首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The roles of endogenous serotonin (5-HT) and 5-HT receptor subtypes in regulation of acetylcholine (ACh) release in frontal cortex of conscious rats were examined using a microdialysis technique. Systemic administration (1 and 3 mg/kg, i.p.) of the 5-HT-releasing agent p-chloroamphetamine (PCA) elevated ACh output in a dose-dependent manner. Depletion of endogenous 5-HT by p-chlorophenylalanine significantly attenuated the facilitatory effect of PCA on ACh release. The PCA (3 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 μM) and GR113803 (1 μM), while the 5-HT1A antagonist WAY-100135 (10 mg/kg, i.p.; 100 μM), 5-HT1A/1B/β-adrenoceptor antagonists (−)-pindolol (8 mg/kg, i.p.) and (−)-propranolol (150 μM), 5-HT2A/2C antagonist ritanserin (1 mg/kg, i.p.; 10 μM) and 5-HT3 antagonist ondansetron (1 mg/kg, i.p.; 10 μM) failed to significantly modify the effect of PCA. These results suggest that PCA-induced enhancement of 5-HT transmission facilitates ACh release from rat frontal cortex at least in part through 5-HT4 receptors.  相似文献   

2.
The role of the serotonin (5-HT)1A receptor in the regulation of acetylcholine (ACh) release in the hippocampus was investigated using an in vivo microdialysis technique and a sensitive radioimmunoassay specific for ACh. The mean (±S.E.M.) basal ACh contents in the hippocampal perfusate of conscious, freely moving rats was 60 ± 4 (n = 29) and 3691 ± 265 fmol/30 min (n = 31), respectively, in the absence and presence of physostigmine (Phy) in the perfusion fluid. Systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.5 mg/kg, s.c.), a 5-HT1A agonist, significantly enhanced ACh release both in the presence and absence of Phy. Local application of 8-OH-DPAT (3–30 μM) into the hippocampus through the microdialysis probe significantly potentiated ACh release only in the presence of Phy, whereas no significant effect was observed in its absence. Pretreatment with NAN-190 (3 mg/kg, i.p.), a 5-HT1A antagonist, eliminated the increasing effect of systemically applied 8-OH-DPAT on ACh release, while NAN-190 alone had no effect on basal ACh release either in the absence or presence of Phy. Consistent with the time course of ACh release, systemic administration of 8-OH-DPAT evoked hyperlocomotion, which was reversed by NAN-190. However, local hippocampal application of 8-OH-DPAT did not affect the locomotor activity of the rats. These findings suggest that at least two different sites are involved in the 8-OH-DPAT-induced increase in the release of ACh in the rat hippocampus in vivo.  相似文献   

3.
Status epilepticus (SE) is a life-threatening neurological emergency associated with a high mortality rate. The serotonin 1A (5-HT1A) receptor is a possible target for the treatment of SE, but its role in animal models and the precise area of brain involved remain controversial. The hippocampus is a candidate site due to its key role in the development of SE and the existence of a high density of 5-HT1A receptors. Therefore, we investigated the effects of subcutaneous and intrahippocampal activation of 5-HT1A receptors in lithium-pilocarpine-induced SE, and tested whether the hippocampus is a true effector site. We developed SE in male Sprague-Dawley rats by giving lithium chloride (LiCl; 3 meq/kg, i.p.) 22–24 h prior to pilocarpine (25 mg/kg, i.p.), and found that 8-OH-DPAT, a 5-HT1A receptor agonist administered subcutaneously (s.c.) at 0.5 or 1.0 mg/kg 1 h before pilocarpine injection increased the latency to the first epileptiform spikes, the electrographic SE, and the behavioral generalized seizures (GS), while reducing the total EEG seizure time (P <0.01). The duration of GS was shortened only by 1.0 mg/kg 8-OH-DPAT s.c. (P <0.05). All these effects were inhibited by combined administration of WAY-100635 (1.0 mg/kg, s.c.) (P <0.05), an antagonist of the 5-HT1A receptor, but WAY-100635 alone and low doses of 8-OHDPAT (0.01 and 0.1 mg/kg) did not alter seizure activity. Furthermore, intrahippocampal 8-OH-DPAT only shortened the GS duration (P <0.05). These findings imply that the 5-HT1A receptor is a promising therapeutic target against the generation and propagation of SE, and hippocampal receptors are involved in reducing the seizure severity.  相似文献   

