首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The effect of TRH on cytosolic free calcium concentrations, [Ca2+]i, was evaluated on cell suspensions obtained from 6 human PRL secreting pituitary adenomas. In these cells resting [Ca2+]i levels were variable (mean +/- SE; 103.8 +/- 6.5, n = 25); the addition of 100 nM TRH caused a marked [Ca2+]i rise within 20 sec., the peak values ranging from 200 to 437 nM (285 +/- 10.8 nM, n = 10). The transients induced by TRH were composed by a rapid increase, due to mobilization of calcium from intracellular stores, followed within a few seconds by a lower plateau which was due to stimulated influx from the extracellular space. In fact, when EGTA and verapamil were applied after TRH they caused the Ca2+ plateau to dissipate rapidly. The addition of 1 microM dopamine (DA) caused a substantial decrease of resting [Ca2+]i (about 10-30%) as well as an inhibition of the plateau phase induced by TRH. The effect of DA completely depended on extracellular Ca2+. The TRH-induced transients observed in adenomatous cells were quite similar in size and time course to those recorded in normal rat lactotrophs. As previously observed in rat lactotrophs, in adenomatous cells treatment with pertussis toxin (PTx, 1 microgram/ml for 4 h) was unable to affect the [Ca2+]i transients induced by TRH while completely abolished the effect of DA. The effects of TRH on in vivo and in vitro PRL secretion were also evaluated. Before surgery, no patient showed a positive response to the iv administration of 200 micrograms TRH (serum PRL levels: 95 +/- 62 ng/ml in basal conditions vs 124 +/- 92 after TRH, P = NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In GH4C1 cells, TRH and the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), have been shown to activate Na+/H+ exchange, probably via stimulation of protein kinase C. In the present study, the dependence of changes in intracellular pH (pHi) on transients in the cytosolic free calcium concentration [( Ca2+]i) was investigated using BCECF and fura-2, respectively. In buffer containing 0.4 mM extracellular Ca2+, both TRH and ionomycin induced rapid cytosolic alkalinization in GH4C1 cells acid loaded with nigericin. The action of ionomycin on pHi was abolished by preincubating the cells with 100 microM amiloride or by replacing extracellular Na+ with choline+, indicating that the change in pHi was probably due to activation of Na+/H+ exchange. The actions of both TRH and ionomycin on pHi were blunted in Ca2(+)-free buffer. When acid-loaded cells were stimulated first with ionomycin, to deplete intracellular Ca2+ stores, and then incubated with TRH, the TRH-induced alkalinization was blunted; thus, an increase in [Ca2+]i is needed for full activation of Na+/H+ exchange. To study further the importance of agonist-induced changes in [Ca2+]i on the activation of Na+/H+ exchange, acid-loaded cells were incubated first with TPA, and then with either TRH or ionomycin. TPA induced a rise in pHi, which was further enhanced by TRH, but not ionomycin. The actions of both TRH and ionomycin on Na+/H+ exchange were attenuated, but not abolished, in cells pretreated with TPA for 36 h. Acidification of the cytosol with nigericin increased the resting [Ca2+]i level from 125 +/- 29 to 200 +/- 25 nM (P less than 0.01). The increase in [Ca2+]i was greatly attenuated when extracellular Ca2+ was chelated with EGTA before the addition of nigericin. Both the TRH- and ionomycin-induced increases in [Ca2+]i were blunted in acid-loaded cells. We conclude that in GH4C1 cells, a transient increase in [Ca2+]i can enhance Na+/H+ exchange and cause a rise in pHi, but that to obtain full activation of exchange, protein kinase C activity must also be stimulated. Furthermore, pHi is important in maintaining an adequate store of sequestered intracellular Ca2+ and in the release of Ca2+ from that store in response to TRH and ionomycin.  相似文献   

