共查询到20条相似文献,搜索用时 0 毫秒
1.
Numerous studies have shown that the geometry of micro-joints significantly affects the strength of the so joined timber element. The bending strength increases by creating a larger bonding area by increasing the length of the wedge joint. Although this type of joint has been successfully used for many years, it can still be troublesome to make. For these reasons, the present study investigated an easy-to-fabricate wedge joint, which we folded during the beams’ formation and glued with the same adhesive as the individual lamellas. Although the research has not fully answered all the questions relevant to both scientific and technological curiosity, it indicates the great potential of this solution. Following the principle adopted in the ongoing wood optimisation work, we concluded that the beams of the target cross-section should be produced, and it should only be possible to cut them to a certain length. In this approach, we only removed defects at critical points for the beam structure and, in this way, up to 30% of the timber processed could be saved or better utilised. 相似文献
2.
Dorota Dziurka Jakub Kawalerczyk Joanna Walkiewicz Adam Derkowski Radosaw Mirski 《Materials》2022,15(9)
Engineered wood products, such as glulam beams, attract much attention from the building industry in recent years. Therefore, there is a constant necessity to seek new models of structural beams, which assume the use of outsized sawn wood pieces as an alternative for the standard construction timber. Three variants of glulam beams, composed of the main yield and side boards arranged in various structures, were proposed. Moreover, the usefulness of wedge-jointed, small-sized timber pieces was also investigated. The manufactured beams were tested, in terms of their mechanical properties, such as bending strength, elastic energy, modulus of elasticity, and resilience. The outcomes have shown that the beams manufactured using wedge-bonded timber of lower grade do not deviate considerably from beams produced from homogeneous lamellas. Furthermore, the results of modulus of elasticity, in the case of the three-layered beams composed of both small-sized non-homogenous main yield and side boards, exceeded the requirements from EN 14080. It allowed us to classify the obtained materials as GL 32c, which is the highest grade specified within the standard. 相似文献
3.
Radosaw Mirski Dorota Dziurka Marcin Kuliski Adrian Trociski Jakub Kawalerczyk Ryszard Antonowicz 《Materials》2021,14(23)
The aim of this study was to assess the static bending strength of pine glulam manufactured when obtaining the main yield, i.e., structural timber or timber to be used in the production of structural glulam. Analyses were conducted on pine timber harvested from three different locations in Poland. Two beam variants were manufactured, differing in the timber arrangement, horizontal vs. vertical. It was shown that the static bending strength of beams manufactured in the vertical timber arrangement variant is slightly higher than that of beams produced from horizontally arranged layers, with the latter beams characterised by a smaller confidence interval for this strength. Moreover, it was found that the difference in the value of the 5th percentile for both beam types is slight and both beam types are considered to exhibit a high bending strength of over 40 N/mm2. 相似文献
4.
Dorota Dziurka Adam Derkowski Dorota Dukarska Jakub Kawalerczyk Radosaw Mirski 《Materials》2022,15(11)
Engineered wood products (EWP) such as glulam beams are gaining more and more popularity due to several advantages resulting from the wood itself, as well as the constant search for structural materials of natural origin. However, building materials face some requirements regarding their strength. Thus, the study aimed to assess the static bending strength of structural beams produced with the use of pine wood, after the periodic loading of approximately 80 kN for a year. The manufactured beams differed in the type of facing layers, i.e., pine timber with a high modulus of elasticity and plywood. The produced beams, regardless of their structure, are characterized by a similar static bending strength. Moreover, it has been shown that the loading of beams in the range of about 45% of their immediate capacity does not significantly affect their static bending strength and linear modulus of elasticity. 相似文献
5.
6.