4.
The present study investigated alterations of the regulation of serotonin (5-hydroxytryptamine; 5-HT) release by 5-HT1A autoreceptors following single and repeated treatment with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT). Rats were pretreated with 8-OH-DPAT (1.0 mg/kg, s.c.) for 1, 7, or 14 days. The ability of an acute challenge administration of 8-OH-DPAT (1.0 mg/kg, i.p.) to decrease 5-HT release in the ventral striatum and the ventral hippocampus of rats maintained under chloral hydrate anesthesia was examined 24 h after the last pretreatment injection using in vivo microdialysis. The decrease of 5-HT release in the striatum produced by the challenge dose of the 5-HT1A receptor agonist was diminished following 7 and 14 days of pretreatment, but not after 1 day of pretreatment, with 8-OH-DPAT. In contrast, decreases of 5-HT release in the hippocampus by the 8-OH-DPAT challenge were not altered after 1 or 7 days of pretreatment, and only a trend for attenuation appeared after pretreatment for 14 days. The results of the present study indicate that desensitization of 5-HT1A autoreceptors regulating 5-HT release in different brain regions by repeated treatment with 8-OH-DPAT occurs at different rates. Synapse 25:107–116, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Serotonin (5-HT)1A receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT1A receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT2A/D2 receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0.03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01–1.0 mg/kg), potent D2 receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1–0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT2A receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT1A receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT2A receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

6.
Various putative agonists of the 5-HT1A receptor subtype induce feeding in rats, probably by activating raphé somatodendritic 5-HT autoreceptors. These drugs also produce a marked increase in plasma concentrations of corticotropin (ACTH). In the present experiment we attempted to localize the site of action of 5-HT1A agonists on the secretion of ACTH and examined the relationship between 5-HT1A agonist-induced feeding and ACTH secretion. Rats were injected with either the high affinity 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (0.016-1.0 mg/kg, s.c.) or the novel anxiolytics buspirone, gepirone or ipsapirone (2.0–16.0 mg/k/g, s.c.), and either had their food intake measured 2 hr post injection or were sacrificed 30–40 min post injection for measurement of plasma ACTH. Plasma ACTH also was measured in rats pretreated with the serotonin synthesis inhibitor, para-chlorophenylalanine (PCPA) for three days (150 mg/kg, i.p. per day) and subsequently injected with 8-OH-DPAT (0.3 mg/kg, s.c.).As previously reported, the 5-HT1A agonists increased both food agonists increased both food intake and plasma ACTH concentrations. After 8-OH-DPAT, ipsapirone and gepirone the amount of food consumed was positively correlated with the concentration of plasma ACTH. No such correlation was evident following buspirone. PCPA pretreatment resulted in near total depletion of brain 5-HT content but had no effect on the ACTH rise induced by 8-OH-DPAT. Therefore, in contrast to the presynaptic site previously proposed for 5-HT1A agonist-induced feeding, the present results suggest a agonist-induced feeding, the present results suggest a postsynaptic location for the 5-HT1A receptor mediating ACTH release.  相似文献   

7.
Previous studies have revealed that 5-HT1A agonists ameliorate antipsychotic-induced extrapyramidal symptoms (EPS) through postsynaptic 5-HT1A receptors. Here, we conducted an intracerebral microinjection study of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin ((±)8-OH-DPAT) to determine the action site of the 5-HT1A agonist in alleviating EPS. Bilateral microinjection of(±)8-OH-DPAT (5 µg/1 µL per side) either into the primary motor cortex (MC) or the dorsolateral striatum (dlST) significantly attenuated haloperidol-induced catalepsy in rats. The anticataleptic action of (±)8-OH-DPAT was more prominent with the MC injection than with the dlST injection. WAY-100135 (a selective 5-HT1A antagonist) completely antagonized the reversal of haloperidol-induced catalepsy both by intracortical and intrastriatal (±)8-OH-DPAT. Furthermore, lesioning of dopamine neurons with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (30 mg/kg/day, i.p., for 4 days) did not alter the anti-EPS actions of (±)8-OH-DPAT in a mouse pole test. The present results strongly suggest that 5-HT1A agonist alleviates antipsychotic-induced EPS by activating postsynaptic 5-HT1A receptors in the MC and dlST, probably through non-dopaminergic mechanisms.  相似文献   

