首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
Three mouse models of Alzheimer's disease (AD) were used to assess changes in gene expression potentially critical to amyloid beta-peptide (Abeta)-induced neuronal dysfunction. One mouse model harbored homozygous familial AD (FAD) knock-in mutations in both, amyloid precursor protein (APP) and presenilin 1 (PS-1) genes (APP(NLh/NLh)/PS-1(P264L/P264L)), the other two models harbored APP over-expression of FAD mutations (Tg2576) with the PS-1 knock-in mutation at either one or two alleles. These mouse models of AD had varying levels of Abeta40 and Abeta42 and different latencies and rates of Abeta deposition in brain. To assess changes in gene expression associated with Abeta accumulation, the Affymetrix murine genome array U74A was used to survey gene expression in the cortex of these three models both prior to and following Abeta deposition. Altered genes were identified by comparing the AD models with age-matched control littermates. Thirty-four gene changes were identified in common among the three models in mice with Abeta deposition. Among the up-regulated genes, three major classes were identified that encoded for proteins involved in immune responses, carbohydrate metabolism, and proteolysis. Down-regulated genes of note included pituitary adenylate cyclase-activating peptide (PACAP), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor I receptor (IGF-IR). In young mice without detectable Abeta deposition, there were no regulated genes common among the three models, although 40 genes were similarly altered between the two Tg2576 models with the PS-1 FAD knock-in. Finally, changes in gene expression among the three mouse models of AD were compared with those reported in human AD samples. Sixty-nine up-regulated and 147 down-regulated genes were found in common with human AD brain. These comparisons across different genetic mouse models of AD and human AD brain provide greater support for the involvement of identified gene expression changes in the neuronal dysfunction and cognitive deficits accompanying amyloid deposition in mammalian brain.  相似文献   

2.
3.
Alzheimer's disease (AD) is a complex disorder for which various in vivo models exist. The TgCRND8 mouse, transgenic for the human amyloid precursor protein, is an aggressive early onset model of brain amyloid deposition. Preliminary studies revealed that when the transgene is expressed on an A/J genetic background, these mice not only survive longer but also deposit less parenchymal amyloid-beta (Abeta) peptides as compared to those on a C57BL/6 background. We performed a genome-wide study of an F2 intercross between TgCRND8 on an A/J background and C57BL/6 mice, to identify genetic modulators of amyloid accumulation and deposition. We identified four highly significant QTLs that together account for 55% of the phenotypic variance in the number of plaques (Thioflavin S). QTLs were found on the distal part of chromosome 4 with an LOD score of 8.1 at D4Mit251, on chromosome 11 with an LOD score of 5.5 at D11Mit242, on chromosome 9 with an LOD score of 5.0 at D9Mit336 and on the proximal part of chromosome 8 with an LOD score of 4.5 at D8Mit223. A/J alleles at these loci are protective and all decreased the amount of Abeta deposition. Interestingly, the QTL on chromosome 11 is also significantly linked to the levels of brain Abeta(42) and Abeta(40). Although these QTLs do not control the levels of plasmatic Abeta, other regions on chromosomes 1 and 6 show significant linkage. Further characterization of these QTL regions may lead to the identification of genes involved in the pathogenesis of AD.  相似文献   

4.
The role of microglia in Alzheimer's disease (AD) has come under intense scrutiny recently because microglia may clear amyloid beta (Abeta) by phagocytosis after immunization of transgenic mice. Increased expression of the macrophage colony-stimulating factor receptor (M-CSFR) is an important feature of microglia in AD and transgenic mouse models for AD. Increased expression of M-CSFR on mouse and human microglia accelerates phagocytosis of aggregated Abeta in part through macrophage scavenger receptors. We now show that Abeta phagocytosis by microglia overexpressing M-CSFR is further enhanced by antibody opsonization of Abeta. M-CSFR overexpression increased microglial phagocytosis of opsonized aggregated Abeta in culture medium, and accelerated ingestion of native Abeta from AD brain sections. M-CSFR overexpression also increased microglial expression of Fcgamma receptors, and blocking Fcgamma receptors attenuated the enhanced Abeta uptake observed after M-CSFR overexpression and antibody opsonization. Microglia in AD and in AD mouse models with increased expression of M-CSFR are likely to rapidly ingest opsonized Abeta after immunization, making high intracerebral antibody titers unnecessary.  相似文献   

