首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, two types of hearing aids were used. Both aids had the same frequency characteristics for frontal sound, but one employed an omnidirectional microphone and the other a directional microphone. The frequency characteristics of both hearing aids were measured for five azimuths on KEMAR and in situ in 12 normal-hearing subjects. For these subjects we also determined the speech reception threshold (SRT) with background noise in two rooms with different reverberation times. The direction of the speech stimuli was always frontal; the direction of the noise was varied. Additionally, directional hearing was measured with short noise bursts from eight loudspeakers surrounding the subject. In the less reverberant room, sounds coming from behind were less amplified by the hearing aid with the directional microphone than by the one with the omnidirectional microphone. In this room the monaural SRT values were largely determined by the level of the background noise. For the directional hearing aids there was an extra binaural advantage which depended on the direction of the background noise. Only for low-frequency noise bursts was directional hearing better with directional hearing aids. In the more reverberant room, no distinct differences between the frequency characteristics of the two hearing aid types were measured. However, a systematic difference between monaural SRT values measured through the two hearing aids was found. This difference was independent of noise azimuth. In conclusion, hearing aid(s) with a directional microphone showed no disadvantages and clear advantages under specific conditions.  相似文献   

2.
Luts H  Maj JB  Soede W  Wouters J 《Ear and hearing》2004,25(5):411-420
OBJECTIVE: To evaluate the improvement in speech intelligibility in noise obtained with an assistive real-time fixed endfire array of bidirectional microphones in comparison with an omnidirectional hearing aid microphone in a realistic environment. DESIGN: The microphone array was evaluated physically in anechoic and reverberant conditions. Perceptual tests of speech intelligibility in noise were carried out in a reverberant room, with two types of noise and six different noise scenarios with single and multiple noise sources. Ten normal-hearing subjects and 10 hearing aid users participated. The speech reception threshold for sentences was measured in each test setting for the omnidirectional microphone of the hearing aid and for the hearing aid in combination with the array with one and three active microphones. In addition, the extra improvement of five active array microphones, relative to three, was determined in another group of 10 normal-hearing listeners. RESULTS: Improvements in speech intelligibility in noise obtained with the array relative to an omnidirectional microphone depend on noise scenario and subject group. Improvements up to 12 dB for normal-hearing and 9 dB for hearing-impaired listeners were obtained with three active array microphones relative to an omnidirectional microphone for one noise source at 90 degrees . For three uncorrelated noise sources at 90 degrees, 180 degrees, and 270 degrees, improvements of approximately 9 dB and 6 dB were obtained for normal-hearing and hearing-impaired listeners, respectively. Even with a single noise source at 45 degrees, benefits of 4 dB were achieved in both subject groups. Five active microphones in the array can provide an additional improvement at 45 degrees of approximately 1 dB, relative to the three-microphone configuration for normal-hearing listeners. CONCLUSIONS: These improvements in signal-to-noise ratio can be of great benefit for hearing aid users, who have difficulties with speech understanding in noisy environments.  相似文献   

3.
An adaptive beamformer for behind-the-ear dual-microphone hearing aids has been optimized for speech intelligibility enhancement in the presence of disturbing sounds or noise. The noise reduction approach is based on the scheme presented by Vanden Berghe and Wouters (1998). A real-time implementation of the signal processing is realized in Audallion, a wearable, small digital signal processing (DSP) platform. After physical evaluation, speech-in-noise intelligibility tests have been carried out on three normally-hearing and two hearing-impaired subjects. A significant speech reception threshold improvement of 11.3 dB was obtained in a moderately reverberant environment for one jammer sound source (steady speech-weighted noise or multi-talker babble) in a direction of 90 degrees relative to the direction of the speech.  相似文献   

4.
5.
目的 比较噪声环境下全向性麦克风与自适应方向性麦克风的不同组合佩戴方式对听力正常成年人言语识别率的影响,从而选择最佳的组合佩戴方式.方法 选择20例(40耳)听力正常青年人(男、女各10例)分别按照双耳全向性麦克风模式(组合1),双耳自适应方向性麦克风模式(组合2),一耳全向性麦克风、一耳自适应麦克风模式(组合3)3种方式,在信噪比变化的漫射声场中进行言语识别率测试,从而进行助听效果的评估.结果 组合1、2、3三种方式测出的L50值(50%言语识别率的信噪比)分别为-3.55±2.37 dB,-7.15±2.18 dB,-5.40±2.35 dB,三者之间两两比较差异均有显著统计学意义(P<0.05).结论 噪声环境下无论双耳佩戴自适应方向性麦克风模式还是一耳佩戴自适应方向性麦克风、另一耳佩戴全向性麦克风,其言语识别能力均高于双耳佩戴全向性麦克风模式,且双耳佩戴自适应方向性麦克风模式的言语识别率高于一耳自适应麦克风、一耳全向性麦克风模式.  相似文献   

