首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The purpose of our experiment was to evaluate the effect of enrofloxacin on biotransformation, oxidative stress and mRNA expression of related genes in fish as a non-target organisms. Zebrafish (Danio rerio) juveniles were treated with enrofloxacin at concentrations of 5, 10 and 500 μg/L for 14 days. A three-day-long test caused changes of catalytic activity of glutathione peroxidase and glutathione-S-transferase. Moreover, lipid peroxidation was observed at the highest concentration. No significant changes either in catalytic activity of antioxidant enzymes or elevated lipid peroxidation were observed from sampling day 7 on. mRNA expression of genes encoding antioxidant enzymes was also not affected by enrofloxacin after a 14-day exposure. This suggests the ability of D. rerio juveniles to adapt to enrofloxacin in a short time period. Moreover, enrofloxacin was not shown to affect collagen, cathepsin K, optic atrophy 1 and pyruvate kinase L/R mRNA expression in this study.  相似文献   

2.
3.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo-dioxathiepin-3-oxide), an organochlorine pesticide, is prevalently used all around the world. It is considered to be a new candidate for the persistent organic pollutants group. Endosulfan residues in the environment may cause serious damage to ecosystems, especially in aquatic environments. The present study was conducted to investigate the effect of endosulfan on antioxidant enzymes [catalase (CAT) and superoxide dismutase (SOD)], reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and four concentrations of endosulfan (0.01, 0.1, 1, and 10 μg L?1) and were sampled after 7, 14, 21, and 28 days. It is noteworthy that the present research explored the correlation among the three indicators induced by endosulfan. Low endosulfan concentrations (0.01 μg L?1) induced a slight increase of SOD and CAT activity, which kept ROS in a stable level. High endosulfan concentration (10 μg L?1) induced excessive ROS production which exceeded the capacity of the cellular antioxidants and exhausted the enzyme including CAT and SOD. The DNA damage of zebrafish was evaluated by single-cell gel electrophoresis and was enhanced with increasing endosulfan concentration. In conclusion, the present study showed that endosulfan (0.01–10 μg L?1) has toxic effects on zebrafish.  相似文献   

4.
Okadaic acid (OA), a main component of diarrheic shellfish poisoning (DSP) toxins, is a strong and specific inhibitor of the serine/threonine protein phosphatases PP1 and PP2A. However, not all of the OA-induced effects can be explained by this phosphatase inhibition, and controversial results on OA are increasing. To provide clues on potential mechanisms of OA other than phosphatase inhibition, here, acute toxicity of OA was evaluated in zebrafish, and changes in gene expression in zebrafish liver tissues upon exposure to OA were observed by microarray. The i.p. ED50 (6 h) of OA on zebrafish was 1.54 μg OA/g body weight (bw). Among the genes analyzed on the zebrafish array, 55 genes were significantly up-regulated and 36 down-regulated in the fish liver tissue upon exposure to 0.176 μg OA/g bw (low-dose group, LD) compared with the low ethanol control (LE). However, there were no obvious functional clusters for them. On the contrary, fish exposure to 1.760 μg OA/g bw (high-dose group, HD) yielded a great number of differential expressed genes (700 up and 285 down) compared with high ethanol control (HE), which clustered in several functional terms such as p53 signaling pathway, Wnt signaling pathway, glutathione metabolism and protein processing in endoplasmic reticulum, etc. These genes were involved in protein phosphatase activity, translation factor activity, heat shock protein binding, as well as transmembrane transporter activity. Our findings may give some useful information on the pathways of OA-induced injury in fish.  相似文献   

