首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose was to provide a diffusion-weighted whole-body magnetic resonance (MR) imaging sequence with background body signal suppression (DWIBS) at 3.0 Tesla. A diffusion-weighted spin-echo echo-planar imaging sequence was combined with the following methods of fat suppression: short TI inversion recovery (STIR), spectral attenuated inversion recovery (SPAIR), and spectral presaturation by inversion recovery (SPIR). Optimized sequences were implemented on a 3.0- and a 1.5-Tesla system and evaluated in three healthy volunteers and six patients with various lesions in the neck, chest, and abdomen on the basis of reconstructed maximum intensity projection images. In one patient with metastases of malignant melanoma, DWIBS was compared with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Good fat suppression for all regions and diagnostic image quality in all cases could be obtained at 3.0 Tesla with the STIR method. In comparison with 1.5 Tesla, DWIBS images at 3.0 Tesla were judged to provide a better lesion-to-bone tissue contrast. However, larger susceptibility-induced image distortions and signal intensity losses, stronger blurring artifacts, and more pronounced motion artifacts degraded the image quality at 3.0 Tesla. A good correlation was found between the metastases as depicted by DWIBS and those as visualized by FDG-PET. DWIBS is feasible at 3.0 Tesla with diagnostic image quality.  相似文献   

2.
The quality of magnetic resonance (MR) angiography could be substantially improved over the past several years based on the introduction and application of parallel imaging, new sequence techniques, such as, e.g., centric k-space trajectories, dedicated contrast agents, and clinical high-field scanners. All of these techniques have played an important role to improve image resolution or decrease acquisition time for the dedicated examination of a single vascular territory. However, whole-body MR angiography may be the application with the potential to profit most from these technical advances. The present review article describes the technical innovations with a focus on parallel imaging at high field strength and the impact on whole-body MR angiography. The clinical value of advanced whole-body MR angiography techniques is illustrated by characteristic cases.  相似文献   

3.
AIM:To compare 3.0 Tesla(T) vs 1.5T magnetic resonance(MR) imaging systems in newly diagnosed breast cancer patients.METHODS:Upon Institutional Review Board approval,a Health Insurance Portability and Accountability Actcompliant retrospective review of 147 consecutive 3.0T MR examinations and 98 consecutive 1.5T MR examinations in patients with newly diagnosed breast cancer between 7/2009 and 5/2010 was performed.Eleven patients who underwent neoadjuvant chemotherapy in the 3.0T group were excluded.Mammographically occult suspicious lesions(BIRADS Code 4 and 5) additional to the index cancer in the ipsilateral and contralateral breast were identified.Lesion characteristics and pathologic diagnoses were recorded,and results achieved with both systems compared.Statistical significance was analyzed using Fisher’s exact test.RESULTS:In the 3.0T group,206 suspicious lesions were identified in 55%(75/136) of patients and 96%(198/206) of these lesions were biopsied.In the 1.5T group,98 suspicious lesions were identified in 53%(52/98) of patients and 90%(88/98) of these lesions were biopsied.Biopsy results yielded additional malignancies in 24% of patients in the 3.0T group vs 14% of patients in the 1.5T group(33/136 vs 14/98,P = 0.07).Average size and histology of the additional cancers was comparable.Of patients who had a suspicious MR imaging study,additional cancers were found in 44% of patients in the 3.0T group vs 27% in the 1.5T group(33/75 vs 14/52,P = 0.06),yielding a higher positive predictive value(PPV) for biopsies performed with the 3.0T system.CONCLUSION:3.0T MR imaging detected more additional malignancies in patients with newly diagnosed breast cancer and yielded a higher PPV for biopsies performed with the 3.0T system.  相似文献   