8.
Summary. The effects of neuroleptics have been attributed to dopamine (DA) receptor blockade; however, other neurotransmitters, in particular serotonin (5-HT), have also been implicated. In this study, we examined the effects of clozapine and haloperidol on the distribution of DA and 5-HT transporters, on endogenous DA, 5-HT and their major metabolites, and on 5-HT1A receptors. Adult male Sprague-Dawley rats were treated with either haloperidol (1 mg/kg/day, i.p.), clozapine (20 mg/kg/day, i.p.) or saline for 21 days, and following 3 days of withdrawal, the brains were removed. Tissue levels of DA and 5-HT and their metabolites were measured by high-performance liquid chromatography in 16 brain regions, while quantitative autoradiography with [125I]RTI-121, [3H]citalopram and [3H]8-OH-DPAT was employed to label DA transporters, 5-HT transporters and 5-HT1A receptors, respectively. After haloperidol, densities of 5-HT transporters were increased in the dorsal insular cortex and in the ventral half of caudal neostriatum, while 5-HT1A receptors augmented in cingulate cortex but decreased in the entorhinal area. After clozapine, [3H]citalopram labelling was increased in ventral hippocampus, ventral caudal neostriatum and nucleus raphe dorsalis, but decreased in medio-dorsal and latero-dorsal neostriatum as well as in substantia nigra. Binding of [3H]8-OH-DPAT following clozapine was decreased in frontal, parietal, temporal and entorhinal cortices but increased in the CA3 division of Ammon's horn. The changes in 5-HT transporters in nucleus raphe dorsalis and substantia nigra, as well as the 5-HT1A receptor down-regulations caused by clozapine but not by haloperidol, may explain effects obtained with clozapine and other atypical neuroleptics. There were no modifications in densities of DA transporters, nor of tissue DA levels, after the chronic neuroleptic treatments. The results are in line with previous suggestions that a certain degree of tolerance to neuroleptics develops, in spite of profound D1 and D2 receptor changes that persist during the entire chronic treatment with these psychotropic agents. Received September 2, 1997; accepted July 9, 1998  相似文献   

9.
Summary. The effects of 3-week treatment with a typical antipsychotic drug chlorpromazine and three atypical antipsychotic drugs (risperidone, olanzapine and perospirone) on the binding to dopamine D2 and serotonin 5-HT2A receptors were examined in the rat stratum and frontal cortex, respectively. Subchronic treatment with chlorpromazine (10 mg/kg) and perospirone (1 mg/kg) significantly increased D2 receptors, while no increase was observed with lower dose of chlorpromazine (5 mg/kg), perospirone (0.1 mg/kg), risperidone (0.25, 0.5 mg/kg) or olanzapine (1, 2 mg/kg). On the other hand, 3-week administration of chlorpromazine (5, 10 mg/kg) and olanzapine (1, 2 mg/kg) significantly decreased 5-HT2A receptors, but risperidone (0.25, 0.5 mg/kg) or perospirone (0.1, 1 mg/kg) had no effect. The measurement of in vivo drug occupation for D2 and 5-HT2A receptors using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) suggested that high occupation of 5-HT2A receptors with lower D2 receptor occupancy might be involved in the absence of up-regulation of D2 receptors after subchronic treatment with some atypical antipsychotic drugs. Received September 24, 1999; accepted December 1, 1999  相似文献   