“Polyurea coatings as a possible structural reinforcement system” is a research investigation that aims to explore the possible applications of polyurea coatings for improving structural performance (including steel, concrete, timber and other structures used in the construction industry). As part of the research in this field, this paper focuses on evaluating the performance of bending polyurea-coated reinforced concrete (RC) beams with a low reinforcement ratio. The easy application and numerous advantages of polyurea can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of RC beams were performed for the purpose of this paper. The failure mechanisms and cracking patterns of these specimens are described, and their bending strengths were compared. On this basis, the effect of the coating on bending strength and the performance of the reinforced beams at the serviceability limit state (SLS) was examined and analyzed. The results showed that the use of a polyurea coating has a positive impact on the cracking and deflection state of RC beams and makes it possible to safely use RC elements on a continuous basis under high levels of load. 相似文献
7.
Dorota Dziurka Adam Derkowski Marek Wieruszewski Marcin Kuliski Radosaw Mirski 《Materials》2022,15(11)
Glulam beams are increasingly used in the construction industry because of their high strength and the possibility of using round timber with smaller cross-sections. The load-bearing capacity of beams is strongly related to the quality of the outer layers and, in the case of wood, especially the tension zones. For these reasons, this study decided to replace the outer lamella with tensile plywood. The produced beams were subjected to static bending strength and modulus of elasticity evaluation. It was shown that the best static bending strength values were obtained for beams containing plywood in the tension layer. However, the change in structure in the tension zone of beams made of glued laminated timber results not only in an increase in the load capacity of elements produced in this way but also in a decrease in the range/range of the obtained results of bending strength. This way of modifying the construction of glued laminated beams allows a more rational use of available pine timber. 相似文献
8.
Radosaw Mirski ukasz Matwiej Dorota Dziurka Monika Chuda-Kowalska Maciej Marecki Bartosz Paubicki Tomasz Rogoziski 《Materials》2021,14(19)
This paper presents the strength properties of wooden trusses. The proposed solutions may constitute an alternative to currently produced trusses, in cases when posts and cross braces are joined with flanges using punched metal plate fasteners. Glued carpentry joints, although requiring a more complicated manufacturing process, on the one hand promote a more rational utilisation of available structural timber resources, while on the other hand they restrict the use of metal fasteners. The results of the conducted analyses show that the proposed solutions at the current stage of research are characterised by an approx. 30% lower static bending strength compared to trusses manufactured using punched metal plate fasteners. However, these solutions make it possible to produce trusses with load-bearing capacities comparable to that of structural timber of grade C24 and stiffness slightly higher than that of lattice beams manufactured using punched metal plate fasteners. The strength of wooden trusses manufactured in the laboratory ranged from nearly 20 N/mm2 to over 32 N/mm2. Thus, satisfactory primary values for further work were obtained. 相似文献
9.
Through proper arranging of a hybrid combination of longitudinal fiber reinforced polymer (FRP) bars and steel bars in the tensile region of the beam, the advantages of both FRP and steel materials can be sufficiently exploited to enhance the flexural capacity and ductility of a concrete beam. In this paper, a methodology for the flexural strength design of hybrid FRP-steel reinforced concrete (RC) beams is proposed. Firstly, based on the mechanical features of reinforcement and concrete and according to the latest codified provisions of longitudinal reinforcement conditions to ensure ductility level, the design-oriented allowable ranges of reinforcement ratio corresponding to three common flexural failure modes are specified. Subsequently, the calculation approach of nominal flexural strength of hybrid FRP-steel RC beams is established following the fundamental principles of equilibrium and compatibility. In addition to the common moderately-reinforced beams, the proposed general calculation approach is also applicable to lightly-reinforced beams and heavily-reinforced beams, which are widely used but rarely studied. Furthermore, the calculation process is properly simplified and the calculation accuracy is validated by the experimental results of hybrid FRP-steel RC beams in the literature. Finally, with the ductility analysis, a novel strength reduction factor represented by net tensile steel strain and reinforcement ratio is proposed for hybrid FRP-steel RC beams. 相似文献
10.