4.
The performance of a 16-channel receive-only RF coil for brain imaging at 3.0 Tesla was investigated using a custom-built 16-channel receiver. Both the image signal-to-noise ratio (SNR) and the noise amplification (g-factor) in sensitivity-encoding (SENSE) parallel imaging applications were quantitatively evaluated. Furthermore, the performance was compared with that of hypothetical coils with one, two, four, and eight elements (n) by combining channels in software during image reconstruction. As expected, both the g-factor and SNR improved substantially with n. Compared to an equivalent (simulated) single-element coil, the 16-channel coil showed a 1.87-fold average increase in brain SNR. This was mainly due to an increase in SNR in the peripheral brain (an up to threefold SNR increase), whereas the SNR increase in the center of the brain was 4%. The incremental SNR gains became relatively small at large n, with a 9% gain observed when n was increased from 8 to 16. Compared to the (larger) product birdcage head coil, SNR increased by close to a factor of 2 in the center, and by up to a factor of 6 in the periphery of the brain. For low SENSE acceleration (rate-2), g-factors leveled off for n>4, and improved only slightly (1.4% averaged over brain) going from n=8 to n=16. Improvements in g for n>8 were larger for higher acceleration rates, with the improvement for rate-3 averaging 12.0%.  相似文献   

5.
PURPOSE: To determine whether imaging at 3 T could improve and prolong the tag contrast compared to images acquired at 1.5 T in normal volunteers, and whether such improvement would translate into the ability to perform strain measurements in diastole. MATERIALS AND METHODS: Normal volunteers (N = 13) were scanned at 1.5 T (GE Signa CV/i) and 3.0 T (GE VH/i). An ECG-triggered, segmented k-space, spoiled-gradient-echo grid-tagged sequence was used during cine acquisition. Tag contrast was determined by the difference of the mean signal intensity (SI) of the tagline to the mean SI of the myocardium divided by the standard deviation (SD) of the noise (CNR(tag)). Matched short-axis (SA) slices were analyzed. Strain measurements were performed on images using a 2D strain analysis software program (harmonic phase (HARP)). RESULTS: The average CNR(tag) over the cardiac cycle was superior at 3 T compared to 1.5 T for all slices (3 T: 23.4 +/- 12.1, 1.5 T: 9.8 +/- 8.4; P < 0.0001). This difference remained significant at cycle initiation, end-systole, and the end R-R interval (at cycle termination: 3 T = 14.0 +/- 11.0 vs. 1.5 T = 4.4 +/- 3.5; P < 0.01). Strain measures were obtainable only in early systole for 1.5 T images, but were robust throughout the entire R-R interval for 3 T images. CONCLUSION: Imaging at 3 T had a significant benefit for myocardial tag persistence through the cardiac cycle. The improvement allowed strain analysis to be performed into diastole.  相似文献   

6.
Transmit and receive transmission line arrays for 7 Tesla parallel imaging.   总被引:1,自引:0,他引:1  
Transceive array coils, capable of RF transmission and independent signal reception, were developed for parallel, 1H imaging applications in the human head at 7 T (300 MHz). The coils combine the advantages of high-frequency properties of transmission lines with classic MR coil design. Because of the short wavelength at the 1H frequency at 300 MHz, these coils were straightforward to build and decouple. The sensitivity profiles of individual coils were highly asymmetric, as expected at this high frequency; however, the summed images from all coils were relatively uniform over the whole brain. Data were obtained with four- and eight-channel transceive arrays built using a loop configuration and compared to arrays built from straight stripline transmission lines. With both the four- and the eight-channel arrays, parallel imaging with sensitivity encoding with high reduction numbers was feasible at 7 T in the human head. A one-dimensional reduction factor of 4 was robustly achieved with an average g value of 1.25 with the eight-channel transmit/receive coils.  相似文献   