3.
Calcitonin (CT) and related peptides, such as CT gene-related peptide and salmon CT (sCT)-like peptide, are present in the rat nervous system and the pituitary gland, and sCT markedly inhibits basal and TRH-stimulated PRL release from anterior pituitary (AP) cells. Because TRH-induced PRL release is known to involve increases in cytosolic free Ca2+ derived from both extracellular and intracellular sources, the objective of the present study was to test whether sCT interferes with this effect. Secretogogue-induced elevations of cytosolic free Ca2+ ([Ca2+]i) in acutely dispersed AP cells were monitored using the fluorescent Ca2+ indicator Indo-1 AM and flow cytometry. AP cells were enzymatically dispersed to single cell suspensions and loaded with 20 microM Indo-1 AM for 30 min. Indo-1-loaded AP cells were scanned at a rate of approximately 500 cells/sec for 200-300 sec in a flow cytometer, and the ratio of fluorescence due to Ca2+ bound to Indo-1 to free Indo-1 (Indo-1 ratio), which is an index of [Ca2+]i, was determined for each cell. Under basal conditions, AP cells showed stable Indo-1 ratios during the scans, and 100% of the cells responded to the Ca2+ ionophore ionomycin with increases in the Indo-1 ratio. Approximately 25-30% of the AP cells responded to a 1 microM pulse of TRH with marked increases in the Indo-1 ratio, indicative of increases in [Ca2+]i, with the response consisting of two phases, an initial rapid rise that was unaffected by the presence of EGTA in the extracellular environment, followed by a decrease to a sustained secondary phase that was completely eliminated by EGTA. In a normal extracellular Ca2+ environment, pretreatment with 100 nM sCT almost totally inhibited the response to 1 microM TRH. In EGTA-pretreated AP cells, the initial EGTA-insensitive phase of the TRH-induced [Ca2+]i increase was also abolished by prior exposure to sCT. These results suggest that sCT inhibits TRH-stimulated PRL release in AP cells by attenuating the TRH-induced increase in [Ca2+]i, an effect that probably occurs as a consequence of inhibition of the stimulatory effect of TRH on the Ca2+/phospholipid messenger system.  相似文献   

4.
Lidocaine at greater than or equal to 1 mM and procaine at greater than or equal to 2.5 mM exerted dose-dependent inhibition of the increment in [Ca2+]i induced by 100 nM thyrotropin-releasing hormone (TRH) or 30 mM K+ in GH4C1 cells. The rise in [Ca2+]i induced by K+ was more sensitive to this inhibition than that induced by TRH. Lidocaine was more potent than procaine in inhibiting the [Ca2+]i increment induced by secretagogues. Maximal lidocaine inhibition of the TRH-induced [Ca2+]i increment occurred within 15-20 min and a normal response to secretagogues returned within 20 min after removal of lidocaine from the incubation medium. Our data suggest that in GH4C1 cells local anesthetics depress secretagogue-induced intracellular Ca2+ mobilization, depolarization of the cell membrane, and the opening of voltage-dependent Ca2+ channels. This may explain the depression of secretagogue-stimulated hormone secretion induced by these agents.  相似文献   

5.
We have previously demonstrated differences in several cellular responses to TRH in mouse thyrotropic pituitary (TtT) cells and in rat mammotropic pituitary (GH3) cells. In this report, we further explore the mechanism of TRH action in TtT cells by measuring its effects on phosphoinositides and on cytoplasmic free Ca2+ concentration [( Ca2+]i). We demonstrate that TRH stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by a phospholipase C and elevates [Ca2+]i. Furthermore, we present evidence that hydrolysis of PtdIns(4,5)P2 is not secondary to the elevation of [Ca2+]i. TRH caused a rapid decrease in the level of PtdIns(4,5)P2 to 57% of control and stimulated an increase in inositoltriphosphate, the unique product of phospholipase C-mediated hydrolysis of PtdIns(4,5)P2, to a peak of 280% of control. In control cells, resting [Ca2+]i was 106 +/- (SE) 27 nM, and TRH stimulated a rapid elevation to 700 +/- 210 nM. In experiments performed to determine whether PtdIns(4,5)P2 hydrolysis induced by TRH may have been caused by the elevation of [Ca2+]i, the following results were obtained: the effect of TRH to decrease the level of PtdIns(4,5)P2 was not reproduced by the calcium ionophore A23187 or by membrane depolarization with 50 mM K+; the calcium antagonist TMB-8 did not inhibit the TRH-induced decrease in PtdIns(4,5)P2; and, most importantly, inhibition by EGTA of the elevation of [Ca2+]i did not inhibit the TRH-induced decrease in PtdIns(4,5)P2. We suggest that phospholipase C-mediated hydrolysis of PtdIns(4,5)P2 to yield inositoltriphosphate may be the initial event in TRH action in TtT cells, as in GH3 cells, that leads to elevation of [Ca2+]i and to TSH secretion.  相似文献   