This paper presents the formulae and finite element analysis models for predicting the Modulus of Elastic (MOE) and Modulus of Rupture (MOR) of Cathay poplar finger-jointed glulam. The formula of the MOE predicts the MOE of Cathay poplar glulam glued with one-component polyurethane precisely. Three formulae are used to predict the MOR, and Equation (12) predicts the MOR of Cathay poplar glulam precisely. The finite element analysis simulation results of both the MOE and MOR are similar to the experimental results. The predicted results of the finite element analysis are shown to be more accurate than those of the formulae, because the finite element analysis considers the glue layers, but the formulae do not. Three types of typical failure modes due to bending were summarized. The bending properties of Cathay poplar glulam were compared to those of Douglas fir glulam. The results show that Cathay poplar glulam has a lower stiffness, but a marginally higher strength. One-component polyurethane adhesive is shown to be more effective than resorcinol formaldehyde resin adhesive for Cathay poplar glulam. This study shows that Cathay poplar has the potential to be a glulam material in China. 相似文献
11.
Agnieszka Wdowiak-Postulak 《Materials》2021,14(1)
The purpose of this paper is to demonstrate the properties of glued laminated beams made in diverse configurations of timber quality classes, reinforced using a new technique that is cheaper and easy to apply. The aim of the experimental investigations was to enhance reinforcement effectiveness and rigidity of glued laminated beams. The tests consisted of four-point bending of large-scale specimens reinforced with basalt fibres (BFRP). The tests were meant to obtain images of failure, the load–displacement relation and load carrying capacity of basalt fibres depending on the reinforcement ratio. The tests, which concerned low and average quality timber beams, were conducted in a few stages. The aim of the study was to popularize and increase the use of low-quality timber harvested from reafforested areas for structural applications. In the study, theoretical and numerical analysis was carried out for reinforced and unreinforced elements in various configurations of wood quality classes. The aim was to compare the results with the findings of experimental tests. Based on the tests, it was found that the load carrying capacity of beams reinforced with basalt fibre was higher by, respectively, 13% and 20% than that of reference beams, while their rigidity improved by, respectively, 9.99% and 17.13%. The experimental tests confirmed that basalt fibres are an effective structural reinforcement of structural timber with reduced mechanical properties. 相似文献
12.
This paper aims to provide a preliminary assessment of polyurethane adhesive applicability as an alternative to conventional cement-based adhesives used to fix thermal insulation materials to substrates concerning mineral wool-based external thermal insulation composite systems. Currently, polyurethane adhesives are only used in expanded polystyrene-based ETICS. This study discusses the suitability of polyurethane adhesive for ETICS with lamella mineral-wool for timber frame buildings. Bond strength, shear strength and shear modulus tests were conducted. In addition, microstructure and apparent density were analysed. Mechanical properties were analysed in terms of the influence of substrate type and thermal and moisture conditions, taking into account solutions typical for sheathing on timber frame (oriented strand boards (OSB), fibre-reinforced gypsum boards (FGB) and cement-bonded particleboards (CPB)), as well as limit conditions for adhesive application. It was found that PU adhesive can achieve adhesion, both to MW and OSB, and FGB and CPB at ≥80 kPa, which is considered satisfactory for PU adhesives for EPS-based ETICS. Favourable shear properties were also obtained. There was no significant effect of sheathing type on the properties considered, but the influence of temperature and relative humidity, in which the bonds were made, was spotted. The results obtained can be considered promising in further assessing the usefulness of PU adhesives for MW-based ETICS. 相似文献
13.
Timber gridshells have become a very popular, efficient, sustainable and beautiful structural application of timber. However, given the slender laths involved in this form of construction, there is concern over the durability of timber for this purpose, and Glass FRP (GFRP) laths have been proposed as a possible substitution. This paper considers this possibility. It goes on to look at the possible use of Basalt FRP (BFRP) for the same purpose, from the perspective of its creep characteristics. It is shown that the use of GFRP gridshells is a viable form of construction, and that enhanced durability characteristics of BFRP could lead to their adoption for gridshells, given that the creep characteristics of basalt fibres presented here are comparable to those of glass fibres. An altogether different form of timber construction is that of joist-and-floorboard. In the UK, there are thousands of historic buildings which use this floor construction, and a sizeable proportion of this building stock now requires upgrade, strengthening and/or stiffening to allow these buildings to be fit for purpose into the future. This paper goes on to consider the possible use of Carbon FRP (CFRP) to strengthen and stiffen such timber floors. It is shown that such strengthening and stiffening is entirely feasible, offering the potential for greatly enhanced stiffness, in particular. Further, it is shown that mechanical shear connection between CFRP and timber is best conducted using perpendicular-positioned screws, rather than raked screws. 相似文献
14.