6.
In this study speech intelligibility in background noise was evaluated with 10 binaural hearing-aid users for hearing aids with one omnidirectional microphone and a hearing aid with a two-microphone configuration (enabling an omnidirectional as well as a directional mode). Signal-to-noise ratio (SNR) measurements were carried out for three different types of background noise (speech-weighted noise, traffic noise and restaurant noise) and two kinds of speech material (bisyllabic word lists and sentences). The average SNR improvement of the directional microphone configuration relative to the omnidirectional one was 3.4 dB for noise presented from 90 degrees azimuth. This improvement was independent of the specific type of noise and speech material, indicating that one speech-in-noise condition may yield enough relevant information in the evaluation of directional microphones and speech understanding in noise.  相似文献   

7.
This investigation assessed the extent to which listeners' preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners' extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

8.
The signal-to-noise ratio advantage of a directional microphone is achieved by reducing the sensitivity of the microphone to sounds from the sides and back. A fully adaptive directional microphone (one that automatically switches between an omnidirectional mode and various directional polar patterns) may allow the achievement of signal-to-noise (SNR) improvement with minimal loss on audibility to sounds that originate from the sides and back. To demonstrate such possibilities, this study compared the soundfield aided thresholds, speech in quiet at different input levels, and speech in noise performance of 17 hearing-impaired participants under three microphone modes (omnidirectional, fixed hypercardioid, and fully [or automatic] adaptive) as the stimuli were presented from 0 degrees to 180 degrees in 45 degrees intervals. The results showed a significant azimuth effect only with the fixed directional microphone. In quiet, the fully adaptive microphone performed similarly as the omnidirectional microphone at all frequencies, input levels, and azimuths. In noise, the fully adaptive microphone achieved similar SNR improvement as the fixed directional microphone. Clinical implications of the results of this study were discussed.  相似文献   

9.
In this study the potential benefit of hearing instruments with multi-microphone technology was investigated in laboratory and in field tests for users with severe-to-profound hearing loss. Twenty-one experienced hearing aid users were fitted with high-power multi-microphone hearing instruments (Phonak PowerZoom P4 AZ). The following evaluations were performed: (i) adaptive speech test (SRT for HSM sentence test) in quiet and in noise with their own instrument and the test instrument in the omnidirectional (basic program) and directional mode (party noise profound+zoom algorithm). (ii) Paired comparisons of loudness, sound quality and speech intelligibility for both the omni and zoom program. (iii) Questionnaires on satisfaction and self-assessment of communication in different listening conditions (Oldenburg Inventory). Only 10 subjects achieved 50% correct (SRT) on the sentence test in noise (speech 0 degrees/noise 180 degrees) with both their own instrument and the test instrument in the omnidirectional mode. However, 15 subjects succeeded in the SRT measurement in the directional mode. The average SRT improvement of the directional over the omnidirectional mode was 13.7 dB. Loudness was judged 'medium loud' for both listening programs. Sound quality and intelligibility were rated significantly better for the zoom program. Compared to their own instrument users' satisfaction with the test instrument was significantly higher, especially in noisy listening situations.  相似文献   

10.
In this study, the performance of 48 listeners with normal hearing was compared to the performance of 46 listeners with documented hearing loss. Various conditions of directional and omnidirectional hearing aid use were studied. The results indicated that when the noise around a listener was stationary, a first- or second-order directional microphone allowed a group of hearing-impaired listeners with mild-to-moderate, bilateral, sensorineural hearing loss to perform similarly to normal hearing listeners on a speech-in-noise task (i.e., they required the same signal-to-noise ratio to achieve 50% understanding). When the noise source was moving around the listener, only the second-order (three-microphone) system set to an adaptive directional response (where the polar pattern changes due to the change in noise location) allowed a group of hearing-impaired individuals with mild-to-moderate sensorineural hearing loss to perform similarly to young, normal-hearing individuals.  相似文献   

11.
12.
This investigation assessed the extent to which listeners’ preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners’ extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

13.
OBJECTIVE: This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. DESIGN: A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. RESULTS: Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. CONCLUSIONS: The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.  相似文献   