5.
He J  Luo H  Yan B  Yu Y  Wang H  Wei Z  Zhang Y  Xu H  Tempier A  Li X  Li XM 《Neurobiology of aging》2009,30(8):1205-1216
Previous studies have suggested that quetiapine, an atypical antipsychotic drug, may have beneficial effects on cognitive impairment, and be a neuroprotectant in treating neurodegenerative diseases. In the present study, we investigated the effects of quetiapine on memory impairment and pathological changes in an amyloid precursor protein (APP)/presenilin-1 (PS-1) double transgenic mouse model of Alzheimer's disease (AD). Non-transgenic and transgenic mice were treated with quetiapine (0, 2.5, or 5mg/(kg day)) for 1, 4, and 7 months in drinking water from the age of 2 months. After 4 and 7 months of continuous quetiapine administration, memory impairment was prevented, and the number of beta-amyloid (Abeta) plaques decreased in the cortex and hippocampus of the transgenic mice. Quetiapine also decreased brain Abeta peptides, beta-secretase activity and expression, and the level of C99 (an APP C-terminal fragment following cleavage by beta-secretase) in the transgenic mice. Furthermore, quetiapine attenuated anxiety-like behavior, up-regulated cerebral Bcl-2 protein, and decreased cerebral nitrotyrosine in the transgenic mice. These findings suggest that quetiapine can alleviate cognitive impairment and pathological changes in an APP/PS1 double transgenic mouse model of AD, and further indicate that quetiapine may have preventive effects in the treatment of AD.  相似文献   

6.
Protein oxidation has been shown to lead to loss of protein function, increased protein aggregation, decreased protein turnover, decreased membrane fluidity, altered cellular redox poteintial, loss of Ca2+ homeostaisis, and cell death. There is increasing evidence that protein oxidation is involved in the pathogenesis of Alzheimer's disease and amyloid beta-peptide (1-42) has been implicated as a mediator of oxidative stress in AD. However, the specific implications of the oxidation induced by Abeta(1-42) on the neurodegeneration evident in AD are unknown. In this study, we used proteomic techniques to identify specific targets of oxidation in transgenic Caenorhabditis elegans (C. elegans) expressing human Abeta(1-42). We identified 16 oxidized proteins involved in energy metabolism, proteasome function, and scavenging of oxidants that are more oxidized compared to control lines. These results are discussed with reference to Alzheimer's disease.  相似文献   

7.
Previously, we reported that the stress associated with chronic isolation was associated with increased beta-amyloid (Abeta) plaque deposition and memory deficits in the Tg2576 transgenic animal model of Alzheimer's disease (AD) [Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Effects of isolation stress on hippocampal neurogenesis, memory, and amyloid plaque deposition in APP (Tg2576) mutant mice. Neuroscience 127:601-609]. In this study, we investigated the potential mechanisms of stress-accelerated Abeta plaque deposition in this Tg2576 mice by examining the relationship between plasma corticosterone levels, expression of glucocorticoid receptor (GR) and corticotropin-releasing factor receptor-1 (CRFR1) in the brain, brain tissue Abeta levels and Abeta plaque deposition during isolation or group housing from weaning (i.e. 3 weeks of age) until 27 weeks of age. We found that isolation housing significantly increased plasma corticosterone levels as compared with group-housing in both Tg+ mice (which contain and overexpress human amyloid precursor protein (hAPP) gene) and Tg- mice (which do not contain hAPP gene as control). Also, isolated, but not group-housed animals showed increases in the expression of GR in the cortex. Furthermore, the expression of CRFR1 was increased in isolated Tg+ mice, but decreased in isolated Tg- mice in both cortex and hippocampus. Changes in the components of hypothalamic-pituitary-adrenal (HPA) axis were accompanied by increases in brain tissue Abeta levels and Abeta plaque deposition in the hippocampus and overlying cortex in isolated Tg+ mice. These results suggest that isolation stress increases corticosterone levels and GR and CRFR1 expression in conjunction with increases in brain tissue Abeta levels and Abeta plaque deposition in the Tg2576 mouse model of AD.  相似文献   