6.
Muscarinic cholinergic agonists have been shown to inhibit PRL secretion in normal and tumor-derived pituitary cells. Evidence from experiments with the fluorescent Ca2+ probe quin 2 shows that carbachol, acting through muscarinic acetylcholine receptors, lowers the cytosolic free Ca2+ concentration ([Ca2+]i), in GH3 cells. A decrease in [Ca2+]i is observed rapidly after carbachol addition, the lowered steady state [Ca2+]i is maintained, and upon the addition of atropine [Ca2+]i returns to the initial basal value. The lowering from a basal [Ca2+]i, averaging 110 +/- 2 nM (+/- SEM, n = 9), to a steady state [Ca2+]i of 63 +/- 4 nM (+/- SEM, n = 5) at 10 micron carbachol is dose dependent, a significant decrease from basal [Ca2+]i being observed at 0.1 micron. Carbachol does not prevent TRH-induced mobilization of Ca2+ but attenuates the resulting rise in [Ca2+]i. The lowering of steady state [Ca2+]i and the attenuation of the rise in [Ca2+]i provoked by stimulators of PRL secretion could explain the inhibition of both basal and stimulated PRL secretion. Concomitantly with the action on [Ca2+]i, carbachol causes hyperpolarization of GH3 cells. Together with the established inhibition of adenylate cyclase by muscarinic cholinergic agonists, these findings suggest a relation between changes in trans-membrane Ca2+ fluxes and cAMP generation.  相似文献   

7.
The intracellular calcium ion concentration ([Ca2+]i) in individual bovine anterior pituitary cells was measured using fura-2 and ratiometric imaging. Addition of thyrotropin-releasing hormone (TRH) in the presence of external calcium ion ([Ca2+]e; 1 mM) caused a rapid transient increase in [Ca2+]i falling to a plateau which remained above pre-stimulation levels in the continued presence of TRH. Decreasing [Ca2+]e to 0.1 microM decreased [Ca2+]i. At 0.1 microM [Ca2+]e, the first TRH addition caused the rapid transient rise in [Ca2+]i but no plateau phase and a second addition of TRH did not cause a second transient rise. However, the second application of TRH in 0.1 microM [Ca2+]e caused a rise in [Ca2+]i if it was preceded by transient exposure of the cells to 2 mM [Ca2+]e. The presence of nitrendipine, 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBHQ), or TRH during the re-exposure to external calcium blocked this recovery of subsequent responses to TRH in the presence of only 0.1 microM [Ca2+]e. We conclude that refilling of the calcium stores depleted by TRH occurred only after the removal of agonist, used a tBHQ-sensitive uptake mechanism, and was mainly sustained by voltage-gated calcium entry into the cells.  相似文献   

8.
TRH stimulation appears to be coupled to PRL secretion, at least in part, by elevation of the concentration of Ca2+ free in the cytoplasm [( Ca2+]i). We employed an intracellularly trapped fluorescent probe of Ca2+, Quin 2, to measure [Ca2+]i in GH3 cells, cloned rat pituitary tumor cells. Basal [Ca2+]i in GH3 cells incubated in medium containing 1.5 mM Ca2+ was 148 +/- 8.6 nM (mean +/- SE). TRH caused a biphasic elevation of [Ca2+]i to 517 +/- 29 nM at less than 10 sec after TRH addition, followed by a decline towards the resting level over 1.5 min (first phase) and then a sustained elevation to 261 +/- 14 nM (second phase). We attempted to determine whether mobilization of cellular calcium or enhanced influx of extracellular Ca2+, or both, were involved in the elevation of [Ca2+]i during each of the two phases. In all experiments, the elevation of [Ca2+]i stimulated by TRH was compared with that induced by depolarization of the plasma membrane with high extracellular K+, which enhances Ca2+ influx. In medium with 1.5 mM Ca2+, K+-depolarization caused an elevation of [Ca2+]i to 780 +/- 12 nM. When the concentration of Ca2+ in the medium was lowered to 0.1 mM and 0.01 mM, basal [Ca2+]i was lowered to 114 +/- 3.4 and 110 +/- 11 nM, respectively. In medium with 0.1 and 0.01 mM Ca2+, peak K+ depolarization-induced elevation of [Ca2+]i was lowered to 30 +/- 3.9% and 7.3 +/- 2.0% of control, respectively. The peak second phase increase caused by TRH was reduced to 33 +/- 2.8% and 16 +/- 5.6% of control, respectively, whereas the peak first phase elevation of [Ca2+]i was lowered only to 79 +/- 5.5% and 52 +/- 10% of control in medium with 0.1 mM and 0.01 mM Ca2+, respectively. When cells were incubated in medium with 1.5 mM Ca2+ containing the Ca2+-channel blocking agents, nifedipine and verapamil, basal [Ca2+]i was not affected. Nifedipine plus verapamil, each at a maximally effective dose, lowered K+ depolarization-induced elevation of [Ca2+]i to 6.5 +/- 1.0% of control, the peak second phase increase caused by TRH to 28 +/- 4.3% of control, but the peak first phase elevation only to 64 +/- 3.7% of control. The decrease in the first phase response to TRH caused by the channel blockers appeared to be secondary to partial depletion of an intracellular, nonmitochondrial calcium pool.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
K T?rnquist 《Endocrinology》1991,128(4):2175-2182
In GH4C1 rat pituitary cells, 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] enhances both the synthesis of PRL and the TRH-induced transient increase in cytosolic free calcium ( [Ca2+]i). In the present report we investigated whether 1,25-(OH)2D3 could enhance the effect of the tetradecapeptide bombesin (BBS) in GH4C1 cells. Pretreatment of the cells with 1 nM 1,25-(OH)2D3 for 24 h enhanced the BBS-induced transient increase in [Ca2+]i compared to that in control cells, while having no significant effect on the plateau phase of [Ca2+]i. Addition of the Ca2+ channel blocker nimodipine or chelating extracellular Ca2+ with EGTA did not abolish the enhancement of the BBS response in 1,25-(OH)2D3-pretreated cells. Furthermore, the BBS-induced efflux of 45Ca2+ from cells preequilibrated with 45Ca2+ was larger in cells treated with 1,25-(OH)2D3. Incubating GH4C1 cells with 1,25-(OH)2D3 alone or in combination with BBS for up to 72 h did not stimulate synthesis of PRL. However, the BBS-induced secretion of PRL was enhanced in cells pretreated with 1,25-(OH)2D3 for 24 h compared with that in vehicle-treated control cells. The effect of 1,25-(OH)2D3 on BBS-induced secretion was dose dependent, with 10(-11) M 1,25-(OH)2D3 enhancing the stimulated secretion of PRL. We conclude that in GH4C1 cells, pretreatment with 1,25-(OH)2D3 enhances the BBS-induced transient increase in [Ca2+]i. This effect may be due to a modulation of the availability of sequestered intracellular Ca2+ and/or membrane Ca2+ conductance. Furthermore, pretreatment with 1,25-(OH)2D3 enhanced secretion of PRL stimulated by BBS. The enhanced transient increase in [Ca2+]i may be the factor inducing the enhanced BBS-induced secretion of PRL.  相似文献   