7.
PURPOSE: To compare the utility of the real-time technique fast strain-encoded magnetic resonance imaging (fast-SENC) for the quantification of regional myocardial function to conventional tagged magnetic resonance imaging (MRI). MATERIALS AND METHODS: Healthy volunteers (N = 12) and patients with heart failure (N = 7) were examined using tagged MRI and fast-SENC at 3.0T. Circumferential strain was measured using fast-SENC in six endo- and six subepicardial regions in the basal-, mid-, and apical-septum and the basal-, mid-, and apical-lateral wall from the four-chamber view. These measurements were plotted to tagging, in corresponding myocardial segments. RESULTS: Peak systolic strain (Ecc) and early diastolic strain rate (Ecc/second) acquired by fast-SENC correlated closely to tagged MRI (r = 0.90 for Ecc and r = 0.91 for Ecc/second, P < 0.001 for both). Both fast-SENC and tagging identified differences in regional systolic and diastolic function between normal myocardium and dysfunctional segments in patients with heart failure (for fast-SENC: Ecc = -21.7 +/- 2.7 in healthy volunteers vs. -12.8 +/- 4.2 in hypokinetic vs. 0.6 +/- 3.8 in akinetic/dyskinetic segments, P < 0.001 between all; Ecc/second = 104 +/- 20/second in healthy volunteers vs. 37 +/- 9/second in hypokinetic vs. -16 +/- 15/second in akinetic/dyskinetic segments, P < 0.001 between all). Quantitative analysis was more time-consuming for conventional tagging than for fast-SENC (time-spent of 3.8 +/- 0.7 minutes vs. 9.5 +/- 0.7 minutes per patient, P < 0.001). CONCLUSION: Fast-SENC allows the rapid and accurate quantification of regional myocardial function. The information derived from fast-SENC during a single heartbeat seems to be superior or equal to that acquired by conventional tagging during several heart cycles and prolonged breathholds.  相似文献   

8.
We have developed and validated the performance of a novel slice selective pulse sequence that allows direct calibration of the RF field using a simple rectangular pulse. The new sequence offers a number of substantial advantages. It operates at steady state and has an accurate calibration response at short repetition times. The slice selection train is insensitive to RF field strength changes caused by patient loading. The issue of patient motion has been addressed in our data collection and analysis routines. The applicability of the method to human scanning has been demonstrated in the automated RF power calibration routine of a commercial imaging system.  相似文献   

9.

Purpose

To assess the feasibility of black‐blood turbo spin‐echo imaging of the left anterior descending coronary artery wall at 3 Tesla under free‐breathing and breath‐hold conditions.

Materials and Methods

Proton density‐weighted black‐blood turbo spin‐echo imaging of the left anterior descending coronary artery was performed on 15 volunteers on a 3 T whole body scanner with an eight channel phased array coil. Volunteers were imaged during free‐breathing (with navigators, N = 5), or with breath‐hold (N = 5), or both (N = 2). Imaging was not possible in three volunteers due to either gradient or radiofrequency (RF) coupling with the electrocardiogram (ECG). Images were analyzed to determine coronary artery wall thickness, wall area, lumen diameter, and lumen area. Signal‐to‐noise and contrast‐to‐noise ratios were calculated.

Results

Coronary artery wall thickness, wall area, lumen diameter, and lumen area measurements were consistent with previous magnetic resonance (MR) measurements of the coronary wall at 1.5 Tesla.

Conclusion

Coronary wall imaging using free‐breathing and breath‐hold two‐dimensional black‐blood TSE is feasible at 3 T. Further improvement in resolution and image quality is required to detect and characterize coronary plaque. J. Magn. Reson. Imaging 2005;21:128–132. © 2005 Wiley‐Liss, Inc.
  相似文献   

10.
PURPOSE: To check the bioeffects of the components of magnetic resonance imaging (MRI). MRI is based on an assumed harmless interaction between certain nuclei in the body when placed in a strong magnetic field and radio wave fields. There are three key factors actuating on the examining body: a powerful static magnetic field (SMF), magnetic gradient fields (MGFs), and pulsed radiofrequency (RF) radiation. MATERIALS AND METHODS: In vitro cells (L-132 cells) were used as biosensors, and different cellular compounds were used as biomarkers (heat shock proteins [HSPs] and their messenger ribonucleic acids [mRNAs], calcium, and adenosine-3',5'-cyclic monophosphate [cAMP]). The biosensors were placed in the bore of a 1.5-T MRI machine and the different electromagnetic fields were operated. RESULTS: HSPs and their mRNAs and cAMP did not respond to SMF, MGFs, or RF radiation. RF radiation increased cytosolic calcium concentration (18%, P < 0.05). CONCLUSION: Although MRI procedures do not induce any cellular stress response, it may cause an unfathomable calcium increase in vitro. Although the in vitro experimental conditions are not totally comparable to clinical situations, the usefulness of the in vivo biological dosimetry, circulating leukocytes as biosensors, and HSPs and/or calcium as biomarkers is suggested.  相似文献   