8.
9.
Mutations in the amyloid precursor protein (APP) gene are associated with altered production and deposition of amyloid beta (Abeta) peptide in the Alzheimer's disease (AD) brain. The pathways that regulate APP processing, Abeta production and Abeta deposition in different tissues and brain regions remain unclear. To address this, we examined levels of various APP processing products as well as Abeta deposition in a genomic-based (R1.40) and a cDNA-based (Tg2576) transgenic mouse model of AD. In tissues, only brain generated detectable levels of the penultimate precursor to Abeta, APP C-terminal fragment-beta. In brain regions, holoAPP levels remained constant, but ratios of APP C-terminal fragments and levels of Abeta differed significantly. Surprisingly, cortex had the lowest steady-state levels of Abeta compared to other brain regions. Comparison of Abeta deposition in Tg2576 and R1.40 animals revealed that R1.40 exhibited more abundant deposition in cortex while Tg2576 exhibited extensive deposition in the hippocampus. Our results suggest that AD transgenic models are not equal; their unique characteristics must be considered when studying AD pathogenesis and therapies.  相似文献   

10.
Alzheimer's disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-beta (Abeta) peptides. We characterized the chemical composition of the Abeta peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Abeta accumulation. The processing of the N- and C-terminal regions of mutant AbetaPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AbetaPP transgene expression levels, suggests that inefficient Abeta proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AbetaPP processing and fundamental insights into the faulty degradation and clearance of Abeta in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents.  相似文献   

11.
The APOE epsilon4 allele is the most significant genetic risk factor associated with Alzheimer's disease to date. Epidemiological studies have demonstrated that inheritance of one or more epsilon4 alleles affects both the age of onset and the severity of pathology development. Dosage of APOE epsilon2 and epsilon3 alleles, however, appear to be protective against the effects of epsilon4. Although much of the biology of APOE in peripheral cholesterol metabolism is understood, its role in brain cholesterol metabolism and its impact on AD development is less defined. Several APOE transgenic models have been generated to study the effects of APOE alleles on APP processing and Abeta pathology. However, these models have potential limitations that confound our understanding of the effects of apolipoprotein E (APOE) levels and cholesterol metabolism on disease development. To circumvent these limitations, we have taken a genomic-based approach to better understand the relationship between APOE alleles, cholesterol and Abeta metabolism. We have characterized APOE knock-in mice, which express each human allele under the endogenous regulatory elements, on a defined C57BL6/J background. These mice have significantly different serum cholesterol levels and steady-state brain APOE levels, and yet have equivalent brain cholesterol levels. However, the presence of human APOE significantly increases brain Abeta levels in a genomic-based model of AD, irrespective of genotype. These data indicate an independent role for APOE in cholesterol metabolism in the periphery relative to the CNS, and that the altered levels of cholesterol and APOE in these mice are insufficient to influence Abeta metabolism in a mouse model of Alzheimer's disease.  相似文献   

12.
Accumulation of beta-amyloid (Abeta) in senile plaques in specific brain regions is a key event in the development of Alzheimer's disease (AD). Expression of transforming growth factor-beta1 (TGF-beta1), a regulator of brain responses to inflammation and injury, has been correlated with Abeta accumulation, aggregation and clearance in transgenic mice and increased production of amyloid precursor protein (APP) followed by Abeta generation in murine and human astrocyte cultures. Here, we compared TGF-beta1 levels in cerebrospinal fluid (CSF) from 20 AD patients and 20 healthy controls and correlated TGF-beta1 to intrathecal levels of the amyloidogenic 42-amino acid fragment of Abeta (Abeta42). AD patients had higher concentration of TGF-beta1 than controls (P = 0.002). Moreover, TGF-beta1 levels were negatively correlated to Abeta42 levels in the whole material (cases and controls, r = -0.35; P = 0.020), although this correlation failed to reach significance in the AD group alone (r = -0.38; P = 0.099). Taken together, the data indicate that TGF-beta1 plays a role in the processes that affect amyloid metabolism in AD.  相似文献   