10.
The cytosolic concentration of free Ca2+ ([Ca2+]i) in normal rat pituitary cells separated by centrifugal elutriation was monitored with the fluorescent Ca2+ indicator Quin 2. GnRH (10(-7) M) induced a rapid rise (6-8 sec) in the gonadotroph's [Ca2+]i, followed by a plateau phase of prolonged elevated [Ca2+]i which lasted about 15 min. The stimulatory effect of GnRH was dose dependent, with an ED50 of 10(-9) M, and was blocked by the potent antagonist [Dp-Glu1,pclPhe2,DTrp3.6]GnRH. GnRH elevated [Ca2+]i only in gonadotroph-enriched cell fractions, whereas TRH and GH-releasing factor (GRF) elevated [Ca2+]i in mammotroph- and somatotroph-enriched cells fractions, respectively. A rapid increase (first phase) in [Ca2+]i induced by GnRH was observed in Ca2+-free medium containing EGTA, but this rapid phase was terminated within 2 min. Readdition of Ca2+ to the medium induced a second slower rise in [Ca2+]i (plateau phase). Addition of K+ caused a rapid rise in [Ca2+]i, which was dependent on extracellular Ca2+, but was not affected by prior stimulation with GnRH. On the other hand, stimulation of gonadotroph's [Ca2+]i response by GnRH desensitized the cells to a subsequent GnRH challenge within the time frame studied. These findings indicate an elevation of [Ca2+]i induced by GnRH, TRH, and GRF in their respective separated target cells in the rat pituitary. The rise in [Ca2+]i in GnRH-stimulated gonadotrophs originates partly from intracellular Ca2+ pools and partly from influx of Ca2+ across the cell membrane.  相似文献   

11.
In GH4C1 cells, membrane depolarization induces a rapid and sustained increase in the cytosolic free calcium concentration ([Ca2+]i). In the present study we have investigated the role of [Ca2+]i in the regulation of basal intracellular pH (pHi). Depolarizing GH4C1 cells in buffer containing 0.4 mM extracellular Ca2+ decreased basal pHi from 7.02 +/- 0.04 to 6.85 +/- 0.03 (P less than 0.05). If the depolarization-induced influx of Ca2+ was inhibited by chelating extracellular Ca2+ or blocking influx through voltage-operated Ca2+ channels with nimodipine, no acidification was observed. Addition of TRH induced a rapid activation of Na+/H+ exchange in acidified cells, increasing pHi by 0.14 +/- 0.03 U. The action of TRH was blunted if extracellular Ca2+ was chelated; however, if influx of Ca2+ via voltage-operated channels was blocked by nimodipine, TRH still increased pHi. To deplete ATP, we incubated cells with 2-deoxy-D-glucose for 15-20 min and observed a decrease in basal pHi to 6.75 +/- 0.03 (P less than 0.05). No additional acidification was obtained when 2-deoxy-D-glucose-treated cells were depolarized, and no TRH-induced activation of Na+/H+ exchange was observed. Addition of ionomycin or 12-O-tetradecanoyl-phorbol-13-acetate separately to acidified cells had only modest effects on pHi; however, addition of 12-O-tetradecanoyl-phorbol-13-acetate and ionomycin together increased pHi markedly. We conclude that in GH4C1 cells, increasing [Ca2+]i reduces basal pHi through a mechanism dependent on influx of extracellular Ca2+ and independent of Na+/H+ exchange. In addition, elevation of [Ca2+]i and activation of protein kinase C act synergistically to enhance Na+/H+ exchange and increase pHi in acidified cells. Finally, normal cellular ATP is necessary for the activation of Na+/H+ exchange.  相似文献   