10.
The present studies have examined whether the neuropeptide galanin can modulate brain serotoninergic (5-HT) neurotransmission in vivo and, particularly, 5-HT1A receptor-mediated transmission. For that purpose, we studied the ability of galanin (given bilaterally into the lateral ventricle, i.c.v.) to modify the impairment of passive avoidance retention induced by the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propyloamino)tetralin (8-OH-DPAT) when injected prior to training. This impairment appears to be mainly related to activation of 5-HT1A receptors in the CNS. Galanin dose-dependently (significant at 3.0 nmol/rat) attenuated the passive avoidance impairment (examined 24 h after training) induced by the 0.2 mg/kg dose of 8-OH-DPAT. This 8-OH-DPAT dose produced signs of the 5-HT syndrome indicating a postsynaptic 5-HT1A receptor activation. Furthermore, both the impairment of passive avoidance and the 5-HT syndrome were completely blocked by the 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg). Galanin (0.3 or 3.0 nmol) or WAY 100635 (0.1 mg/kg) failed by themselves to affect passive avoidance retention. 8-OH-DPAT given at a low dose 0.03 mg/kg, which presumably stimulates somatodendritic 5-HT1A autoreceptors in vivo, did not alter passive avoidance retention or induce any visually detectable signs of the 5-HT syndrome. Galanin (0.3 or 3.0 nmol) given i.c.v. in combination with the 0.03 mg/kg dose of 8-OH-DPAT, did not modify passive avoidance. The immunohistochemical study of the distribution of i.c.v. administered galanin (10 min after infusion) showed a strong diffuse labelling in the periventricular zone (100–200 μm) of the lateral ventricle. Furthermore, in the dorsal and ventral hippocampus galanin-immunoreactive nerve cells appeared both in the dentate gyrus and the CA1, CA2 and CA3 layers of the hippocampus. In the septum only endogenous fibres could be seen while in the caudal amygdala also galanin-immunoreactive nerve cells were visualized far away from the labelled periventricular zone. At the level of the dorsal raphe nucleus a thin periventricular zone of galanin immunoreactivity was seen but no labelling of cells. These results suggest that galanin can modulate postsynaptic 5-HT1A receptor transmission in vivo in discrete cell populations in forebrain regions such as the dorsal and ventral hippocampus and parts of the amygdala. The indication that galanin administered intracerebroventrically may be taken up in certain populations of nerve terminals in the periventricular zone for retrograde transport suggests that this peptide may also affect intracellular events.  相似文献   

11.
This bipartite study uses behavioral and biochemical means to explore the involvement of both pre- and post-synaptic 5-HT1A receptors in the control of food intake and neuroendocrine regulation. In the pharmacological study, the administration of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 60 μg/kg b.wt., i.p.) to rats caused a significant increase in 2 h intake of a high carbohydrate (CARB)/sugar diet (P < 0.05) during the relatively inactive feeding period of the late light cycle. No significant change was detected in the intake of Purina laboratory chow at 2 h, or of the intake of either diet at 4 h and 24 h after 8-OH-DPAT administration. Injection of 8-OH-DPAT induced a drop in insulin levels in rats maintained on high CARB/sugar diets only (−90%; P<0.05). It also caused an increase in circulating glucose levels in both high CARB/sugar (240%; P<0.01) and chow fed (123%; P<0.05) rats; it did so more intensely in high CARB/sugar-fed rats. In the biochemical study, radioligand binding techniques were used to assess 5-HT1A receptor density in the hypothalamus, as well as the relationship between 5-HT1A receptors and circulating levels of insulin and glucose. Chronic and acute administration (25 mg/kg b.wt./5 injections, and 50 mg/kg b.wt., respectively, i.p.) of the potent hypoglyce mic agent tolbutamide (TOL) caused a significant increase in 5-HT1A receptor density (+243% and +132.6%, respectively; P<0.05) in the medial hypothalamus but not in the lateral hypothalamus, as compared to vehicle-treated rats. Chronic glucose replacement therapy showed a trend towards reversing the depressed circulating glucose levels as well as the medial hypothalamic 5-HT1A receptor density to control levels. These studies indicate that the pre-synaptic mechanism of 8-OH-DPAT-induced hyperphagia may require specific circulating levels of insulin and glucose, which are regulated via post-synaptic 5-HT1A receptors.  相似文献   

