphalan (Mel), doxorubicin (Dox), and dexamethasone (Dex). Although Thal and IMiDs do not alter adhesion of MM cells to bone marrow stromal cells (BMSCs), they inhibit the upregulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) secretion triggered by the binding of MM cells to BMSCs. Proteasome inhibitors represent another potential anticancer therapy targeting the MM cell and the BM microenvironment. The proteasome inhibitor PS-341 directly inhibits proliferation and induces apoptosis in both human MM cell lines and freshly isolated patient's MM cells which are resistant to Mel, Dox, and Dex. PS-341 inhibits p44/42 mitogen-activated protein kinase (MAPK) growth signaling triggered by IL-6 and induces apoptosis, despite induction of p21 and p27, in p53 wild-type and p53 mutant MM cells. PS-341 adds to the anti-MM activity of dexamethasone and overcomes IL-6-mediated protection against dexamethasone-induced apoptosis. PS-341 blocks the paracrine growth of human MM cells by decreasing their adherence to BMSCs and related NF-kappaB-dependent induction of IL-6 secretion in BMSCs. Moreover, proliferation and MAPK growth signaling of those residual adherent MM cells is also inhibited. Tumor necrosis factor-alpha (TNF-alpha), which is produced by some MM cells, induces only low-level MM proliferation and MAPK activation in MM cells, but markedly upregulates IL-6 secretion from BMSCs and upregulates expression of adhesion molecules (VLA-4 and LFA-1) on MM cells and their receptors (VCAM-1 and ICAM-1) on BMSCs, with resultant increased binding of MM cells to BMSCs. Inhibition of TNF-alpha-induced NF-kappaB activation with PS-341 inhibits both the upregulation of these molecules on MM cells and BMSCs and the resultant increased adhesion. Therefore, inhibiting TNF-alpha and its sequelae may be useful treatment strategies in MM. Our data show that VEGF causes proliferation and enhances migration of MM as well as plasma cell leukemia (PCL) cells. VEGF induced twofold activation of cell migration in MM cells and more than 100-fold activation of cell migration in PCL cells, suggesting an important role of VEGF in the progression of MM to PCL. These data indicate that VEGF plays a pivotal role not only in neoangiogenesis in MM BM but also in proliferation and migration of tumor cells.  相似文献   

14.
Apo2L/TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines that induces death of cancer cells but not normal cells. Its potent apoptotic activity is mediated through its cell surface death domain-containing receptors, DR4 and DR5. Apo2L/TRAIL interacts also with 3 "decoy" receptors that do not induce apoptosis, DcR1, DcR2, which lack functional death domains, and osteoprotegerin (OPG). The aim of our study was to investigate the cytotoxic activity of Apo2L/TRAIL on established osteogenic sarcoma cell lines (BTK-143, HOS, MG-63, SJSA-1, G-292 and SAOS2) and in primary cultures of normal human bone (NHB) cells. When used alone, Apo2L/TRAIL at 100 ng/ml for 24 hr induced greater than 80% cell death in only 1 (BTK-143) of the 6 osteogenic sarcoma cell lines. In contrast, Apo2L/TRAIL-resistant cells were susceptible to Apo2L/TRAIL-mediated apoptosis in the presence of the anticancer drugs, Doxorubicin (DOX), Cisplatin (CDDP) and Etoposide (ETP) but not Methotrexate (MTX) or Cyclophosphamide (CPM). Importantly, neither Apo2L/TRAIL alone nor in combination with any of these drugs affected primary normal human bone cells under equivalent conditions. Apo2L/TRAIL-induced apoptosis, and its augmentation by chemotherapy in the resistant cell lines was mediated through caspase-8 and caspase-3 activation. Furthermore, Apo2L/TRAIL-induced apoptosis and its augmentation by chemotherapy was effectively inhibited by caspase-8 zIETD-fmk and caspase-3 zDEVD-fmk protease inhibitors and by the pan-caspase inhibitor zVAD-fmk. The pattern of basal Apo2L/TRAIL receptor mRNA expression, or expression of the intracellular caspase inhibitor FLICE-inhibitory protein, FLIP, could not be readily correlated with resistance or sensitivity to Apo2L/TRAIL-induced apoptosis. However, the augmentation of Apo2L/TRAIL effects by chemotherapy was associated with drug-induced up-regulation of death receptors DR4 and DR5 mRNA and protein. No obvious correlation was seen between the expression of OPG mRNA or protein and susceptibility of cells to Apo2L/TRAIL-induced apoptosis. Stable over-expression of a dominant negative form of the Fas-associated death domain protein (FADD) in the Apo2L/TRAIL-sensitive BTK-143 cells completely inhibited Apo2L/TRAIL-induced cell death. Our results indicate that chemotherapy and Apo2L/TRAIL act synergistically to kill cancer cells but not normal bone-derived osteoblast-like cells, which has implications for future therapy of osteosarcoma.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the family of programmed cell death-inducing cytokines. Apo2L/TRAIL induces apoptosis in a wide variety of tumor cells. Tumor cells that are resistant to Apo2L/TRAIL-induced apoptosis can be sensitized by chemotherapeutic drugs and other agents via an unknown mechanism. Here we report that PG490 (triptolide), a diterpene triepoxide extracted from the Chinese herb Tripterygium wilfordii and used in traditional Chinese medicine, sensitizes lung cancer but not normal human bronchial epithelial cells to Apo2L/TRAIL-induced apoptosis. Sensitization was accompanied by caspase-3 and caspase-8 activation, whereas no cleavage of caspase-9 was observed. Determination of cell surface receptors by flow cytometry demonstrated no difference in Apo2L/TRAIL-R1 and -R2 expression, the two receptors with functional death domains, between resistant and sensitized cells. In cells treated with the combination of Apo2L/TRAIL and PG490, we observed activation of ERK2, a member of the mitogen-activated protein kinase family. Furthermore, sensitization could be blocked by the ERK inhibitor U0126 but not the p38 inhibitor SB203580, suggesting that activation of ERK2 is required for this effect. In addition, sensitization of lung cancer cells was also seen in ex vivo culture of lung cancer tissue from four patients who underwent surgery. Immunohistochemical staining showed a clear reduction in proliferation cell nuclear antigen (PCNA) in tissue treated with Apo2L/TRAIL and PG490. In conclusion, apoptosis induced by the combination of Apo2L/TRAIL and PG490 warrants further evaluation as a potential new strategy for the treatment of lung cancer.  相似文献   