12.
Changes in cytosolic calcium concentration ([Ca2+]i) in response to extracellular calcium and epinephrine were monitored in individual rat adipocytes by both photon counting and digital imaging techniques utilizing the intracellular fluorescent calcium probes Fura-2 and Indo-1. Adipocytes containing Fura-2 were attached to coverslips and shown to be as hormonally responsive to insulin as adipocytes in suspension [3.5 +/- 0.8 (n = 5) vs. 4.2 +/- 0.6 (n = 8)-fold increase in glucose oxidation over basal in response to 0.7 nM insulin]. Basal [Ca2+]i in single rat adipocytes was found to be 128 +/- 6 nM (n = 100). The addition of either extracellular calcium or epinephrine elicited transient, concentration-dependent increases in [Ca2+]i. Although the characteristics of calcium- and epinephrine-induced calcium transients are generally similar, the peak [Ca2+]i increase over basal is higher in response to calcium vs. epinephrine [37 and 64% (1 and 27 microM epinephrine), vs. 132 and 236% (2 and 4 mM calcium)]. All the cells tested responded to calcium but only 67% responded to epinephrine. Both alpha- and beta-adrenergic agonists were able to increase [Ca2+]i. The epinephrine-induced [Ca2+]i transients appear to be dependent upon extra-cellular calcium. Neither cholera nor pertussis toxin treatments altered basal [Ca2+]i. However, after treatment of adipocytes with either pertussis or cholera toxin, epinephrine stimulated oscillations in [Ca2+]i. Digital imaging revealed that adipocytes demonstrate a high degree of intracellular spatial heterogeneity and intercellular variability in the magnitude of response to both calcium and epinephrine. These studies demonstrate the feasibility of using single rat adipocytes to monitor intracellular free calcium, using both photon counting and digital imaging.  相似文献   

