首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre- and postjunctional muscarinic receptor subtypes in dog airways.   总被引:1,自引:0,他引:1  
To examine muscarinic receptor subtypes involved in cholinergically mediated contractions of the airway, we studied the effects of the M1-selective antagonist, pirenzepine, the M2-selective antagonist, AF-DX 116, the M3-selective antagonist, 4-diphenyl-acetoxy-N-methylpiperidine (4-DAMP) methiodide, and the non-selective antagonist, atropine, on acetylcholine (ACh)- and electrically induced contractions in dog bronchi and bronchioles. The relative potencies of the antagonists based on IC50 values of each antagonist for contractions induced by the two concentrations of ACh that produced 50% of the maximum (ED50) and the maximum (EDmax) contractions and the pA2 values were atropine greater than or equal to 4-DAMP methiodide greater than pirenzepine = AF-DX 116 in both the bronchi and bronchioles. The IC50 and pA2 values of each antagonist did not differ significantly between the bronchi and bronchioles. 4-DAMP methiodide significantly inhibited the contractile response to electrical field stimulation (EFS) at 5 Hz at concentrations that did not alter the contractile responses to exogenous ACh in both the bronchi and bronchioles, whereas pirenzepine, AF-DX 116 and atropine inhibited the EFS-induced contraction only at the concentrations that reduced the contraction induced by exogenous ACh. The present results suggest that the cholinergic contraction is mediated via the postsynaptic receptor M3, based on functional potencies of muscarinic antagonists and presynaptic receptor auto-facilitatory M3, based on the suppression of the contractile response to EFS by 4-DAMP methiodide in central and peripheral airways.  相似文献   

2.
Selective muscarinic antagonists were used in an attempt to characterize the muscarinic autoreceptor modulating the release of acetylcholine in the striatum of the rat. In vivo microdialysis was applied to infuse atropine, 4-DAMP (4-diphenylacetoxy-N-methylpiperidine), pirenzepine or AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro[2,3-b][1,4]benzodiazepine-6-one), leading to a dose-dependent increase in the overflow of acetylcholine, the order of potency being: atropine greater than 4-DAMP greater than pirenzepine greater than AF-DX 116. We conclude from these data that the muscarinic receptor modulating release in the striatum is of the M3 type.  相似文献   

3.
1. In the portal vein of permanently cannulated, freely moving, unanaesthetized rats, methacholine (MCh) is able to inhibit the electrically-evoked endogenous noradrenaline (NA) overflow. This inhibition is mediated by presynaptic inhibitory muscarinic heteroreceptors. 2. By use of pirenzepine, 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) and AF-DX 116 as M1-, M3-, and M2-selective antagonists respectively, the MCh (0.1 microM)-induced inhibition of the electrically-evoked NA overflow could be reversed to the control stimulation value dose-dependently. 3. The potency order of the antagonists was: 4-DAMP greater than AF-DX 116 greater than pirenzepine, pIC50 values being 8.50, 7.96 and 7.01, respectively. 4. From these results it was concluded that the inhibitory presynaptic heteroreceptors in the portal vein of conscious unrestrained rats are of the cardiac M2-subtype.  相似文献   