The purpose of the work is an experimental analysis of the behavior of reinforced concrete beams with a new, patented system of truss-shaped reinforcement. Experimental tests of reinforced concrete beams with conventional reinforcement and with truss-shaped, mass equivalent reinforcement, with two different values of longitudinal reinforcement ratio, were carried out. The testing results of the load-carrying capacity and displacements of beams are presented. The cracking and failure mechanism of beams with a new truss-shaped reinforcement system was also analyzed. The test results for conventionally reinforced beams and with truss-shaped reinforcement were compared. The test results show that the use of the truss reinforcement has an influence on increasing the load-carrying capacity of beams. The amount of this increase depends on the total longitudinal reinforcement ratio and reaches as much as 95% for beams with a low reinforcement ratio and 12% for beams with a higher reinforcement ratio. Based on the investigation of the cracking mechanism, it can be concluded that the failure of the beams with transverse truss-shaped reinforcement occurs with a greater number of smaller cracks, which are more evenly distributed along the length of the cracking zone, and have a shorter range over the cross-section depth, which results in their smaller opening widths. The comparative analysis shows the effectiveness of the proposed reinforcement system, justifying the high potential possibilities of its use for the reinforcement of concrete structural elements. 相似文献
15.
Design codes provide the necessary tools to check the torsional strength of reinforced concrete (RC) members. However, some researchers have pointed out that code equations still need improvement. This study presents a review and a comparative analysis of the calculation procedures to predict the torsional strength of RC beams from some reference design codes, namely the Russian, American, European, and Canadian codes for RC structures. The reliability and accuracy of the normative torsional strengths are checked against experimental results from a broad database incorporating 202 RC rectangular beams tested under pure torsion and collected from the literature. The results show that both the readability and accuracy of the codes’ equations should be improved. Based on a correlation study between the experimental torsional strengths, and geometrical and mechanical properties of the beams, refined yet simple equations are proposed to predict torsional strength. It is demonstrated that the proposed formulation is characterized by a significant improvement over the reference design codes. The efficiency of the proposed formulae is also assessed against another equation earlier proposed in the literature, and an improvement is noted as well. From the results, it can be concluded that the proposed equations in this study can contribute to a more accurate and economical design for practice. 相似文献
16.
This article presents experimental results from the bending of technical-scale models of beams reinforced in the tension zone with CFRP (Carbon Fiber Reinforced Polymers) materials, with a focus on the benefits resulting from the increased ductility in the tension zone of these beams. In experimental tests, the mechanical properties of reinforced beams were compared with unreinforced beams in terms of the maximum load, deflection, images of damage, stiffness, and distribution of deformation. The results showed that the proposed reinforcement solution was advantageous due to its strength and stiffness, and the safety of the structure. Based on this analysis, it was concluded that the reinforcement of wood with CFRP materials has a positive effect on the behavior and safety of structures. Also, a method of analytical checking of strengthened beams with small cross-sections was presented in the article. 相似文献
17.
Limited deflection of structural members represents an important requirement to guarantee proper functionality and appearance of building and infrastructures. According to Eurocodes, this requirement is ensured by limiting the maximum deflection of horizontal structural members to a fraction of their span. However, each Eurocode provides different maximum deflection limits, which are independent of the type of superstructures considered. Thus, the respect of these limits may not always guarantee the integrity of certain superstructures. In this paper, the reliability of the Eurocode deflection control methods, in guaranteeing the integrity of the superstructures, is assessed and discussed. First, different types of horizontal member, namely rib and clay (hollow) pot, composite steel–concrete, and timber beam slabs are designed to respect the deflection limit enforced by the Eurocodes. Then, the maximum curvature developed by these members is compared with the ultimate (limit) curvatures of various superstructures (e.g., ceramic and stone tile floorings). The results obtained show that the approach adopted by Eurocode 2 may provide non-conservative results, but also that the rules proposed by Eurocodes 4 and 5, albeit more reliable, do not always guarantee the integrity of the superstructure. Based on these results, an alternative method, based on the curvature control, is proposed and its advantages and limitations critically discussed. This method appears simpler and more reliable than the method currently adopted by the Eurocodes. 相似文献
18.
