首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Serotonin is involved in psychiatric disorders exhibiting abnormal prefrontal cortex (PFC) function (e.g. major depression, schizophrenia). We examined the effect of the stimulation of the dorsal and median raphe nuclei (DR and MnR, respectively) on the activity of PFC neurons. Electrical stimulation of DR/MnR inhibited 66% (115/173) of pyramidal neurons in the medial PFC (mPFC). The rest of the cases exhibited orthodromic excitations, either pure (13%) or preceded by short-latency inhibitions (20%). Excited neurons had a lower pre-stimulus firing rate than those inhibited. Excitations evoked by MnR stimulation had a shorter latency than those evoked by DR stimulation. WAY-100635 [a 5-hydroxytryptamine1A (5-HT1A) antagonist] and the selective gamma aminobutyric acidA (GABAA) antagonist picrotoxinin partially antagonized DR/MnR-evoked inhibitions, suggesting the involvement of 5-HT1A- and GABAA-mediated components. The presence of a direct DR/MnR-mPFC GABAergic component is suggested by the short latency of evoked inhibitions (9 +/- 1 ms), faster than those evoked in the secondary motor area (20 +/- 3 ms), and that of antidromic spikes evoked by DR/MnR stimulation in mPFC pyramidal neurons (15 +/- 1 ms). Stimulation of the DR/MnR with paired pulses enhanced the duration of inhibitions and turned some excitations into inhibitions. Thus, the DR/MnR control the activity of mPFC pyramidal neurons in vivo in a complex manner, involving 5-HT-mediated excitations and GABA- and 5-HT-mediated inhibitions.  相似文献   

3.
Serotonin (5-hydroxytryptamine, 5-HT) controls pyramidal cell activity in prefrontal cortex (PFC) through various receptors, in particular, 5-HT1A and 5-HT2A receptors. Here we report that the physiological stimulation of the raphe nuclei excites local, putatively GABAergic neurons in the prelimbic and cingulate areas of the rat PFC in vivo. These excitations had a latency of 36 +/- 4 ms and a duration of 69 +/- 9 ms and were blocked by the i.v. administration of the 5-HT3 receptor antagonists ondansetron and tropisetron. The latency and duration were shorter than those elicited through 5-HT2A receptors in pyramidal neurons of the same areas. Double in situ hybridization histochemistry showed the presence of GABAergic neurons expressing 5-HT3 receptor mRNA in PFC. These cells were more abundant in the cingulate, prelimbic and infralimbic areas, particularly in superficial layers. The percentages of GAD mRNA-positive neurons expressing 5-HT3 receptor mRNA in prelimbic cortex were 40, 18, 6 and 8% in layers I, II-III, V and VI, respectively, a distribution complementary to that of cells expressing 5-HT2A receptors. Overall, these results support an important role of 5-HT in the control of the excitability of apical dendrites of pyramidal neurons in the medial PFC through the activation of 5-HT3 receptors in GABAergic interneurons.  相似文献   

4.
Gonadal hormones are known to broadly influence cortical information processing. Findings from this study in rats suggest that for androgens, this influence may include stimulation of underlying corticocortical connections. First, immunoreactivity for intracellular androgen receptors, while present in all regions and layers examined, was found to be particularly abundant in sensory and motor regions, and within these, within their major pyramidal cell layers, i.e. layers II/III and V/VI. Double labeling immunocytochemical studies for androgen receptors and for neuron-specific markers then confirmed that the majority of receptor-bearing cortical cells were pyramidal neurons. Finally, combined analyses of cortical receptor immunoreactivity and retrograde labeling produced by tracer injections made in specific subcortical (caudate, nucleus accumbens, superior colliculus, thalamus) areas yielded only isolated examples of receptor/tracer overlap. However, injections made within the cortex itself (sensory, motor, associational areas) retrogradely labeled cortical cells some 50% or more - especially within injected hemispheres, were receptor-immunoreactive. Thus, the regional, laminar, and cellular distributions of immunoreactivity in the rat cerebrum largely identify pyramidal neurons with connectional signatures aligning intracellular androgen receptors with the local, associational, and to a lesser degree, callosal circuits that interlink territories of the cortical mantle and play key roles in cortical information processing.  相似文献   