16.
RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells   总被引:8,自引:0,他引:8  
Related Adhesion Focal Tyrosine Kinase (RAFTK; also known as Pyk2), is a member of the Focal Adhesion Kinase (FAK) subfamily and is activated by TNF alpha, UV light and increases in intracellular calcium levels. However, the function of RAFTK remains largely unknown. Our previous studies demonstrated that treatment with dexamethasone (Dex), ionizing radiation (IR), and anti-Fas mAb induces apoptosis in multiple myeloma (MM) cells. In the present study, we examined the potential role of RAFTK during induction of apoptosis in human MM cells triggered by these three stimuli. Dex-induced apoptosis, in contrast to apoptosis triggered by anti-Fas mAb or IR, is associated with activation of RAFTK. Transient overexpression of RAFTK wild type (RAFTK WT) induces apoptosis, whereas transient overexpression of Kinase inactive RAFTK (RAFTK K-M) blocks Dex-induced apoptosis. In contrast, transient overexpression of RAFTK K-M has no effect on apoptosis triggered by IR or Fas. In Dex-resistant cells, Dex does not trigger either RAFTK activation or apoptosis. Finally, interleukin-6 (IL-6), a known survival factor for MM cells, inhibits both activation of RAFTK and apoptosis of MM.1S cells triggered by Dex. Our studies therefore demonstrate Dex-induced RAFTK-dependent, and IR or Fas induced RAFTK-independent apoptotic signaling cascades in MM cells.  相似文献   

17.
Activation of nuclear factor-kappaB (NF-kappaB) can interfere with induction of apoptosis triggered by the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL; Apo2L). Therefore, agents that suppress NF-kappaB activation may sensitise cells to TRAIL-dependent apoptosis. Exposure of Jurkat cells to TRAIL resulted in massive and saturable apoptosis induction, following an initial lag time. This lag was abolished by pretreatment of the cells with subapoptotic doses of alpha-tocopheryl succinate (alpha-TOS) or the proteasome inhibitor MG132. Exposure of the cells to TRAIL led to a rapid, transient activation of NF-kappaB, a process that was suppressed by cell pretreatment with alpha-TOS or MG132. Activation of NF-kappaB by TNF-alpha prior to TRAIL exposure increased resistance of the cells to TRAIL-mediated apoptosis. We conclude that alpha-TOS sensitises cells to TRAIL killing, at least in some cases, through inhibition of NF-kappaB activation. This further supports the possibility that this semisynthetic analogue of vitamin E is a potential adjuvant in cancer treatment, such as in the case of TRAIL-mediated inhibition of cancer.  相似文献   

18.
While the apoptosis-inducing ligand Apo2L/TRAIL is a promising new agent for the treatment of cancer, the sensitivity of cancer cells for induction of apoptosis by Apo2L/TRAIL varies considerably. Identification of agents that can be used in combination with Apo2L/TRAIL to enhance apoptosis in breast cancer cells would increase the potential utility of this agent as a breast cancer therapeutic. Here, we show that the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize Apo2L/TRAIL-resistant breast cancer cells to Apo2L/TRAIL-induced apoptosis. Importantly, neither Apo2L/TRAIL alone, nor in combination with SAHA, affected the viability of normal human cells in culture. Apo2L/TRAIL-resistant MDA-MB-231 breast cancer cells, generated by long-term culture in the continuous presence of Apo2L/TRAIL, were resensitized to Apo2L/TRAIL-induced apoptosis by SAHA. The sensitization of these cells by SAHA was accompanied by activation of caspase 8, caspase 9 and caspase 3 and was concomitant with Bid and PARP cleavage. The expression of the proapoptotic protein, Bax, increased significantly with SAHA treatment and high levels of Bax were maintained in the combined treatment with Apo2L/TRAIL. Treatment with SAHA increased cell surface expression of DR5 but not DR4. Interestingly, SAHA treatment also resulted in a significant increase in cell surface expression of DcR1. Taken together, our findings indicate that the use of these 2 agents in combination may be effective for the treatment of breast cancer.  相似文献   

19.
20.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号