13.
TRH increases cytosolic-free calcium ([Ca2+]i) by activating phospholipase C(PL-C), which induces phosphoinositol hydrolysis, leading to Ca2+ mobilization from inositol trisphosphate (IP3) sensitive stores, and by increasing Ca2+ influx. Increases in [Ca2+]i stimulate PRL secretion. We investigated the effects of U-73122, an aminosteroid inhibitor of PL-C dependent processes, on TRH-stimulated second messenger pathways and on PRL secretion in GH3 rat pituitary cells. [Ca2+]i was monitored by Indo-1 fluorescence, and IP3 and metabolites separated on ion exchange columns. In Ca(2+)-free buffer, [Ca2+]i was 96 +/- 6 nM and increased to 323 +/- 23 nM (P less than 0.001) after TRH (100 nM). U-73122 dose dependently inhibited the TRH effect (IC50 = 967 nM; complete inhibition at 3-5 microM). Subsequent addition of monensin (100 microM) increased [Ca2+]i from 107 +/- 4 to 142 +/- 4 nM (P < 0.001), confirming our previous findings of a non-TRH regulated Ca2+ pool in GH3 cells. Pretreatment (15 sec) with U-73122 partly inhibited the TRH effect on [Ca2+]i; complete suppression occurred with 70 sec of pretreatment. An inactive analog (U-73343) had no inhibitory effect at 5 microM. U-73122 acted noncompetitively, as the mean maximum velocity (expressed as percent increase in [Ca2+]i after TRH) was reduced from 225 to 91 while the Michaelis-Menten constant for TRH was unchanged (15.4 vs. 13.8 nM, n = 3). Of note, U-73122, at 3-5 microM, increased basal [Ca2+]i from 109 +/- 5 to 120 +/- 5 nM (P less than 0.001). In 1.3 mM Ca2+ buffer containing nifedipine (1 microM) and verapamil (50 microM), similar effects of U-73122 (5 microM) were observed on basal and TRH-stimulated [Ca2+]i. IP3, IP2, and IP1 increased to 241 +/- 12%, 148 +/- 23%, and 167 +/- 39% of control, 30 sec after TRH (100 nM); these responses were prevented by 1 microM U-73122. At 5 microM, U-73122 also significantly increased IP3 levels. TRH (100 nM) increased 4-h PRL secretion from 16.3 +/- 1.4 to 27.6 +/- 3.2 ng/well (P less than 0.05). U-73122 (5 microM) increased basal PRL secretion to 35.9 +/- 3.2 ng/well (P less than 0.05), but abolished the TRH effect. In contrast, U-73343 (with Ca2+ channel blockers) did not inhibit the TRH effect on PRL (control: 24.3 +/- 2.1; TRH: 51.0 +/- 6.3 ng/well).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
W P Hausdorff  K J Catt 《Endocrinology》1988,123(6):2818-2826
The steroidogenic actions of angiotensin II (AII) and increased extracellular K+ concentrations [( K+]) in rat adrenal glomerulosa cells are selectively enhanced by the voltage-sensitive calcium channel agonist Bay K 8644 (BK 8644). The relationship between these effects of the dihydropyridine agonist and cytosolic calcium concentration [( Ca2+]i) was investigated in rat and bovine glomerulosa cells. In the rat glomerulosa cells, AII and increased [K+] elicited rapid elevations of [Ca2+]i with distinctive temporal characteristics. Whereas the [Ca2+]i response to [K+] declined to basal over 2-3 min, addition of 10 nM AII caused a biphasic increase in [Ca2+]i, with a rapid transient rise followed by a lower plateau phase that remained above basal for several minutes. BK 8644 alone did not affect [Ca2+]i, but at low concentrations (30 nM) increased the magnitude and duration of the [Ca2+]i response elicited by progressive elevation of extracellular [K+] to 12 mM. In AII-stimulated glomerulosa cells, 30 nM BK 8644 enhanced both phases of the cytosolic calcium response, with a more marked effect on the sustained plateau phase. In contrast to its prominent actions in rat glomerulosa cells, BK 8644 had no effect on AII-stimulated rises in [Ca2+]i in bovine glomerulosa cells, and only slightly enhanced their minor [Ca2+]i responses to potassium. These studies provide evidence that AII activates dihydropyridine-sensitive voltage-sensitive calcium channels in rat, but not bovine, adrenal glomerulosa cells. They also suggest that enhancement by BK 8644 of agonist-stimulated [Ca2+]i changes is responsible for its synergistic effects on aldosterone responses to potassium and AII in rat glomerulosa cells and emphasize the importance of the sustained phase of the cytosolic calcium signal in the steroidogenic action of AII.  相似文献   