13.
Inflammation is an important neuropathological change in Alzheimer's disease (AD). However, the pathophysiological factors that initiate and maintain the inflammatory response in AD are unknown. We examined AbetaPP(V717F) transgenic mice, which show numerous brain amyloid-beta (Abeta) deposits, for expression of the macrophage colony-stimulating factor (M-CSF) and its receptor (M-CSFR). M-CSF is increased in the brain in AD and dramatically augments the effects of Abeta on cultured microglia. AbetaPP(V717F) animals 12 months of age showed large numbers of microglia strongly labeled with an M-CSFR antibody near Abeta deposits. M-CSFR mRNA and protein levels were also increased in brain homogenates from AbetaPP(V717F) animals. Dystrophic neurites and astroglia showed no M-CSFR labeling in the transgenic animals. A M-CSF antibody decorated neuritic structures near hippocampal Abeta deposits in transgenic animals. M-CSF mRNA was also increased in AbetaPP(V717F) animals in comparison with wild-type controls. Simultaneous overexpression of M-CSFR and its ligand in AbetaPP(V717F) animals could result in augmentation of Abeta-induced activation of microglia. Because chronic activation of microglia is thought to result in neuronal injury, the M-CSF system may be a potential target for therapeutic intervention in AD.  相似文献   

14.
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.  相似文献   

15.
16.
Modulation of immune/inflammatory responses by diverse strategies including amyloid-beta (Abeta) immunization, nonsteroidal anti-inflammatory drugs, and manipulation of microglial activation states has been shown to reduce Alzheimer's disease (AD)-like pathology and cognitive deficits in AD transgenic mouse models. Human umbilical cord blood cells (HUCBCs) have unique immunomodulatory potential. We wished to test whether these cells might alter AD-like pathology after infusion into the PSAPP mouse model of AD. Here, we report a marked reduction in Abeta levels/beta-amyloid plaques and associated astrocytosis following multiple low-dose infusions of HUCBCs. HUCBC infusions also reduced cerebral vascular Abeta deposits in the Tg2576 AD mouse model. Interestingly, these effects were associated with suppression of the CD40-CD40L interaction, as evidenced by decreased circulating and brain soluble CD40L (sCD40L), elevated systemic immunoglobulin M (IgM) levels, attenuated CD40L-induced inflammatory responses, and reduced surface expression of CD40 on microglia. Importantly, deficiency in CD40 abolishes the effect of HUCBCs on elevated plasma Abeta levels. Moreover, microglia isolated from HUCBC-infused PSAPP mice demonstrated increased phagocytosis of Abeta. Furthermore, sera from HUCBC-infused PSAPP mice significantly increased microglial phagocytosis of the Abeta1-42 peptide while inhibiting interferon-gammainduced microglial CD40 expression. Increased microglial phagocytic activity in this scenario was inhibited by addition of recombinant CD40L protein. These data suggest that HUCBC infusion mitigates AD-like pathology by disrupting CD40L activity.  相似文献   

17.
Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis   总被引:5,自引:0,他引:5  
Abeta peptides are naturally occurring peptides, which are thought to play a key role in the pathophysiology of Alzheimer's disease (AD). In AD cases, levels of soluble and insoluble Abeta peptides increase in the brain as well as in the cerebrovasculature, a phenomenon that does not occur in extra-cranial vessels. There are frequently anomalies in the cerebrovasculature in AD, and despite increases in several pro-angiogenic factors in AD brain, evidence for increased vascularity is lacking; in fact there is evidence to the contrary. It has also been recently shown that Abeta peptides may have profound anti-angiogenic effects in vitro and in vivo. We therefore investigated whether there is evidence for altered angiogenesis in the vasculature in a transgenic mouse model of Abeta amyloidosis (Tg APPsw line 2576). In vitro, the formation of capillary-like structures on a reconstituted extracellular matrix by endothelial cells isolated from Tg APPsw is impaired. Ex vivo, the sprouting of new capillaries from arterial explants (over expressing Abeta) isolated from 9-month-old Tg APPsw is reduced compared to arterial explants isolated from control littermates. In addition, Tg APPsw mice show a reduction in vascular density in the cortex and hippocampus compared to control littermates. Altogether, our data suggest that the over expression of APPsw in the vasculature may oppose angiogenesis.  相似文献   