14.
Ricketts T 《Ear and hearing》2000,21(4):318-328
OBJECTIVE: To evaluate the impact of head turn and monaural and binaural fittings on the sentence reception thresholds of hearing-impaired listeners wearing directional and omnidirectional hearing aids. DESIGN: Sentence reception thresholds were measured for 20 listeners fit monaurally and binaurally with behind-the-ear hearing aids set in both directional and omnidirectional modes. All listeners exhibited symmetrical, sloping, sensorineural hearing loss. The aided performance across these four fittings was evaluated for three different head and body angles. The three angles reflected body turns of 0 degrees, 15 degrees, and 30 degrees as measured relative to the primary sound source, with 0 degrees denoting the listener directly facing the sound source. Listeners were instructed to keep their heads in a fixed horizontal position and turn their heads and bodies to face visual targets at the three test angles. Sentences from the Hearing in Noise Test presented with a background of five, spatially separated, uncorrelated samples of cafeteria noise served as test material. All testing was performed in a moderately reverberant (Rt = 631 msec) "living room" environment. RESULTS: Participants generally performed significantly better when fit with directional versus omnidirectional hearing aids, and when fit binaurally versus monaurally across test conditions. The measured "binaural advantage" was reduced with increasing head angle. Participants performed significantly better with a 30 degree head angle than when directly facing the primary speaker. This "head turn advantage" was most prominent for monaural (versus binaural) conditions. Binaural and head turn advantages were not significantly different across directional and omnidirectional modes. CONCLUSIONS: These data provide additional support for the use of directional hearing aids and binaural amplification to improve speech intelligibility in noisy environments. The magnitude of these advantages was similar to that reported in previous investigations. The data also showed that hearing aid wearers achieved significantly better speech intelligibility in noise by turning their heads and bodies to a position in which they were not directly facing the sound source. This head turn advantage was in good agreement with the increase in Directivity Index with head turn and reflected the fact that hearing aids are generally most sensitive to sounds arriving from angles other than directly in front of the hearing aid wearer. Although these data suggest that many monaural hearing aid wearers may significantly improve speech intelligibility in noise through the use of head turn, the interaction between this advantage and the potential loss of visual cues with head turn is unknown.  相似文献   

15.
Chung K  Nelson L  Teske M 《Hearing research》2012,291(1-2):41-51
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI?+?NR), and adaptive directional microphone plus noise reduction algorithm (ADM?+?NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed.  相似文献   

16.
OBJECTIVE: To evaluate the impact of venting, microphone port orientation, and compression on the electroacoustically measured directivity of directional and omnidirectional behind-the-ear hearing aids. In addition, the average directivity provided across three brands of directional and omnidirectional behind-the-ear hearing aids was compared with that provided by the open ear. DESIGN: Three groups of hearing aids (four instruments in each group) representing three commercial models (a total of 12) were selected for electroacoustic evaluation of directivity. Polar directivity patterns were measured and directivity index was calculated across four different venting configurations, and for five different microphone port angles. All measurements were made for instruments in directional and omnidirectional modes. Single source traditional, and two-source modified front-to-back ratios were also measured with the hearing aids in linear and compression modes. RESULTS: The directivity provided by the open (Knowles Electronics Manikin for Acoustic Research) ear was superior to that of the omnidirectional hearing aids in this study. Although the directivity measured for directional hearing aids was significantly better than that of omnidirectional models, significant variability was measured both within and across the tested models both on average and at specific test frequencies. Both venting and microphone port orientation affected the measured directivity. Although compression reduced the magnitude of traditionally measured front-to-back ratios, no difference from linear amplification was noted using a modified methodology. CONCLUSIONS: The variation in the measured directivity both within and across the directional microphone hearing aid brands suggests that manufacturer's specification of directivity may not provide an accurate index of the actual performance of all individual instruments. The significant impact of venting and microphone port orientation on directivity indicate that these variables must be addressed when fitting directional hearing aids on hearing-impaired listeners. Modified front-to-back ratio results suggest that compression does not affect the directivity of hearing aids, if it is assumed that the signal of interest from one azimuth, and the competing signal from a different azimuth, occur at the same time.  相似文献   