15.
The effect of TSH, carbachol (CC), and ATP on intracellular calcium concentration ([Ca2+]i) in primary cultures of dog thyroid cells was examined using the fluorescent Ca2+ indicator fura-2. TSH caused an increase in [Ca2+]i at 37 C, but not 22 C, while it increased cAMP formation in these cells at both 22 and 37 C. CC and ATP increased [Ca2+]i at both 22 and 37 C. The CC-induced increase in [Ca2+]i was under muscarinic receptor control, and it was biphasic, with an initial spike followed by a sustained increase at a lower level. TSH and ATP were weaker agonists compared to CC, since maximal doses of TSH (100-500 mU/ml) and ATP (100-500 microM) increased [Ca2+]i by 40-70% over basal levels, compared to a 2- to 4-fold increase in [Ca2+] induced by maximal doses of CC (10-50 microM). The TSH-induced increase in [Ca2+]i was transient, returning to basal levels within 1-2 min after application of the agonist. All three agents were able to transiently increase [Ca2+]i to be internal stores. In the presence of the inorganic Ca2+ channel blockers La3+, Ni2+, and Co2+, the peak [Ca2+]i change was little affected, while the persistent response to CC and ATP was blocked, indicating dependence of this phase on influx of Ca2+. Paradoxically, these channel blockers abolished the effect of TSH on [Ca2+]i. TSH stimulation of cAMP formation was also inhibited 80-90% by these blockers, but not in Ca2+-free/EGTA buffer. These results suggest that the Ca2+ channel blockers may have actions in addition to inhibition of Ca2+ entry in these cells. TMB-8 [8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate HCl] specifically blocked both the initial and sustained increase induced by CC, while having no effect on ATP or TSH-induced [Ca2+]i, suggesting that TMB-8 may not be a general antagonist of Ca2+ mobilization. Activators of protein kinase-C, such as phorbol esters or an analog of diacylglycerol, inhibited the [Ca2+]i rise induced by all the three agonists used, indicating a regulatory role of protein kinase-C activation on [Ca2+]i in these cells. In FRTL-5 cells, [Ca2+]i was also increased by TSH and ATP, but not by CC. ATP, however, was a more effective agonist than in dog thyroid cells, while TSH increased [Ca2+]i by a similar magnitude in both cell types. The results of the present study demonstrate that TSH, albeit of lesser potency than CC, increases [Ca2+]i by causing intracellular Ca2+ mobilization in cultured dog thyroid cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of modifications of extracellular calcium concentrations on alpha-MSH release has been studied using perifused frog neurointermediate lobes. Increasing concentrations of calcium (from 2 to 10 mmol/l) gave rise to a dose-related stimulation of alpha-MSH secretion, whereas reduction of Ca2+ from 2 to 1.5 mmol/l partially inhibited alpha-MSH release. The direct effect of extracellular Ca2+ on alpha-MSH secretion was confirmed by the dose-dependent stimulation of alpha-MSH release induced by the calcium ionophore A23187. Perifusion with a calcium-free medium or blockade of Ca2+ channels by 4 mmol Co2+/l both resulted in an inhibition of spontaneous and TRH-induced alpha-MSH release. Conversely, administration of verapamil or methoxyverapamil (10 mumol/l each) did not alter basal secretion and had no effect on the response of the glands to TRH. Nifedipine (10 mumol/l), which was able to block KCl (20 mmol/l)-evoked alpha-MSH release, induced a slight inhibition of basal alpha-MSH secretion, indicating that extracellular Ca2+ levels may regulate alpha-MSH release in part by Ca2+ influx through voltage-dependent Ca2+ channels. In contrast TRH-induced alpha-MSH release was not affected by nifedipine or dantrolene (10 mumol/l), and BAY-K-8644 (1 mumol/l) did not significantly modify the response of neurointermediate lobes to TRH. Taken together, these results suggest that TRH-induced alpha-MSH secretion is associated with calcium influx across the plasma membrane and that calcium entry caused by TRH may occur through nifedipine/verapamil-insensitive Ca2+ channels.  相似文献   

17.
M C Gershengorn  C Thaw 《Endocrinology》1983,113(4):1522-1524
TRH stimulation of prolactin secretion is thought to be mediated by an elevation of free cytoplasmic Ca2+. However, whether TRH-induced influx of extracellular Ca2+ is required to elevate cytoplasmic Ca2+ remains controversial. We measured cytoplasmic free Ca2+ concentration in GH3 cells with an intracellularly trapped fluorescent indicator, Quin 2. In unstimulated cells incubated in medium containing 1.5 mM Ca2+, cytoplasmic free Ca2+ concentration was 118 +/- 18 nM (mean +/- SD). TRH (1 microM) caused a rapid transient elevation of free cytoplasmic Ca2+ to a level estimated to be at least 500 nM. High extracellular K+, which induces extracellular Ca2+ influx, caused an elevation of free cytoplasmic Ca2+ which was greater and longer in duration that that caused by TRH. When cells were incubated in medium containing 3 mM EGTA, the K+ depolarization-induced increase in free cytoplasmic Ca2+ was abolished. By contrast, the TRH-induced increase was not affected by incubating cells in medium with 3 mM EGTA, or high K+, or both; incubation of cells in medium with EGTA and high K+ abolishes the electrochemical driving force for Ca2+ influx. These data demonstrate that Ca2+ influx is not required for TRH-induced elevation of free cytoplasmic Ca2+ in GH3 cells. We conclude that in GH3 cells TRH induces an elevation of free cytoplasmic Ca2+ leading to stimulated prolactin secretion by mobilizing cellular Ca2+.  相似文献   

18.
The effects of extracellular phosphate and lanthanum on cytosolic free Ca2+ [( Ca2+]i) levels were studied in isolated rat pancreatic acini. In the presence of 1.28 mM Ca2+ and 1.0 mM phosphate, the mean resting [Ca2+]i level was 120 nM. Omission of phosphate from incubation medium significantly lowered this value to 94 nM. The gastrointestinal hormone cholecystokinin octapeptide (CCK-8) rapidly enhanced both [Ca2+]i levels and 45Ca2+ efflux, irrespective of the presence or absence of phosphate. Lanthanum (0.1 mM), a compound known to block transmembrane Ca2+ fluxes, attenuated both actions of CCK-8, but only in the absence of extracellular phosphate. There was a concomitant decrease in amylase secretion induced by 0.1 nM CCK-8 but not by 10 nM CCK-8, without a significant change in cellular ATP levels. The inhibitory actions of lanthanum on CCK-8-stimulated [Ca2+]i levels were very rapid and were mimicked only by prolonged incubation of acini in Ca2+-free medium supplemented with EGTA. Omission of phosphate from incubation medium also lowered basal [Ca2+]i levels in IM-9 lymphocytes. These findings suggest that extracellular phosphate may modulate resting [Ca2+]i levels in pancreatic acini and other cell types and that mobilization of intracellular Ca2+ may partly depend on the availability of a lanthanum-sensitive pool of cell-surface Ca2+ that is not readily removed by EGTA.  相似文献   