4.
1. We have studied the effects of muscarinic cholinoceptor agonists and specific antagonists on both phasic activity and basal tone of the isolated intravesical ureter of the pig by means of isometric techniques in vitro. 2. Acetylcholine in the presence and absence of physostigmine increased both phasic activity and basal tone of ureteral strips in a concentration-dependent manner. Moreover carbachol, methacholine and oxotremorine-M increased both contractile parameters while bethanechol and McN-A-343 evoked only increases in tone without affecting the frequency of the phasic contractions. 3. The nicotinic receptor blocker, hexamethonium (10(-6)-10(-4) M), failed to modify the contractions evoked by a single dose of carbachol (10(-5) M), whilst the muscarinic antagonist, atropine inhibited both phasic and tonic responses. 4. The muscarinic M1 (pirenzepine), M2 (AF-DX 116 and methoctramine), M3 (4-DAMP, HHSiD and p-F-HHSiD), and putative M4 receptor (tropicamide) antagonists significantly reversed increases in both frequency of phasic activity and baseline tone induced by a submaximal dose of carbachol (10(-5) M). The pIC50 values for inhibition of the induced phasic activity were: atropine (10.16) > 4-DAMP (9.12) > HHSiD (8.22) = methoctramine (7.98) = p-F-HHSiD (7.88 > tropicamide (7.62) = pirenzepine (7.53) = AF-DX 116 (7.45) and for inhibition of basal tone were: atropine (10.73) > 4-DAMP (9.32) > HHSiD (8.65) = pirenzepine (8.43) = p-F-HHSiD (8.38) > methoctramine (7.79) > tropicamide (7.53) > AF-DX 116 (7.04).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nature of the muscarinic receptor subtype mediating the endothelium-dependent relaxation of the cat middle cerebral artery was investigated in vitro by recording the smooth muscle isometric tension of precontracted arterial segments. Relaxation induced by several agonists (acetylcholine (ACh), acetyl-beta-methylcholine, oxotremorine, carbachol and McN-A-343) was recorded. The ability of selective (pirenzepine, dicyclomine, adiphenine, AF-DX 116, methoctramine, gallamine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and hexahydro-sila-difenidol (HHSiD] and non-selective antagonists (atropine, scopolamine and quinuclidinyl benzilate (QNB] to block the relaxation induced by ACh was also estimated. The weak activity of the poorly selective M1 muscarinic receptor as together with the intermediate affinity of pirenzepine and adiphenine tend to exclude the M1 muscarinic receptor as the primary mediator of the cholinergic relaxation. The low affinity of AF-DX 116 and methoctramine further suggested that the cerebrovascular muscarinic receptor does not correspond to the M2 cardiac subtype. In contrast, 4-DAMP and HHSiD potently inhibited the ACh-induced relaxation with affinities similar to those reported at the M3 glandular receptor. We conclude that a similar to the pharmacological M3 muscarinic receptor subtype is responsible for the cholinergic relaxation of the cat middle cerebral artery.  相似文献   

6.
To determine the muscarinic receptor subtype mediating guinea pig ileal mucosal electrolyte secretion, we compared the potencies (Kb) of selective M1 (pirenzepine) (PZ), M2 (AF-DX 116, methoctramine), and M3 [4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), hexahydrosiladifenidol (HHSiD)] antagonists as inhibitors of carbachol-induced reductions in guinea pig atrial heart rate and ileal longitudinal muscle contractions, responses mediated by M2 and M3 receptors, respectively. Pretreatment with all five muscarinic antagonists shifted the carbachol concentration-response curve to the right, in a manner suggesting competitive antagonism. The following affinity profiles (Kb, nM) were obtained for: 1) ileal mucosa: 4-DAMP (2.7) greater than HHSiD (23.0) greater than PZ (110) greater than or equal to methoctramine (395) greater than AF-DX 116 (784); 2) atrial heart rate: 4-DAMP (9.5) congruent to methoctramine (11) greater than AF-DX 116 (63) greater than HHSiD (222) greater than PZ (256); and 3) ileal longitudinal muscle: 4-DAMP (3.1) greater than HHSiD (21) greater than PZ (143) greater than methoctramine (388) greater than or equal to AF-DX 116 (482). The selectivity profiles of these antagonists suggest that muscarinic receptors in the ileal mucosa more closely resemble those in the ileal muscle (M3) than those in atrial muscle (M2). Moreover, M1-muscarinic receptors appear to be relatively unimportant in mediating the effects of carbachol on short circuit current (ISC). Carbachol-induced increases in ISC were also unaffected by pretreatment with 0.5 microM tetrodotoxin, suggesting that electrolyte transport in the guinea pig ileal mucosa may be mediated, in part, by postsynaptic M3-muscarinic receptors on the enterocytes.  相似文献   