5.
6.
Triazine herbicide atrazine is considered to be moderately toxic to various aquatic animals. The aim of our study was to evaluate the acute embryotoxicity of atrazine and its two degradation products, desisopropylatrazine and desethylatrazine, and their mixture to the early life stages of zebrafish (Danio rerio) by means of a modified method of the Fish Embryo Acute Toxicity (FET) Test – OECD guideline 236. Toxic effects were studied by the evaluation of lethal endpoints and development of disorders. Furthermore, sublethal endpoints such as hatching rate, formation of somites, development of eyes, spontaneous movement, heartbeat, blood circulation, pigmentation and occurrence of edema at 24, 48, 72 and 96 h post fertilization were assessed. Newly fertilized eggs were exposed to various concentrations of atrazine, desisopropylatrazine and desethylatrazine, and their combination 0.3, 30, 100, 300, 1000, 3,000 and 10,000 μg/l, which represent environmentally relevant levels of these pollutants in surface waters and multiples of these concentrations to find out if the toxic effect depends on dose. Single substances and their combination were not associated with a negative effect on mortality. Rare malformations were observed during these embryonal toxicity tests. Only pericardial edema was recorded during the monitored observation. A significant increase in the occurrence of pericardial edema between the control 0% and the experimental group 17.6 %) was found only in the group exposed to the highest concentration of a triazine herbicide combination (10,000 μg/l) at 72 and 96 h post fertilization. Obtained results indicate that especially higher not environmentally relevant concentrations of atrazine, its metabolites or their combination present a potencial risk of embryotoxicity for zebrafish.  相似文献   

7.
8.
Acetylcholinesterase (AChE) inhibition is widely regarded as a good biomarker of exposure to organophosphorus pesticides (OP). However, less is known about the relationship between AChE inhibition and consequences for growth, reproduction and survival on organisms. Acute toxicity tests with fish have shown that high percentages of AChE inhibition are needed to cause detrimental effects, but not much is known about the consequences of chronic exposure to this group of chemicals for both AChE activity and higher levels of biological organisation. In this study, zebrafish (Danio rerio) were exposed to sublethal concentrations of the OP parathion for 250 days in a flow-through system. Besides AChE activity, a variety of other parameters were measured: whole-body protein and lactate content, consumption rate, survival, growth and reproduction. AChE inhibition was correlated with exposure concentration, but not with exposure time, and was significant above 0.9 microg/l after 144 days and above 4.3 microg/l after 250 days of exposure. Both parathion and the cosolvent dimethylsulfoxide (DMSO) significantly increased food consumption rate of the fish. Survival, growth, reproduction and lactate content were not affected, while protein concentrations showed only minor effects. These findings support the hypothesis that AChE is a very sensitive biomarker for exposure, but not accurately predict higher level adverse effects following long-term exposure to OPs.  相似文献   

9.
10.
Gene expression analyses in male zebrafish (Danio rerio) were carried out using microarray technique and quantitative polymerase chain reaction. Genes responding to the exposure to 17beta-estradiol, bisphenol A and genistein were identified, among them genes involved in metabolism, reproductional and developmental processes. Threshold levels of 17beta-estradiol (200 ng/L), bisphenol A (2000 microg/L), and genistein (5000 microg/L) for the upregulation of the vtg1 gene in short-time exposures (11 days) were determined by qPCR. 14k microarrays were used to generate complete lists of genes regulated by these estrogenic compounds. For this purpose, liver samples from 10 exposed zebrafish and 10 controls were processed. In this case the expressions of 211 genes were significantly regulated by 17beta-estradiol, 47 by bisphenol A and 231 by genistein. Furthermore, it is shown that fish exposed to 17beta-estradiol and genistein have similarities in their gene expression patterns, whereas bisphenol A apparently affected gene expression in a different way. Only genes coding for egg-yolk precursor protein vitellogenin were found to be regulated by all three compounds, which shows that these genes are the only suitable markers for exposure to different estrogenic compounds. The regulated genes were assigned to gene ontology classes. All three estrogenic compounds regulated genes mainly involved in primary and cellular metabolism, but genistein regulated several genes involved in cell cycle-regulation and bisphenol A several genes involved in protein biosynthesis. Genistein also upregulated the expression of four eggshell proteins, which can be used as biomarkers for exposure to this chemical.  相似文献   