11.
OBJECTIVE: The objective of this study was to examine the applicability of high magnetic field strengths for comprehensive functional and structural cardiac magnetic resonance imaging (MRI). SUBJECTS AND METHODS: Eighteen subjects underwent comprehensive cardiac MRI at 1.5 T and 3.0 T. The following imaging techniques were implemented: double and triple inversion prepared FSE for anatomic imaging, 4 different sets of echocardiographic-gated CINE strategies for functional and flow imaging, inversion prepared gradient echo for delayed enhancement imaging, T1-weighted segmented EPI for perfusion imaging and 2-dimensional (2-D) spiral, and volumetric SSFP for coronary artery imaging. RESULTS:: Use of 3 Tesla as opposed to 1.5 Tesla provided substantial baseline signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) improvements for anatomic (T1-weighted double IR: DeltaSNR = 29%, DeltaCNR = 20%, T2-weighted double IR: DeltaSNR = 39%, DeltaCNR = 33%, triple IR: DeltaSNR = 74%, DeltaCNR = 60%), functional (conventional CINE: DeltaSNR = 123%, DeltaCNR = 74%, accelerated CINE: DeltaSNR = 161%, DeltaCNR = 86%), myocardial tagging (DeltaSNRsystole = 54%, DeltaCNRsystole = 176%), phase contrast flow measurements (DeltaSNR = 79%), viability (DeltaSNR = 48%, DeltaCNR = 40%), perfusion (DeltaSNR = 109%, DeltaCNR = 87%), and breathhold coronary imaging (2-D spiral: DeltaSNRRCA = 54%, DeltaCNRRCA = 69%, 3-D SSFP: DeltaSNRRCA = 60%, DeltaCNRRCA = 126%), but also revealed image quality issues, which were successfully tackled by adiabatic radiofrequency pulses and parallel imaging. CONCLUSIONS: Cardiac MRI at 3.0 T is feasible for the comprehensive assessment of cardiac morphology and function, although SAR limitations and susceptibility effects remain a concern. The need for speed together with the SNR benefit at 3.0 T will motivate further advances in routine cardiac MRI while providing an image-quality advantage over imaging at 1.5 Tesla.  相似文献   

12.

Purpose:

To compare 12‐channel and 32‐channel phased‐array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T).

Materials and Methods:

Twenty‐seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12‐channel and 32‐channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32‐channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast‐to‐noise and signal‐to‐noise ratios (CNR, SNR).

Results:

Compared with 12‐channel acquisition, the scores for 32‐channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32‐channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI.

Conclusion:

For PASL at 3T, the 32‐channel coil at 3T provided better quality than the 12‐channel coil. With the 32‐channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. J. Magn. Reson. Imaging 2012;35:1233‐1239. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
OBJECTIVE: Magnetic resonance imaging (MRI) at 3 T is significantly different than 1.5 T and needs to be optimized due to increased signal-to-noise ratio (SNR) and specific absorption ratio (SAR). This study tests the hypothesis that first-pass myocardial perfusion MRI using saturation recovery (SR)-TrueFISP with parallel imaging is superior to SR-TurboFLASH and a more achievable technique for clinical application at 3 T. MATERIALS AND METHODS: Myocardial perfusion imaging was performed on 12 subjects using SR-TurboFLASH and SR-TrueFISP sequences combined with parallel imaging. Four myocardial slices were acquired and evaluated by image segmentation. Quality of the measurements was determined from SNR, contrast-to-noise ratio (CNR), enhancement-to-noise ratio (ENR), and myocardial perfusion upslope. Data were analyzed using a 2-way ANOVA with imaging method and segment number as the independent variables. RESULTS: SNR, CNR, ENR, and upslope were significantly higher for SR-TrueFISP versus SR-TurboFLASH (P < 0.001). Significant differences in SNR, CNR, ENR, and upslope were found among the myocardial segments (P < 0.005). CONCLUSIONS: Optimized SR-TrueFISP first-pass myocardial perfusion MRI at 3 T has superior image quality compared with SR-TurboFLASH, independent of the myocardial segment analyzed. However, coil sensitivity nonuniformities and dielectric resonance effects cause signal intensity differences between myocardial segments that must be accounted for when interpreting 3 T perfusion studies.  相似文献   