7.
8.
The nature of the muscarinic receptor subtype mediating contraction of the endothelium-denuded bovine coronary artery was investigated in vitro by functional measurements and radioligand binding studies. The acetylcholine (ACh)-induced isotonic contraction of circularly cut muscle strips was recorded and expressed as a percentage of the maximum contraction obtained with 80 mM K+. In order to distinguish between M1, M2 and M3 receptors, the potency of the five subtype-selective antagonists, 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP), parafluor-hexahydro-siladifenidol (pFHHSiD), pirenzepine, AF-DX 116 and methoctramine, to block the ACh-induced contraction was estimated. All the antagonists competitively inhibited the responses induced by ACh, with one exception, namely, 4-DAMP, whose Schild plot had a slope greater than one. The low affinity of pirenzepine (pA2 7.14 +/- 0.14) excluded an action at the M1 subtype. The low affinity of AF-DX 116 (pA2 6.49 +/- 0.18) and methoctramine (pA2 5.88 +/- 0.07) suggest that the bovine coronary artery smooth muscle receptor is not of the M2 (cardiac) subtype. In contrast, 4-DAMP (pA2 9.04 +/- 0.03) and pFHHSiD (pA2 7.64 +/- 0.04) potently inhibited the ACh-induced contraction with affinities similar to those reported for the M3 (glandular) receptor. In addition, the muscarinic receptors mediating coronary artery contraction were characterized in antagonist/[3H]N-methyl-scopolamine ([3H]NMS) competition binding studies. With the exception of AF-DX 116, all antagonists bound to a homogeneous population of receptors with pseudo-Hill slopes not different from unity. The pKi values, albeit somewhat lower, essentially substantiated the functional affinity estimates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The interaction between the muscarinic receptor agonists, carbachol, acetylcholine (ACh) and methacholine, and antagonists, atropine, gallamine, 4-DAMP and pirenzepine, was studied on the rat isolated rectum preparation. ACh (1.93 X 10(-8)-1.95 X 10(-6) M), methacholine (8.7 X 10(-8)-1.1 X 10(-6) M) and carbachol (1.1 X 10(-7)-3.5 X 10(-6) M) induced contractions that were reversibly antagonized by atropine (1.9 X 10(-9)-4.8 X 10(-8) M), 4-DAMP (1.5 X 10(-8)-2.86 X 10(-7) M) gallamine (1.12 X 10(-6)-1.12 X 10(-4) M) and pirenzepine (2.8 X 10(-7)-7.0 X 10(-6) M). The pA2 values were atropine: 8.99 +/- 0.28, 9.29 +/- 0.14 and 8.86 +/- 0.05; 4-DAMP: 8.39 +/- 0.10, 8.66 +/- 0.15 and 8.26 +/- 0.30, gallamine: 5.85 +/- 0.23, 5.73 +/- 0.25 and 5.96 +/- 0.10 and pirenzepine: 6.85 +/- 0.44, 7.17 +/- 0.13 and 7.21 +/- 0.03 against ACh, methacholine and carbachol, respectively. The experimental dose-ratio (atropine + gallamine) was greater than the expected dose-ratio (as predicted by the Paton & Rang rule) for ACh and methacholine while the experimental dose-ratio closely approximates the expected dose-ratio for carbachol. It is suggested that atropine, 4-DAMP pirenzepine and gallamine act on the same receptors but gallamine allosterically altered the binding of the agonists and antagonists to varying extents.  相似文献   