18.
Amyloid precursor protein (APP) is endoproteolytically processed by BACE1 and gamma-secretase to release amyloid peptides (Abeta40 and 42) that aggregate to form senile plaques in the brains of patients with Alzheimer's disease (AD). The C-terminus of Abeta40/42 is generated by gamma-secretase, whose activity is dependent upon presenilin (PS 1 or 2). Missense mutations in PS1 (and PS2) occur in patients with early-onset familial AD (FAD), and previous studies in transgenic mice and cultured cell models demonstrated that FAD-PS1 variants shift the ratio of Abeta40 : 42 to favor Abeta42. One hypothesis to explain this outcome is that mutant PS alters the specificity of gamma-secretase to favor production of Abeta42 at the expense of Abeta40. To test this hypothesis in vivo, we studied Abeta40 and 42 levels in a series of transgenic mice that co-express the Swedish mutation of APP (APPswe) with two FAD-PS1 variants that differentially accelerate amyloid pathology in the brain. We demonstrate a direct correlation between the concentration of Abeta42 and the rate of amyloid deposition. We further show that the shift in Abeta42 : 40 ratios associated with the expression of FAD-PS1 variants is due to a specific elevation in the steady-state levels of Abeta42, while maintaining a constant level of Abeta40. These data suggest that PS1 variants do not simply alter the preferred cleavage site for gamma-secretase, but rather that they have more complex effects on the regulation of gamma-secretase and its access to substrates.  相似文献   

19.
It is well established that the extracellular deposition of amyloid beta (Abeta) peptide plays a central role in the development of Alzheimer's disease (AD). Therefore, either preventing the accumulation of Abeta peptide in the brain or accelerating its clearance may slow the rate of AD onset. Neprilysin (NEP) is the dominant Abeta peptide-degrading enzyme in the brain; NEP becomes inactivated and down-regulated during both the early stages of AD and aging. In this study, we investigated the effect of human (h)NEP gene transfer to the brain in a mouse model of AD before the development of amyloid plaques, and assessed how this treatment modality affected the accumulation of Abeta peptide and associated pathogenetic changes (eg, inflammation, oxidative stress, and memory impairment). Overexpression of hNEP for 4 months in young APP/DeltaPS1 double-transgenic mice resulted in reduction in Abeta peptide levels, attenuation of amyloid load, oxidative stress, and inflammation, and improved spatial orientation. Moreover, the overall reduction in amyloidosis and associated pathogenetic changes in the brain resulted in decreased memory impairment by approximately 50%. These data suggest that restoring NEP levels in the brain at the early stages of AD is an effective strategy to prevent or attenuate disease progression.  相似文献   

20.
Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer's disease.   总被引:3,自引:0,他引:3  
There is ample genetic, biochemical, cellular and molecular evidence to show that the amyloid beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP), plays an important, if not causative role in Alzheimer's disease (AD). An additional hallmark of AD is the neuroinflammatory response that is associated with the amyloid deposition. We discovered that the acute phase protein alpha1-antichymotrypsin (ACT) is overexpressed by reactive astrocytes, and is tightly associated with virtually all amyloid plaques in the AD brain. It has also been shown that Abeta and ACT bind in vitro. Recently, we have reported that astrocytic expression of ACT in APP transgenic mice leads to an increased plaque deposition in ACT/APP doubly transgenic mice compared to the APP mice alone, suggesting that ACT interferes with Abeta clearance. The main objective of this review is to summarize the role of astrocytosis and ACT in the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号