17.
Automatic directionality algorithms currently implemented in hearing aids assume that hearing-impaired persons with similar hearing losses will prefer the same microphone processing mode in a specific everyday listening environment. The purpose of this study was to evaluate the robustness of microphone preferences in everyday listening. Two hearing-impaired persons made microphone preference judgments (omnidirectional preferred, directional preferred, no preference) in a variety of everyday listening situations. Simultaneously, these acoustic environments were recorded through the omnidirectional and directional microphone processing modes. The acoustic recordings were later presented in a laboratory setting for microphone preferences to the original two listeners and other listeners who differed in hearing ability and experience with directional microphone processing. The original two listeners were able to replicate their live microphone preferences in the laboratory with a high degree of accuracy. This suggests that the basis of the original live microphone preferences were largely represented in the acoustic recordings. Other hearing-impaired and normal-hearing participants who listened to the environmental recordings also accurately replicated the original live omnidirectional preferences; however, directional preferences were not as robust across the listeners. When the laboratory rating did not replicate the live directional microphone preference, listeners almost always expressed no preference for either microphone mode. Hence, a preference for omnidirectional processing was rarely expressed by any of the participants to recorded sites where directional processing had been preferred as a live judgment and vice versa. These results are interpreted to provide little basis for customizing automatic directionality algorithms for individual patients. The implications of these findings for hearing aid design are discussed.  相似文献   

18.
An acceptable noise level (ANL) procedure for measuring hearing aid directional benefit was compared with masked speech reception threshold (SRT) and front-to-back ratio (FBR) procedures. ANL is the difference between the most comfortable listening level and the maximum accepted background noise level while listening to speech. Forty adult subjects wearing their own binaural hearing aids were evaluated in omnidirectional and directional modes. The subjects were fitted with a variety of hearing aids by clinical audiologists, independent of the study. For each procedure, speech and noise were presented through loudspeakers located at 0 degrees and 180 degrees azimuth, respectively. Mean ANL (3.5 dB), SRT (3.7 dB), and FBR (2.9 dB) directional benefits were not significantly different. The ANL and masked SRT benefits were significantly correlated. The ANL appears to be a quick, clinician/user friendly procedure for measuring hearing aid directional benefit.  相似文献   

19.
Abstract

To evaluate whether speech recognition in noise differs according to whether a wireless remote microphone is connected to just the cochlear implant (CI) or to both the CI and to the hearing aid (HA) in bimodal CI users. The second aim was to evaluate the additional benefit of the directional microphone mode compared with the omnidirectional microphone mode of the wireless microphone. This prospective study measured Speech Recognition Thresholds (SRT) in babble noise in a ‘within-subjects repeated measures design’ for different listening conditions. Eighteen postlingually deafened adult bimodal CI users. No difference in speech recognition in noise in the bimodal listening condition was found between the wireless microphone connected to the CI only and to both the CI and the HA. An improvement of 4.1?dB was found for switching from the omnidirectional microphone mode to the directional mode in the CI only condition. The use of a wireless microphone improved speech recognition in noise for bimodal CI users. The use of the directional microphone mode led to a substantial additional improvement of speech perception in noise for situations with one target signal.  相似文献   

20.
OBJECTIVE: Hearing instruments with adaptive directional microphone systems attempt to maximize speech-to-noise ratio (SNR) and thereby improve speech recognition in noisy backgrounds. When instruments with adaptive systems are fitted bilaterally, there is the potential for adverse effects as they operate independently and may give confusing cues or disturbing effects. The present study compared speech recognition performance in 16 listeners fitted bilaterally with the Phonak Claro hearing instrument using omni-directional, fixed directional, and adaptive directional microphone settings as well as mixed microphone settings (an omni-directional microphone on one side and an adaptive directional microphone on the other). DESIGN: Under anechoic conditions, speech was always presented from a loudspeaker directly in front of the listener (0 degree azimuth) whereas noise was presented from one or two loudspeakers arranged either symmetrically (0, 180, 90 + 270 degrees) or asymmetrically (170 + 240 degrees and 120 + 190 degrees) in the horizontal plane. Adaptive sentence recognition in noise measurement was supplemented by quality ratings. RESULTS: With symmetrical omni-directional settings (Omni/Omni), performance was poorer than a control group of 14 listeners with normal hearing tested unaided: Aided listeners required 4.3 dB more favorable SNR for criterion performance. In all loudspeaker arrangements in which directional characteristics could be exploited, performance with symmetrical adaptive microphones (Adapt/Adapt) was similar to the control group. The mixed microphone settings did not appear to confer any particular disadvantage for speech recognition from their asymmetric nature, always giving scores significantly better than Omni/Omni. Quality rating scores were consistent with speech recognition performance, showing benefits in terms of clarity and comfort for the Adapt/Adapt and Fixed/Fixed microphone conditions over the Omni/Omni and mixed microphone conditions wherever directional characteristics could be used. Similarly, the mixed microphone conditions were rated more comfortable and quieter for the noise than Omni/Omni. CONCLUSIONS: It is concluded that bilateral hearing instruments with adaptive directional microphones confer benefits in terms of speech recognition in noise and sound quality. Independence of the two adaptive control systems does not appear to cause untoward effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号