10.
The aim of the present study was to characterize the subtype of muscarinic receptor that mediates acetylcholine-induced contractions in the nonpregnant proestrus swine myometrium by means of mechanical, radioligand ([3H]quinuclidinyl benzilate) binding and biochemical (measurement of cyclic AMP) approaches. Acetylcholine (-logEC50, 6.12), oxotremorine-methiodide (6.47), methacholine (6.35), carbachol (6.18) and muscarine (6.33) caused contractile responses of the uterine circular muscle, with a similar maximum amplitude, but pilocarpine and McN-A-343 (4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium) were ineffective in causing contraction. The contractile response to acetylcholine was antagonized by the following muscarinic receptor antagonists in a competitive manner (with pA2 values in parentheses): atropine (8.95), 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 8.83), tropicamide (7.07), himbacine (7.01), pirenzepine (6.42) and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyri do[2,3 b][1,4]benzodiazepin-6-one (AF-DX116, 5.96). Electrical field stimulation (10 Hz) caused tetrodotoxin- and atropine-sensitive contractions in the circular muscle. All muscarinic receptor antagonists decreased the electrical field stimulation-induced contraction in a concentration-dependent manner. The order of inhibition (-logIC50) was 4-DAMP (8.35) > tropicamide (6.72) > himbacine (6.54) > pirenzepine (6.31)> AF-DX116 (6.13). Acetylcholine did not affect the cytoplasmic cyclic AMP level, regardless of the presence or absence of forskolin, suggesting the absence of functional muscarinic M2 and/or M4 receptors in the swine myometrium. The receptor binding study indicated that circular muscle layers of the swine myometrium contained a single class of [3H]quinuclidinyl benzilate binding site (Kd = 0.92 nM; Bmax = 126.6 fmol/mg protein). Specific binding was displaced by muscarinic receptor antagonists in the following order (with pKi value and Hill coefficient in parentheses): atropine (8.22 and 0.93) > 4-DAMP (8.18 and 0.94) > tropicamide (6.78 and 0.93) > pirenzepine (5.46 and 0.92) > AF-DX116 (5.12 and 0.94). The present results suggest that in circular muscle layers of the swine myometrium, exogenous and endogenous acetylcholine cause contraction through activation of muscarinic M3 receptors present on smooth muscle cells.  相似文献   

11.
1. The effects of seven muscarinic receptor antagonists were used to characterize the receptors which mediate carbachol-evoked contractions of intertaenial circular and taenial longitudinal muscle in human isolated colon. The effects of these antagonists were studied upon colon contractions induced by cumulatively added carbachol which had mean EC50 values of 11.7 +/- 2.3 microM (n = 8) and 12.6 +/- 2.3 microM (n = 8) respectively upon circular and longitudinal smooth muscle. 2. All antagonists displaced concentration-response curves to carbachol to the right in a parallel manner. The maximum concentration of each antagonist added (30 nM-10 microM) did not significantly suppress the maximum response. 3. In circular muscle, the M3 muscarinic receptor antagonists, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), hexahydrosiladiphenidol (HHSiD) and para-fluoro-hexahydrosiladiphenidol (p-F-HHSiD) inhibited responses with pA2 values of 9.41 +/- 0.23, 7.17 +/- 0.07, 6.94 +/- 0.18 respectively. The M2 muscarinic receptor antagonist, AF-DX 116, the M2/M4 muscarinic receptor antagonist, himbacine, and the M1 muscarinic receptor antagonist, pirenzepine, yielded pA2 values of 7.36 +/- 0.43, 7.47 +/- 0.14 and 7.23 +/- 0.48 respectively. The non-selective antagonist, atropine, had a pA2 of 8.72 +/- 0.28. 4. In longitudinal muscle 4-DAMP, HHSiD, p-F-HHSiD, AF-DX 116, himbacine and pirenzepine gave pA2 values of 9.09 +/- 0.16, 7.45 +/- 0.43, 7.44 +/- 0.21, 6.44 +/- 0.1, 7.54 +/- 0.40, 6.87 +/- 0.38 respectively. Atropine yielded a pA2 value of 8.60 +/- 0.08.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The receptor subtypes involved in muscarinic-induced phosphoinositide hydrolysis and adenylate cyclase inhibition in rat submandibular acinar cells were characterized by comparing the inhibitory potencies of four muscarinic antagonists on the two signal transduction responses. Carbachol-induced phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis was inhibited by all antagonists with a potency rank order of 4-diphenylacetoxy-N-methyl piperidine methobromide (4-DAMP) = atropine much greater than pirenzepine much greater than AF-DX 116 (P less than 0.01). The same rank order was observed in antagonist-reversal of the reduction of cAMP caused by carbachol in the model. These findings suggest that muscarinic effects are mediated by M3 receptors in both the phosphoinositide and adenylate cyclase pathways in the submandibular gland.  相似文献   