12.
《Brain research》1997,757(1):205
The role of 5-hydroxytryptamine (5-HT) receptor subtypes in acetylcholine (ACh) release induced by dopamine or neurokinin receptor stimulation was studied in rat striatal slices. The dopamine D1 receptor agonist SKF 38393 potentiated in a tetrodotoxin-sensitive manner the K+-evoked [3H]ACh release while SCH 23390, a dopamine D1 receptor antagonist, had no effect. [3H]ACh release was decreased by the dopamine D2 receptor agonist LY 171555 (quinpirole) and slightly potentiated by the dopamine D2 receptor antagonist haloperidol. The selective neurokinin NK1 receptor agonist [Sar9, met(O2)11]SP also potentiated K+-evoked release of [3H]ACh. GR 82334, a NK1 receptor antagonist, blocked not only the effect of [Sar9, met(O2)11]SP but also the release of ACh induced by the D1 receptor agonist SKF 38393. Among the 5-HT agents studied, only the 5-HT2A receptor antagonists ketanserin and ritanserin were able to reduce the ACh release induced by dopamine D1 receptor stimulation. Mesulergine, a more selective 5-HT2C antagonist, showed an intrinsic releasing effect but did not affect K+-evoked ACh release induced by SKF 38393. Methysergide and methiothepin, mixed 5-HT1/2 antagonists, as well as ondansetron, a 5-HT3 receptor antagonist, showed an intrinsic effect on ACh release, their effects being additive to that of SKF 38393. 5-HT2 receptor agonists were ineffective. However, the 5-HT2 agonist DOI was able to prevent the antagonism by ketanserin of the increased [3H]ACh efflux elicited by SKF 38393, suggesting a permissive role of 5-HT2A receptors. None of the above indicated 5-HT agents was able to reduce the ACh release induced by the selective NK1 agonist. The results suggest that 5-HT2 receptors, probably of the 5-HT2A subtype, modulate the release of ACh observed in slices from the rat striatum after stimulation of dopamine D1 receptors. It seems that this serotonergic control is exerted on the interposed collaterals of substance P-containing neurons which promote ACh efflux through activation of NK1 receptors located on cholinergic interneurons.  相似文献   

13.
Microiontophoretic applications of 5-HT and of the 5-HT3 agonist 2-methyl-5-HT produced a current-dependent suppression of firing activity of both hippocampal (CA1 and CA3) and cortical neurons in anesthetized rats. Concomitant microiontophoretic applications of the 5-HT3 antagonists BRL 46470A and S-zacopride, as well as their intravenous injection, did not antagonize the inhibitory effect of 5-HT and 2-methyl-5-HT. In contrast, the 5-HT1A antagonist BMY 7378, applied by microiontophoresis or administered intravenously, significantly reduced the inhibitory action of 5-HT and 2-methyl-5-HT. The firing activity of dorsal raphe 5-HT neurons was also reduced by 5-HT, 2-methyl-5-HT and the 5-HT1A agonist 8-OH-DPAT applied by microiontophoresis. While BRL 46470A (0.1 and 1 mg/kg, i.v.) did not antagonize the inhibitory effect of the three 5-HT agonists on 5-HT neuronal firing activity, only that of 8-OH-DPAT was attenuated by the 5-HT1A antagonist (+) WAY 100135. R-zacopride significantly reduced the duration of suppression of firing activity of CA3 pyramidal neurons induced by the electrical stimulation of the ascending 5-HT pathway, and this reducing effect was prevented by the three 5-HT3/5-HT4 antagonists renzapride, S-zacopride and tropisetron, but not by BRL 46470A. Finally, in in vitro superfusion experiments, both BRL 46470A and S-zacopride antagonized the enhancing action of 2-methyld-HT on the electrically-evoked release of [3H]-5-HT in both rat frontal cortex and hippocampus slices. These findings suggest that, in vivo, the suppressant effect of 2-methyl-5-HT on the firing activity of dorsal hippocampus pyramidal, somatosensory cortical, and dorsal raphe 5-HT neurons is not mediated by 5-HT3 receptors, but rather by 5-HT1A receptors. The attenuating effect of R-zacopride on the effectiveness of the stimulation of the ascending 5-HT pathway is not mediated by 5-HT3 receptors. In contrast, in vitro, the enhancing action of 2-methyl-5-HT on the electrically-evoked release of [3H]5-HT in both frontal cortex and hippocampus slices is mediated by 5-HT3 receptors. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The present study was designed to investigate: (1) the involvement of dopamine D1 and D2 receptors, and (2) the roles of these receptors and endogenous opioid systems (endorphinergic and enkephalinergic systems) in the ethanol-induced place preference in rats exposed to conditioned fear stress using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) induced a significant place preference. The selective D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H3-benzazepine)hydrochloride (SCH23390; 0.01 and 0.03 mg/kg, s.c.) and the selective D2 receptor antagonist S(−)-5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride; 20 and 40 mg/kg, s.c.) significantly attenuated the ethanol-induced place preference. The administration of ethanol (75 mg/kg, i.p.) tended to produce a place preference, but this effect was not significant. SCH23390 (0.03 mg/kg, s.c.) and sulpiride (40 mg/kg, s.c.) significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the μ-opioid receptor agonist morphine (0.1 mg/kg, s.c.). In addition, SCH23390 (0.03 mg/kg, s.c.) also significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the selective δ-opioid receptor agonist 2-methyl-4aα-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aα-octahydroquinolino[2,3,3,-g]isoquinoline (TAN-67; 20 mg/kg, s.c.). On the other hand, sulpiride (40 mg/kg) had no significant effect on the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by TAN-67. These results suggest that D1 and D2 receptors may be involved in the rewarding mechanism of ethanol under psychological stress. In addition, D1 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ- and δ-opioid receptors, whereas D2 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ-opioid receptors, but not in that modulated by the activation of δ-opioid receptors.  相似文献   