5.
Although drug-induced adaptations in the prefrontal cortex (PFC) may contribute to several core aspects of addictive behaviors, it is not clear yet whether drugs of abuse elicit changes in synaptic plasticity at the PFC excitatory synapses. Here we report that, following repeated cocaine administration (15 mg/kg/day intraperitoneal injection for 5 consecutive days) with a 3-day withdrawal, excitatory synapses to layer V pyramidal neurons in rat medial prefrontal cortex (mPFC) become highly sensitive to the induction of long-term potentiation (LTP) by repeated correlated presynaptic and postsynaptic activity. This promoted LTP induction is caused by cocaine-induced reduction of gamma-aminobutyric acid (GABA)(A) receptor-mediated inhibition of mPFC pyramidal neurons. In contrast, in slices from rats treated with saline or a single dose of cocaine, the same LTP induction protocol did not induce significant LTP unless the blockade of GABA(A) receptors. Blockade of the D1-like receptors specifically prevented the cocaine-induced enhancement of LTP. Repeated cocaine exposure reduced the GABA(A) receptor-mediated synaptic currents in mPFC pyramidal neurons. Biotinylation experiments revealed a significant reduction of surface GABA(A) receptor alpha1 subunit expression in mPFC slices from repeated cocaine-treated rats. These findings support an important role for cocaine-induced enhancement of synaptic plasticity in the PFC in the development of drug-associated behavioral plasticity.  相似文献   

6.
Current responses to N-methyl-D-aspartate (NMDA) in layer V pyramidal neurons of the rat prefrontal cortex were potentiated by the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). The failure of these nucleotides to induce inward current on fast local superfusion suggested the activation of P2Y rather than P2X receptors. The potentiation by ATP persisted in a Ca(2+)-free superfusion medium but was abolished by 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester, cyclopiazonic acid, 7-nitroindazole, fluoroacetic acid, bafilomycin, and tetanus toxin, indicating that an astrocytic signaling molecule may participate. Because the metabotropic glutamate receptor (mGluR) agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) (group I/II) and (RS)-3,5-dihydroxyphenylglycine (group I) both imitated the effect of ATP and the group I mGluR antagonist 1-aminoindan-1,5-dicarboxylic acid or a combination of selective mGluR(1) (7-(hydroxyimino)-cyclopropa[b]chromen-1a-carboxylate) and mGluR(5) (2-methyl-6-(phenylethynyl)pyridine) antagonists abolished the facilitation by ATP, it was concluded that the signaling molecule may be glutamate. Pharmacological tools known to interfere with the transduction cascade of type I mGluRs (guanosine 5'-O-(3-thiodiphosphate), U-73122, xestospongin C, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin kinase II [CAMKII] inhibitor peptide) depressed the actions of both ATP and ACPD. Characterization of the P2Y receptor by agonists (ATP and UTP), antagonists (suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid), and knockout mice (P2Y(2)(-/-)) suggested that the nucleotides act at the P2Y(4) subtype. In conclusion, we propose that exogenous and probably also endogenous ATP release vesicular glutamate from astrocytes by P2Y(4) receptor activation. This glutamate then stimulates type I mGluRs of layer V pyramidal neurons and via the G(q)/phospholipase C/inositol 1,4,5-trisphosphate/Ca(2+)/CAMKII transduction pathway facilitates NMDA receptor currents.  相似文献   

7.
Metabotropic glutamate 5 (mGlu5) receptors have been recently implicated in prefrontal cortex (PFC)-dependent executive functions because inhibition of mGlu5 receptors impairs working memory and worsens cognitive-impairing effects of NMDA receptor antagonists. To better understand the mechanisms by which mGlu5 receptors influence PFC function, we examined the effects of selective mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), given alone or in combination with the NMDA receptor antagonist MK801, on ensemble single unit activity in the medial PFC (mPFC) of behaving rats. MPEP decreased the spontaneous burst activity of the majority of mPFC neurons. This inhibition was selective for the most active cells because greater decreases were observed in neurons with higher baseline firing rates. MPEP augmented the effects of MK801 on burst activity, variability of spike firing and random spike activity. These findings demonstrate that in awake animals mGlu5 receptors regulate the function of PFC neurons by two related mechanisms: (i) rate-dependent excitatory influence on spontaneous burst activity; and (ii) potentiation of NMDA receptor mediated effects on firing rate and burst activity. These mechanisms support the idea that modulation of mGlu5 receptors may provide a pharmacological strategy for fine-tuning the temporal pattern of firing of PFC neurons.  相似文献   