13.
1. The properties of the muscarinic receptors in the rabbit saphenous artery were determined from electrical and mechanical responses of smooth muscle cells produced by acetylcholine (ACh). The inhibitory action of atropine and pirenzepine on the ACh-induced responses was also studied. 2. ACh produced a transient hyperpolarization of the membrane and inhibited the noradrenaline (NA)-induced contraction. These effects of ACh were apparent only when the endothelial cells were intact. 3. The ACh-induced transient hyperpolarization was antagonized by atropine or pirenzepine, with similar potencies (the ID50 values were about 2 x 10(-8) M for both antagonists). 4. The ACh-induced inhibition of the contraction to NA was antagonized by atropine more preferentially than by pirenzepine (the ID50 values were 2 x 10(-8) M for atropine and 10(-6) M for pirenzepine). 5. The excitatory junction potential (e.j.p.) evoked by perivascular nerve stimulation was inhibited by ACh (above 10(-8) M). The ACh-induced inhibition of the e.j.p. was antagonized by atropine more preferentially than by pirenzepine (the ID50 values were 3 x 10(-8) M for atropine and 6 x 10(-6) M for pirenzepine). 6. It is concluded that in the rabbit saphenous artery, two subtypes of muscarinic receptor (M1 and M2) are located on the endothelial cells. Stimulation of each subtype releases a different substance, i.e., a hyperpolarizing substance (M1-subtype) or a relaxant substance (M2-subtype). In prejunctional nerve terminals, the muscarinic receptors responsible for inhibiting the release of transmitter substances are of the M2-subtype.  相似文献   

14.
The pre- and postjunctional affinity constants of a series of muscarinic antagonists were determined in guinea pig and rabbit irises. Field stimulation-evoked [3H]noradrenaline release from superfused isolated irises was concentration dependently inhibited by (+/-)-methacholine, confirming the presence on the iris noradrenergic nerves of prejunctional inhibitory muscarinic receptors. The affinity constants of the antagonists at the pre- and postjunctional receptors are compatible with the coexistence in the iris of two different M2 receptors: the cardiac (M2 alpha) subtype on the noradrenergic nerves and the smooth muscle (M2 beta) subtype on the iris sphincter muscle. The rank order of potency of the antagonists studied at the prejunctional site was: atropine greater than himbacine greater than AF-DX 116 greater than pirenzepine greater than hexahydrosiladifenidol. The order of potency at the postjunctional receptors mediating the methacholine-induced isotonic contraction of the isolated rabbit iris sphincter was: atropine greater than hexahydrosiladifenidol greater than pirenzepine greater than himbacine greater than AF-DX 116.  相似文献   

15.
Using the cannula insertion method, we investigated the vascular response to acetylcholine (ACh) and other vasoactive substances. ACh consistently induced only vasoconstriction, whereas isoproterenol and norepinephrine usually induced dilatation. Vasoconstriction induced by phenylephrine was less potent than that induced by ACh. Clonidine and xylazine did not induce significant vascular responses. ACh-induced constrictions were readily inhibited by atropine and slightly potentiated by physostigmine. They were slightly but significantly inhibited by pirenzepine (a muscarinic M1-receptor antagonist), but not influenced by AF-DX 116 (a M2-receptor antagonist). 4-DAMP (4-diphenylacetoxy N-methylpiperidine; a M3-receptor antagonist), strongly inhibited the ACh-induced constrictions. They were not modified by bunazosin but slightly suppressed by diltiazem. Removal of the endothelium did not significantly modify the ACh-induced constrictions. From our results, we conclude that the simian facial vein has many constrictory muscarinic receptors, especially of the M3 subtype.  相似文献   