11.
17alpha-ethinylestradiol (EE2) is detected in sewage effluent at concentrations that can disrupt normal reproductive function in fish. The objectives of this study were to identify novel genomic responses to EE2 exposure using microarray and real-time RT-PCR analysis in the liver and telencephalon of male zebrafish. Zebrafish were exposed to an environmentally relevant nominal concentration of 10ng/L EE2 for a 21-day period. In the liver, common biomarkers for estrogenic exposure such as vitellogenin 1 and 3 (vtg1; vtg3), estrogen receptor alpha (esr1), and apolipoprotein A1 (apoA1) mRNA were identified by microarray analysis as being differentially regulated. Real-time RT-PCR confirmed that vtg1 was induced approximately 700-fold, vtg3 was induced approximately 100-fold and esr1 was induced approximately 20-fold. As determined by microarray analysis, ATPase Na+/K+ alpha 1a.4 (atp1a1a.4) and ATPase Na+/K+ beta 1a (atp1b1a) mRNA were down-regulated in the liver. Gene ontology (GO) analysis revealed that there were common biological processes and molecular functions regulated by EE2 in both tissues (e.g. electron transport and cell communication) but there were tissue specific changes in gene categories. For example, genes involved in protein metabolism, carbohydrate metabolism were down-regulated in the liver but were induced in the telencephalon. This study demonstrates that (1) tissues exhibit different gene responses to low EE2 exposure; (2) there are pronounced genomic effects in the liver and (3) multi-tissue gene profiling is needed to improve understanding of the effects of human pharmaceuticals on aquatic organisms.  相似文献   

12.
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect embryonic development. The purpose of this study was to examine the effects of embryonic exposure to PCBs on early retinal development in zebrafish, Danio rerio. Zebrafish embryos were immediately exposed to different concentrations (0, 0.125, 0.25, 0.5, 1.0 and 2.0 mg) of PCBs per liter of medium at 28.5 °C. Embryos were assessed at 30, 48, 72 and 96 h post‐fertilization (hpf) for changes in embryonic survival rate, development, larval retinal morphology and ultrastructure of the retina. The results show that PCB exposure decreased the survival rate of embryos in a time‐ and dose‐dependent manner. Embryos exposed to the higher concentrations of PCBs (0.5, 1.0 and 2.0 mg l?1) displayed obvious gross morphological deformities. At 72 hpf, the retinal layer development of zebrafish was delayed at higher PCB concentrations (1.0 mg l?1). At 96 hpf, irregularity of photoreceptor cells arrangement and thickening of photoreceptor and ganglionic layers were observed in PCB‐treated larvae at concentrations of 0.25–1 mg l?1. Ultrastructural examination showed signs of growth inhibition of the photoreceptor outer segment at 0.25–1 mg l?1 PCB exposure at 72 hpf, as well as the appearance of massive vacuoles and holes inside the outer segments in the PCB exposure group at 96 hpf. These results suggest that embryonic exposure to moderate and high levels of PCBs induced developmental deficits in zebrafish retinas, particularly in photoreceptor cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This study was undertaken to investigate the protective effect of atrazine (2‐chloro‐4‐(ethylamino)‐6‐(isopropylamino)‐S‐triazine) on the activity of glutathione‐S‐transferase (GST) and DNA damage in males and females of adult zebrafish (Danio rerio). Zebrafish were exposed to control and three treatments (0.01, 0.1, and 1 mg/L) of atrazine for 5, 10, 15, 20, and 25 days. The results indicated that, for males, the GST activity at lower atrazine concentrations (0.01 and 0.1 mg/L) was markedly higher than that of the controls throughout the duration of the experiment while there was a significant inhibition of the GST activity at 1 mg/L atrazine at days 5 and 20. For females, a significant increase was detected at 0.1 mg/L on the days 5 and 15 and at 0.01 mg/L on day 20. The DNA damage in zebrafish was evaluated using the comet assay; the olive tail moments obtained for hepatopancreas were enhanced after treatment with different concentrations of atrazine on days 5, 10, 15, 20, and 25. The DNA damage increased with increasing atrazine concentrations, indicating that genotoxicity of atrazine and significant differences was found compared to the controls. In conclusion, these findings provide further evidence of the effects of atrazine on aquatic ecosystems. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.  相似文献   