14.
RATIONALE AND OBJECTIVE: Intentional deception (ie, lying) is a complex cognitive act, with important legal, moral, political, and economic implications. Prior studies have identified activation of discrete anterior frontal regions, such as the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), dorsal medial prefrontal cortex (DMPFC), and anterior cingulate cortex (ACC) during deception. To extend these findings, we used novel real-time functional magnetic resonance imaging (fMRI) technology to simulate a polygraph experience in order to evoke performance anxiety about generating lies, and sought to ascertain the neural correlates of deception. MATERIALS AND METHODS: In this investigational fMRI study done with a 4-T scanner, we examined the neural correlates of lying in 14 healthy adult volunteers while they performed a modified card version of the Guilty Knowledge Test (GKT), with the understanding that their brain activity was being monitored in real time by the investigators conducting the study. The volunteers were instructed to attempt to generate Lies that would not evoke changes in their brain activity, and were told that their performance and brain responses were being closely monitored. RESULTS: Subjects reported performance anxiety during the task. Deceptive responses were specifically associated with activation of the VLPFC, DLPFC, DMPFC, and superior temporal sulcus. DISCUSSION: These findings suggest the involvement of discrete regions of the frontal cortex during lying, and that the neural substrates responsible for cognitive control of behavior may also be engaged during deception.  相似文献   

15.
MR imaging at very high field (3.0 T) is a significant new clinical tool in the modern neuroradiological armamentarium. In this report, we summarize our 40-month experience in performing clinical neuroradiological examinations at 3.0 T and review the relevant technical issues. We report on these issues and, where appropriate, their solutions. Issues examined include: increased SNR, larger chemical shifts, additional problems associated with installation of these scanners, challenges in designing and obtaining appropriate clinical imaging coils, greater acoustic noise, increased power deposition, changes in relaxation rates and susceptibility effects, and issues surrounding the safety and compatibility of implanted devices. Some of the these technical factors are advantageous (eg, increased signal-to-noise ratio), some are detrimental (eg, installation, coil design and development, acoustic noise, power deposition, device compatibility, and safety), and a few have both benefits and disadvantages (eg, changes in relaxation, chemical shift, and susceptibility). Fortunately solutions have been developed or are currently under development, by us and by others, for nearly all of these challenges. A short series of 1.5 T and 3.0 T patient images are also presented to illustrate the potential diagnostic benefits of scanning at higher field strengths. In summary, by paying appropriate attention to the discussed technical issues, high-quality neuro-imaging of patients is possible at 3.0 T.  相似文献   

16.
Aspergillus infection is invasive in nature in the immunosuppressed population and disseminates throughout the body, with the brain being a common site. Conventional magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) play a life-saving role in the early diagnosis and treatment monitoring of this potentially fatal infection. We present MRI, DWI, and MRS findings of a case of central nervous system aspergillosis with treatment follow-up.  相似文献   

17.
目的探讨3.0T磁共振扩散成像在甲状腺的成像技术方法和信号特点。方法分别取b值为0、300、500、700s/mm。对24例志愿者甲状腺行扩散加权成像,对信号强度、信噪比及表观弥散系数(ADC)值进行分析。结果图像信号强度、信噪比及ADC值随b值增大而减低;b值分别为0、300、500、700s/mm2时,信号强度分别为:50±21、30±14、24±11、20±8,F=41.25,P〈0.05;信噪比分别为:49±21、44±17、32±13、29±12,F=15.07,P〈0.05.b值分别为300、500、700s/mm2时,ADC值分别为:(1981±388)、(1647±293)、(1408±211)mm2/s,F=42.323,P〈0.05。结论随着b值增加,图像信号强度、信噪比及ADC值逐渐减小,b值在0—300s/ramz区间信号强度减低明显,b值在300~500s/mm2区间信噪比减低明显;ADC值在300~700s/mm2区间呈逐渐均匀性减小。  相似文献   