19.
The effect of LH on the intracellular free Ca2+ concentration ([Ca2+]i) was investigated in highly purified small and large bovine luteal cell populations. Luteal cells were obtained from midcycle corpora lutea dispersed with collagenase and separated by flow cytometry into large and small cells. Resting levels of Ca2+ were higher (P less than 0.05) in the large than small cells [314 +/- 25 nM (n = 5) vs. 186 +/- 13 nM (mean +/- SE; n = 13) for large and small cells, respectively]. LH rapidly increased [Ca2+]i in both small and large cells loaded with the fluorescent Ca2+ probe fura-2. In the small cells, [Ca2+]i was immediately increased 2- to 6-fold (from 176 +/- 8 to 468 +/- 8 nM; n = 5) after adding LH. The LH induced [Ca2+]i rise occurred in two phases: an initial peak due to intracellular Ca2+ mobilization and a secondary rise due to Ca2+ influx from extracellular sources. Preincubation of the small cells with EGTA reduced the initial phase and abolished the secondary rise in [Ca2+]. Both forskolin and 8-bromo-cAMP increased [Ca2+]i in the small cells. In contrast, only a single phase of [Ca2+]i rise was observed in LH-treated large cells, and the response was 1.5- to 2-fold greater than the resting Ca2+ levels [314 +/- 25 vs. 435 +/- 60 nM (n = 4), for resting vs. LH-treated values, respectively]. The addition of both LH and prostaglandin F2 alpha (PGF2 alpha) to the large cells resulted in increases in [Ca2+]i that were greater than those induced by each hormone separately (2.0-fold for LH and 2.7-fold for PGF2 alpha vs. 7- to 9-fold in the presence of both hormones). These findings demonstrate that LH induces rapid increases in intracellular [Ca2+]i that differ in magnitude and profile between the small and large bovine luteal cells. Furthermore, LH and PGF2 alpha interacted to promote increases in [Ca2+]i in the large cells, that were higher than the sum of [Ca2+]i induced by each hormone separately.  相似文献   

20.
We have previously shown that the stimulatory effect of TRH on alpha-MSH secretion from the frog pars intermedia is associated with Ca2+ influx through voltage-dependent Ca2+ channels, activation of a phospholipase C and mobilization of intracellular Ca2+ stores. The aim of the present study was to investigate the contribution of protein kinase C (PKC), adenylyl cyclase (AC), Ca2+/calmodulin-dependent protein kinase II (CAM KII), phospholipase A2, and protein tyrosine kinase (PTK) in TRH-induced alpha-MSH release. Incubation of frog neurointermediate lobes (NILs) with phorbol 12-myristate-13-acetate (24 h), which causes desensitization of PKC, or with the PKC inhibitor NPC-15437, reduced by approximately 50% of the effect of TRH on alpha-MSH release. In most melanotrope cells, TRH induces a sustained and biphasic increase in cytosolic Ca2+ concentration ([Ca2+]i). Preincubation with phorbol 12-myristate-13-acetate or NPC-15437 suppressed the plateau phase of the Ca2+ response. Incubation of NILs with TRH (10(-6) M; 20 min) had no effect on cAMP production. In addition, the AC inhibitor SQ 22,536 did not affect the secretory response of NILs to TRH. These data indicate that the phospholipase C/PKC pathway, but not the AC/protein kinase A pathway, is involved in TRH-induced alpha-MSH release. The calmodulin inhibitor W-7 and the CAM KII inhibitor KN-93 did not significantly reduce the response to TRH. Similarly, the phospholipase A2 inhibitors quinacrine and 7-7'-DEA did not impair the effect of TRH on alpha-MSH secretion. The PTK inhibitors ST638 and Tyr-A23 had no effect on TRH-induced [Ca2+]i increase but inhibited in a dose-dependent manner TRH-evoked alpha-MSH release (ED50 = 1.22x10(-5) M and ED50 = 1.47x10(-5) M, respectively). Taken together, these data indicate that, in frog melanotrope cells, PKC and PTK are involved in TRH-induced alpha-MSH secretion. Activation of PKC is responsible for the sustained phase of the increase in [Ca2+]i, whereas activation of PTK does not affect Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号