16.
1. In vitro experiments in a microvascular myograph were designed to characterize postjunctional muscarinic receptors producing contraction both in the presence and absence of the endothelium in coronary resistance arteries (normalized diameter of 150-450 microns), isolated from the left ventricle of hearts from 3-6 month old lambs. Preferential muscarinic receptor antagonists were used to determine the receptor subtype: pirenzepine (M1 receptor), AFDX 116 (M2 receptor), 4-DAMP and pFHHSiD (M3 receptor). 2. The rank order of potency for muscarinic agonist-induced increases in tension in endothelium-intact preparations was oxotremorine-M = methacholine = acetylcholine (ACh) > carbachol. Removal of the endothelium increased the potency of ACh, but this procedure did not change either the sensitivity or maximal response to carbachol. 3. The contractile response to ACh was reproducible. Incubation with 3 x 10(-7)-3 x 10(-6) M pirenzepine induced non-parallel rightward shifts and depressed the maximum of the concentration-response curve to ACh in endothelium-intact arteries. The slope by Schild analysis was 2.9 +/- 0.8 (P < 0.05, n = 7). Atropine, AFDX 116, 4-DAMP and pFHHSiD produced parallel rightward shifts of the curves to ACh and the slopes of the Schild plots were not significantly different from unity. The pKB values for the antagonists from plots constrained to unity in endothelium-intact segments were: atropine (9.4), 4-DAMP (9.0), pFHHSiD (7.9) and AFDX 116 (6.2). 4. In endothelium-denuded arteries, pirenzepine, AFDX 116 and pFHHSiD caused concentration-dependent, parallel rightward displacements of the concentration-response curves to ACh and the slopes of the Schild plots were not significantly different from unity. The plots constrained to a slope of unity gave the following pKB values: pFHHSiD (8.7), pirenzepine (7.5) and AFDX 116 (6.2). 5. In the presence of the endothelium, low concentrations of pirenzepine (10(-9)-10(-7) M) produced leftward shifts of the ACh concentration-response curves. This potentiating effect of pirenzepine was reversed by endothelial cell removal. In preparations precontracted with the thromboxane-mimetic, U46619, the putative M1-selective agonist, McN-A-343, induced a biphasic relaxation with log IC50 of 8.53 +/- 0.14 and 5.02 +/- 0.08 for the first and second phase of the relaxation, respectively, and maximal relaxations of 22.8 +/- 4.3% and 41.1 +/- 5.4% (n = 16). McN-A-343 relaxed the vessels in the presence of 10(-7) M pFHHSiD and 3 x 10(-7) M AFDX 116, but not after incubation with 10(-9) M pirenzepine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Pharmacological differences between muscarinic cholinergic receptors coupled to phosphoinositide turnover and those coupled to adenylate cyclase were studied. Stimulation of muscarinic receptors from SK-N-SH human neuroblastoma cells resulted in phosphoinositide hydrolysis, but not in inhibition of cAMP formation. As has been shown previously, stimulation of muscarinic receptors from NG108-15 neuroblastoma x glioma cells, on the other hand, resulted in inhibition of cAMP formation without any observable phosphoinositide hydrolysis. These two cell lines provide a useful model system in which to study differential coupling of muscarinic cholinergic receptors. Inhibition of [3H]N-methyl scopolamine [( 3H]NMS) binding and inhibition of carbachol-stimulated function by the antagonists pirenzepine, AF-DX 116, and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) were studied in this system. Pirenzepine inhibited [3H]NMS binding in both cell lines with low affinity (Ki of 130 and 160 nM in NG108-15 and SK-N-SH cells respectively), indicating that both cell lines express M2 receptors. None of the three antagonists studied exhibited any clear selectivity for the receptors in one cell line over those of the other. In contrast, several agonists including acetylcholine, bethanechol and carbachol exhibited pronounced selectivity. These agonists inhibited [3H]NMS binding to membranes from SK-N-SH cells with IC50 values that were 17-, 3- and 38-fold higher, respectively, than those of NG108-15 cells. This selectivity was still observed when whole cells rather than membranes were studied. These findings indicate that pharmacological differences between receptors coupled to phosphoinositide turnover and those coupled to cAMP inhibition can be detected with certain agonists, but not with the antagonists pirenzepine, AF-DX 116 or 4-DAMP.  相似文献   

18.
[3H]N-Methylscopolamine identified two distinct populations of muscarinic receptors in membranes derived from the longitudinal smooth muscle/myenteric plexus of dog ileum. In isolated axonal varicosities, the half-maximal saturation of binding sites occurred at 2.38 +/- 0.39 nM [3H]N-methylscopolamine, with maximal binding capacity 140 +/- 35 fmol/mg protein (mean +/- S.D., n = 8). In purified smooth muscle plasma membranes, the Kd value was 16 +/- 3 nM with Bmax 1960 +/- 494 fmol/mg. The displacement potencies of subtype-selective muscarinic antagonists in the fraction of axonal varicosities followed the order 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) methiodide much greater than pirenzepine = methoctramine greater than AF-DX 116 with pKi values 7.38, 5.67, 5.70 and 5.13, respectively. Both 4-DAMP methiodide and pirenzepine were approximately 4-fold less potent in displacing the ligand from the receptors in smooth muscle plasma membranes as compared to varicose receptors. The potency ratios of cardioselective antagonists methoctramine and AF-DX 116 on varicose and smooth muscle receptors were 1 and 1.7. It is concluded that presynaptic receptors located on isolated axonal varicosities have pharmacological properties similar to glandular (M3) subtype of muscarinic receptors. The binding properties of receptors present in smooth muscle plasma membranes were found incompatible with those of any of the M1, M2 or M3 subtypes.  相似文献   