18.
The purpose of this study was to evaluate if 3.0 T allows for clinically useful pelvic magnetic resonance imaging, i.e. if familiar image quality and tissue contrast can be achieved at 3.0 T as compared with at 1.5 T. Adapting a 1.5-T protocol to the 3.0-T environment is subject to a variety of factors. In order to reduce the number of potential variables, we chose two cornerstones: the 3.0-T sequence should have similar spatial resolution and acquisition time; furthermore, the contrast parameters repetition time (TR) and echo time (TE) were kept identical. Based on this modified 3.0-T T2-weighted turbo spin-echo sequence (TR/TE 2,705/80 ms; 0.7×1.04×4 mm measured voxel size; field of view 360 mm; 4.03-min scan time) we performed an intraindividual study on 19 patients with the 1.5-T sequence as the standard of reference. Two radiologists analyzed the examinations in consensus with regard to tissue contrast (visualization of zonal anatomy of the uterus and/or delineation of pathologic findings) rated on a three-point scale (3 is 3.0 T better; 2 is 3.0 T equal; 1 is 3.0 T worse than 1.5 T). In addition, the signal difference between muscle and bone marrow was measured as a marker for tissue contrast. The analysis of the image quality comprised the level of the artifacts (rated on a five-point scale: 1 is no artifacts; 5 is nondiagnostic study), the visual signal-to-noise ratio (rated on a three-point scale) and detail delineation. Only minor artifacts were observed at both 1.5 and 3.0 T; the difference was not statistically significant. The visual signal-to-noise ratio and the delineation of image details were rated equal for 1.5 and 3.0 T. With regard to image contrast, both qualitative analysis as well as quantitative analysis revealed comparable image contrast for the 1.5- and 3.0-T protocols. Pathological findings were seen equally well with both field strengths. Clinically diagnostic pelvic studies of high image quality can be obtained using a 3.0-T scanner with our modified examination protocol. To fully exploit the capability of the high-field technique, and to point out potential advantages, further intraindividual studies are needed, with the adjustment of other imaging parameters to the high-field environment.  相似文献   

19.

Purpose:

To improve image quality of diffusion‐weighted body magnetic resonance imaging (MRI) with background body signal suppression (DWIBS) at 3.0 T.

Materials and Methods:

In 30 patients and eight volunteers, a diffusion‐weighted spin‐echo echo‐planar imaging sequence with short TI inversion recovery (STIR) fat suppression was applied and repeated using slice‐selective gradient reversal (SSGR) and/or dual‐source parallel radiofrequency (RF) transmission (TX). The quality of diffusion‐weighted images and gray scale inverted maximum intensity projections (MIP) were visually assessed by intraindividual comparison with respect to the level of fat suppression and signal homogeneity. Moreover, the contrast between lesions/lymph nodes and background (Clb) was analyzed in the MIP reconstructions.

Results:

By combining STIR with SSGR, fat suppression was significantly improved (P < 0.001) and Clb was increased two times. The use of TX allowed the reduction of acquisition time and improved image quality with regard to signal homogeneity (P < 0.001) and fat suppression (P = 0.005).

Conclusion:

DWIBS at 3.0 T can be improved by using SSGR and TX. J. Magn. Reson. Imaging 2012;456‐461. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
PURPOSE: To prospectively compare vessel conspicuity and diagnostic image quality between three-dimensional intracranial contrast-enhanced MR venography acquired at 1.5 Tesla (T) and 3.0T, with 6.4-fold sensitivity encoding. MATERIALS AND METHODS: Ten healthy volunteers were imaged on 1.5T and 3.0T MR scanners using eight-element head coil arrays. The intracranial venous vasculature was divided into five groups for evaluation based on vessel size and anatomical location. Two radiologists independently assessed vessel conspicuity, level of artifacts, and diagnostic image quality. Informed consent was obtained, and the study was approved by the institutional review board. RESULTS: With the exception of large cerebral sinuses where 1.5T and 3.0T results were rated as equivalent, 3.0T images demonstrated superior vessel continuity, sharpness, and signal contrast to background tissue than 1.5T for all other intracranial venous vasculature (P < 0.01). No statistical significance in overall image quality was found between 1.5T and 3.0T venograms, and all data sets were deemed sufficient for diagnostic interpretation. CONCLUSION: Whole brain contrast-enhanced venography with 6.4-fold sensitivity encoding is robust and has the potential to become the method of choice for fast visualization of the intracranial venous vasculature. At 3.0T, demonstration of small cerebral vessels is superior to 1.5T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号