15.
Literature data has shown that acute administration of magnesium reduces immobility time in the mouse forced swimming test (FST), which suggests potential antidepressant activity in humans. However, its mechanism of action is not completely understood. Thus, this study is aimed at investigating the antidepressant-like action of magnesium and the possible involvement of the monoaminergic system in its effect in the FST. The immobility time in the FST was significantly reduced by magnesium chloride administration (30–100 mg/kg, i.p.) without accompanying changes in ambulation when assessed in an open-field test. The pre-treatment of mice with NAN-190 (0.5 mg/kg, i.p. a 5-HT1A receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist), ritanserin (4 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ketanserin (5 mg/kg, a preferential 5-HT2A receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), haloperidol (0.2 mg/kg, i.p., a non selective dopaminergic receptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist) 30 min before the administration of magnesium chloride (30 mg/kg, i.p.) significantly prevented its anti-immobility effect in the FST. Moreover, the administration of sub-effective doses of fluoxetine (10 mg/kg, i.p., serotonin reuptake inhibitor), imipramine (5 mg/kg, i.p., a mixed serotonergic noradrenergic reuptake inhibitor), bupropion (1 mg/kg, i.p., dopamine reuptake inhibitor) was able to potentiate the action of sub-effective doses of magnesium chloride. In conclusion, the present study provides evidence indicating that the antidepressant-like effect of magnesium in the FST is dependent on its interaction with the serotonergic (5-HT1A and 5-HT2A/2C receptors), noradrenergic (α1- and α2- receptors) and dopaminergic (dopamine D1 and D2 receptors) systems.  相似文献   

16.
In human cortex and hippocampus area, [3H]5-HT (5 nM) labels 5-HT1A, 5-HT1D and 5-HT1E sites. After masking 5-HT1A receptors by 0.1 μM 8-OH-DPAT, the binding displaced by 0.1 μM 5-CT presumably represented 5-HT1D sites and the remaining binding 5-HT1E sites. In frontal cortex, 5-HT1A receptors represented the main binding in layers II and VI and a lower fraction on other layers. 5-HT1D and 5-HT1E sites, were more homogeneously distributed in layers II to VI (21–34% of specific [3H]5-HT binding). 5-HT1E sites were of similar affinities (KD close to 6–8 nM) in the cortical layers II to VI. In CA1 field of hippocampus, (pyramidal layer, stratum radiatum, molecular layer), CA2 and dentate gyrus, 5-HT1A receptors represented the major fraction, 5-HT1D sites a significant fraction and 5-HT1E a minor fraction of the specific [3H]5-HT binding. In CA3–CA4 fields, 5-HT1A receptors were less densely present, 5-HT1D sites were predominant and 5-HT1E sites represented a significant fraction (27%). The highest densities of 5-HT1E sites have been measured in subiculum, where 5-HT1A, 5-HT1D, and 5-HT1E binding sites were equally represented and in entorhinal cortex where 5-HT1E sites represented the major binding in layer III. They were also present in layers II and IV (29 and 24%) and, to a lesser extent, in layers V and VI. 5-HT1A sites were predominant in layer VI, II and V and were less abundant in other layers. 5-HT1D were homogeneously present in layers II, III, IV and were present in low amounts in other layers. No 5-HT1E were detected in choroid plexus, where [3H]5-HT was dramatically reduced by mesulergine (5-HT2C receptors). No significant displacement of [3H]5-HT by mesulergine was measured in other structures.  相似文献   