19.
1. The characterization of muscarinic receptors on single cells of the guinea-pig ileum longitudinal smooth muscle, devoid of neuronal elements, was functionally studied by estimating the affinities of muscarinic antagonists on acetylcholine-induced contractions. 2. Atropine (5 x 10(-11) to 5 x 10(-6) M), 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP, 5 x 10(-8) to 5 x 10(-6) M), cyclohexyl(4-fluoro-phenyl) (3-piperidinopropyl) silanol (pFHHSiD, 5 x 10(-7) to 5 x 10(-5) M) as well as pirenzepine (5 x 10(-7) to 5 x 10(-5) M) competitively antagonized the acetylcholine-dependent contractions with different affinities (atropine > 4-DAMP > pFHHSiD > pirenzepine). 3. Methoctramine (5 x 10(-7) to 5 x 10(-5) M), and AF-DX 116 (5 x 10(-6) and 5 x 10(-5) M) also showed antagonist properties but these deviated from simple competition. These compounds, which discriminate between M2 and M3 receptors, showed a potency lower than that of pirenzepine, the rank order of potencies being pirenzepine > methoctramine > AF-DX 116. When concentrations of AF-DX 116, methoctramine and pirenzepine were increased an unspecific contractile effect occurred. 4. McN-A-343, a partial agonist on intact guinea-pig longitudinal smooth muscle strips, on this preparation induced a weak contraction (about 7% in comparison to control) that was not reversed by antimuscarinic agents. 5. These data indicate that M3 rather than M2 receptor sites are present on this tissue.  相似文献   

20.
In order to identify the receptor subtype responsible for acetylcholine (ACh)-induced relaxation of bovine coronary artery, we determined the affinity of six subtype-selective muscarinic antagonists and compared them with affinity estimates obtained for bovine left atria. At low concentrations, ACh potently relaxed circular strips of coronary artery with endothelium (EC50 0.15 microM), but contracted them at higher agonist concentrations with potencies that depended on the presence or absence of endothelium: EC50 1.8 microM (without endothelium); 4.6 microM (with endothelium). The pA2 values obtained for antagonism of relaxant responses to ACh were: pirenzepine (M1-selective) 7.38 +/- 0.12; AF-DX 116 (11-[2-(diethylamino-methyl)-1-piperidinyl-acetyl]-5,11- dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one; M2-selective) 5.79 +/- 0.09; and 4-diphenylacetoxy-N-methyl-piperidine-methobromide (4-DAMP; M3/M1-selective) 9.07 +/- 0.12. The corresponding Schild slopes were 0.98 +/- 0.07 for pirenzepine, 1.17 +/- 0.09 for AF-DX 116 and 1.01 +/- 0.04 for 4-DAMP. For the following three antagonists, pKB values were determined at two different antagonist concentrations: dicyclomine (M1-selective) 7.49 +/- 0.10, cyclohexylphenyl-(2-piperidinoethyl)-silanol (CPPS; M3-selective) 8.0 +/- 0.10, and parafluoro-hexahydrosila-difenidol (pFHHSiD; M3-selective) 7.87 +/- 0.10. For comparison, the antagonism of methacholine-induced negative inotropy in left atria was determined for three antagonists, yielding the following pA2 values: pirenzepine 5.98 +/- 0.14; AF-DX 116 6.81 +/- 0.14 and 4-DAMP 7.99 +/- 0.14. The slopes of the corresponding Schild plots were 1.05 +/- 0.10, 1.14 +/- 0.12 and 1.08 +/- 0.08, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号