14.
The presence of carcinogenic compounds in the aquatic environment is a recognized problem. ABC transporters are well known players in the multidrug-resistance (MDR) phenomenon in mammals associated with resistance to chemotherapy, however little is known in fish species. Thus, the aim of this study was to induce hepatic tumours and evaluate long-term effects on P-glycoprotein (P-gp) and proliferating cell nuclear antigen (PCNA) proteins in Danio rerio liver, after exposure to diethylnitrosamine (DEN). Several hepatic histopathological alterations were observed in zebrafish after exposure to DEN including pre-neoplastic lesions 6 and 9 months post-exposure. After 3, 6 and 9 months of exposure to DEN, P-gp and PCNA proteins expression were up-regulated. In conclusion, this study has shown that zebrafish ABC transporters can play a similar role as in human disease, hence zebrafish can be used also as a biological model to investigate in more deep mechanisms involved in disease processes.  相似文献   

15.
16.
17.
18.
19.
Since previous short-term bioassays of methylmercury (MeHg) indicated no morphological effects in zebrafish (Danio rerio) after embryonic exposures below 20 microg/l MeHg, studies were done to determine whether embryonic exposure to MeHg at lower concentrations would induce behavioral effects. Newly fertilized embryos were exposed to 0, 5, 10 or 15 microg MeHg/l for selected exposure durations: single day, multiple day or continuous exposure from fertilization through hatching. Larvae were maintained in an essential salt solution after hatching. Spontaneous swimming performance and prey capture experiments were conducted. Continuous embryonic exposure to 15 microg/l caused delayed mortality syndrome (DMS). These larvae hatched normally and appeared normal, but beginning at Day 3 post-hatch (ph), general activity was severely reduced and by Day 5 ph, larvae were completely moribund; many had faint heartbeats, severely enlarged body cavities and upward flexures of the spinal cord. Most of these larvae were dead by Day 6 ph. Multi- and single-day embryonic exposures to 15 microg/l caused reduced swimming activity and prey capture ability, and by Day 4 ph, these larvae also began to show signs of DMS. Continuous embryonic exposure to 10 microg/l significantly reduced spontaneous swimming activity, which did not improve after 5 days in clean water. Similar results were seen in larvae exposed during the last 24 h of embryonic development. Prey capture ability was also impaired in larvae exposed continuously to 10 microg/l, even after 4 days in clean water. Single-day exposures to 10 microg/l did not affect prey capture ability. Larvae from the 5-microg/l exposures were not significantly different from controls for either parameter. This study reinforces the idea that functional impairment is a more subtle response to developmental toxicants than mortality or the production of morphological defects.  相似文献   

20.
To assess the estrogenic effects of ethinylestradiol on zebrafish, zebrafish at different developmental stages (embryos, juveniles, and adults) were exposed to the synthetic hormone ethinylestradiol (EE2) in concentrations of 1, 10, and 100 ng/L for up to 33 days. Survival, hatching, length, weight, growth, condition, hepatosomatic index, gonadosomatic index, and vitellogenin (VTG) production were examined. Exposure of zebrafish juveniles and embryos to 100 ng EE2/L for up to 33 days had significant effects on survival, growth, and hatching. Two VTG fragments with molecular weights of approximately 140 and 170 kDa were detected with protein electrophoresis and Western blotting in the blood of exposed males and exposed and unexposed females, as well as in whole-body homogenates of exposed and unexposed juveniles. Significantly higher VTG concentrations (compared to controls) were measured in adults exposed to 10 and 100 ng EE2/L for 14 days, but not in fish exposed to 1 ng EE2/L. This study demonstrated that (1) zebrafish juveniles, larvae, and embryos are sensitive to the toxic effects of the endocrine disrupter EE2; (2) the effects on VTG production in adults are detected after exposure to environmentally relevant concentrations of EE2; (3) unexposed juvenile zebrafish produce measurable concentrations of VTG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号