17.
Electrical activity in the dorsal hippocampus was recorded in freely moving cats in response to intravenous administration of 5-HT1A agonist and antagonist drugs. Administration of low doses of the selective 5-HT1A agonists 8-OH-DPAT (5–20 μg/kg) and ipsapirone (20–100 μg/kg) produced rhythmic slow activity (theta) in the hippocampal EEG within 30 s. Similar effects were observed with BMY 7378 (20 and 100 μg/kg), which acts as an agonist at presynaptic (somatodendritic) 5-HT1A receptors and as an antagonist at postsynaptic 5-HT1A receptors. Power spectral analyses showed that all three compounds produced a dose-dependent increase in the EEG power occurring in the theta frequency band (3.5–8.0 Hz) as a proportion of total power from 0.25 to 30.0 Hz (relative theta power). The increase in relative theta power produced by 8-OH-DPAT (20 μg/kg) was greatly attenuated by spiperone (1 mg/kg), a highly effective 5-HT1A autoreceptor antagonist. Administration of spiperone alone had no significant effect on relative theta power. These results are discussed in relationship to the effects of these drugs on serotonergic neuronal activity. Our results suggest that preferential activation of presynaptic 5-HT1A receptors, and subsequent inhibition of serotonin neurotransmission, facilitates the appearance of hippocampal theta activity in awake cats.  相似文献   

18.
The effect of the selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on stress-induced anorexia and serotonin (5-HT) release in the rat hypothalamus was studied with brain microdialysis. Subcutaneous injection of 8-OH-DPAT (1 mg/kg) significantly attenuated the immobilization-induced anorexia for 3 h, but had no effect during the following 9 h. Injection of 8-OH-DPAT itself had no effect on basal release of 5-HT, while it significantly blocked the immobilization-induced 5-HT release in the lateral hypothalamus. The results suggest that 8-OH-DPAT attenuated the stress-induced anorexia through the activation of 5-HT1A autoreceptors in dorsal raphe nucleus.  相似文献   

19.
The present study demonstrated the antidepressant-like effect of neurosteroid 3α-hydroxy-5α-pregnan-20-one (3α, 5α THP) in mouse forced swim test of depression and its modulation by different serotonergic agents. Pretreatment with the selective serotonin reuptake inhibitor, fluoxetine (5 mg/kg, i.p.), the 5-HT releaser, fenfluramine (10 mg/kg, i.p.), the 5-HT1A receptor agonist, 8-OH-DPAT (0.1 mg/kg, s.c.), the 5-HT1B/1C receptor agonist, TFMPP (4 mg/kg, s.c.) and the 5-HT2A/1C receptor agonist, DOI (2 mg/kg, s.c.) potentiated the antidepressant-like effect of 3α, 5α THP. At these doses the serotonergic agents per se did not modify the duration of immobility. However, fluoxetine (20 mg/kg, i.p.), fenfluramine (20 mg/kg, i.p.) or imipramine (5 or 20 mg/kg, i.p.) not only reduced immobility but also enhanced the antidepressant-like effect of 3α, 5α THP. Such a potentiating effect of the 5-HT1A or the 5-HT2A/1C receptor agonist was not antagonized by the sub-effective dose (0.1 mg/kg, s.c.) of their respective antagonists p-MPPI or ketanserin. Pretreatment with p-CPA (300×3 mg/kg, i.p.), a depleter of 5-HT neuronal store failed to block the influence of fluoxetine and fenfluramine on antidepressant-like effect of 3α, 5α THP. The accelerated effect of 3α, 5α THP in presence of serotonergic agents was antagonized by the GABAA receptor antagonist, bicuculline (1 mg/kg, i.p.) or the 3α-hydroxysteroid oxidoreductase enzyme inhibitor, indomethacin (5 mg/kg, i.p.). These findings for the first time demonstrate that serotonergic agents potentiate the antidepressant-like action of 3α, 5α THP, by enhancing the GABAergic tone as a likely consequence of increased brain content of this neurosteroid.  相似文献   

20.
The present study demonstrates the involvement of serotonin (5-HT) receptors of the 5-HT1A type in immunoinhibitory effect of 5-HTergic system of the brain. A selective agonist of 5-HT1A receptors 8-OH-DPAT (1 mg/kg) induces the immunosuppression, whereas 5-HT1A blockade with WAY-100635 (1 mg/kg) resulted in immunostimulation. It is also shown that immunomodulating effects of the drugs were dependent on psychoemotional status of animals acquired aggressive or submissive behavior under social conflict conditions. Activation of 5-HT1A receptors produced a decrease of the immunity in aggressive mice, whereas 5-HT1A receptor blockade caused immunostimulation in submissive animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号