Torsional behavior and analysis of steel fiber reinforced concrete (SFRC) beams is investigated in this paper. The purpose of this study is twofold; to examine the torsion strength models for SFRC beams available in the literature and to address properly verified design formulations for SFRC beams under torsion. A total of 210 SFRC beams tested under torsion from 16 different experimental investigations around the world are compiled. The few strength models available from the literature are adapted herein and used to calculate the torsional strength of the beams. The predicted strength is compared with the experimental values measured by the performed torsional tests and these comparisons showed a room for improvement. First, a proposed model is based on optimizing the constants of the existing formulations using multi-linear regression. Further, a second model is proposed, which is based on modifying the American Concrete Institute (ACI) design code for reinforced concrete (RC) members to include the effect of steel fibers on the torsional capacity of SFRC beams. Applications of the proposed models showed better compliance and consistency with the experimental results compared to the available design models providing safe and verified predictions. Further, the second model implements the ACI code for RC using a simple and easy-to-apply formulation. 相似文献
19.
In this study, an artificial intelligence tool called gene expression programming (GEP) has been successfully applied to develop an empirical model that can predict the shear strength of steel fiber reinforced concrete beams. The proposed genetic model incorporates all the influencing parameters such as the geometric properties of the beam, the concrete compressive strength, the shear span-to-depth ratio, and the mechanical and material properties of steel fiber. Existing empirical models ignore the tensile strength of steel fibers, which exercise a strong influence on the crack propagation of concrete matrix, thereby affecting the beam shear strength. To overcome this limitation, an improved and robust empirical model is proposed herein that incorporates the fiber tensile strength along with the other influencing factors. For this purpose, an extensive experimental database subjected to four-point loading is constructed comprising results of 488 tests drawn from the literature. The data are divided based on different shapes (hooked or straight fiber) and the tensile strength of steel fiber. The empirical model is developed using this experimental database and statistically compared with previously established empirical equations. This comparison indicates that the proposed model shows significant improvement in predicting the shear strength of steel fiber reinforced concrete beams, thus substantiating the important role of fiber tensile strength. 相似文献
20.
Ghada G. Salem Vera V. Galishnikova S. M. Elroba Nikolai I. Vatin Makhmud Kharun 《Materials》2022,15(21)
Deterioration or crack formation in concrete elements is a phenomenon that cannot be easily avoided, and it has a high cost of repair. A modern technology that needs wider study is the use of the bio-precipitation of calcium carbonate using bacteria to increase a structures’ capacity. The current research presents an analytical study on self-healing concrete beams using bacteria to enhance the beam’s capacity. A Finite Element Analysis on (ANSYS 15.0) was carried out to study the effect of the bacteria concentration (the weight of bacteria to cement weight 1%, 2%, and 3%), the type of bacteria (Bacillus subtilis, E. coli, and Pseudomonas sps.), and the loading (a one-point load, a two-point load, and a distributed load on four points) on concrete beams. Two beams were chosen from previous experimental research and simulated on the ANSYS before carrying out our parametric study to verify the validity of our simulation. Following this, our parametric study was carried out on eight beams; each beam was loaded gradually up to failure. The results show that the optimum type of bacteria was the Bacillus subtilis, and that the bacteria concentration of 3% for Bacillus subtilis can increase the beam’s capacity by 20.2%. Also, we found that distributing the load to four points led to the increase of the beam’s capacity by 74.5% more than the beam with a one-point load. 相似文献