8.
We established a model of cortical development that arrests the birth of layer 4 cells by injecting methylazoxymethanol (MAM) on embryonic day 33 (E33) in ferrets. This leads to adult somatosensory cortex with a very thin layer 4. Earlier, we determined the relative absence of layer 4 changed the growth and differentiation of the somatosensory cortex and the growth of thalamic afferents into the cortical plate. To identify other features of cortical organization that might be altered after MAM treatment, we assessed the distribution of selected excitatory and inhibitory receptors in area 3b of ferret somatosensory cortex. Initial screening revealed the distribution of several excitatory receptors (NMDA, AMPA, kainate) in E33 MAM-treated cortex was similar to that in normal adult animals. In contrast, the binding pattern of inhibitory GABAA receptors was altered in MAM-treated cortex. Normally, GABAA receptors densely locate in central layers of cortex. In E33 MAM-treated animals, GABAA receptor binding extended superficially, covering a broader area of cortex. Further experiments using antibodies directed against GABAAalpha receptors disclosed that pan alpha GABAA receptors strongly localize to layer 4 in normal area 3b. In E33 MAM-treated cortex, however, GABAAalpha receptors extend outside and are located above and below the very thin layer 4. The redistribution of inhibitory receptors suggests that layer 4 plays an important role in regulating thalamic terminations and also in the resulting ability to refine processing of incoming stimuli.  相似文献   

9.
Understanding the mechanism of how fear memory can be extinguishedcould provide potential therapeutic strategies for the treatmentof posttraumatic stress disorders. Here we show that infusionof CB1 receptor antagonist into the infralimbic (IL) subregionof the medial prefrontal cortex (mPFC) retarded cue-alone–inducedreduction of fear-potentiated startle. Conversely, cannabinoidagonist WIN55212-2 (WIN) facilitated the extinction. Unexpectedly,administration of WIN without cue-alone trials reduced startlepotentiation in a dose-dependent manner. The effect of cannabinoidagonists was mimicked by endocannabinoid uptake or fatty acidamide hydrolase inhibitors. Rats were trained with 10 conditionedstimulus (CS+) (yellow light)–shock pairings. Extinctiontraining with CS+ (yellow light)-alone but not CS (bluelight)-alone trials decreased fear-potentiated startle. Intra-ILinfusion of WIN before CS-alone trials decreased startlepotentiation, suggesting that the cannabinoid agonist decreasedconditioned fear irrespective of whether the rats underwentCS+- or CS-alone trials. Cannabinoid agonists activatedextracellular signal-regulated kinases (ERKs) in mPFC slices,and ERK inhibitor blocked the effect of cannabinoid agonistson fear-potentiated startle. These results suggest that CB1receptors acting through the phosphorylation of ERK are involvednot only in the extinction of conditioned fear but also in theadaptation to aversive situations in general.  相似文献   

10.
Background. Anaesthetic steroids are established positive allostericmodulators of GABAA receptors, but little is known concerningsteroid modulation of strychnine-sensitive glycine receptors,the principal mediators of fast, inhibitory neurotransmissionin the brain stem and spinal cord. This study compared the modulatoryactions of five anaesthetic pregnane steroids and two non-anaestheticisomers at human recombinant  相似文献   

11.
While studies have shown that estrogen affects hippocampal spine density and function, behavioral studies in humans and nonhuman primates have also implicated the prefrontal cortex in the effects of estrogen on cognition. However, the potential for similar estrogen-induced increases in spines and synapses in the prefrontal cortex has not been investigated in primates. Moreover, it is not known if such an estrogen effect would be manifested throughout the neocortex or primarily in the regions involved in cognition. Therefore, we investigated the effects of estrogen on dendritic spines in the prefrontal and primary visual cortices of young rhesus monkeys. Young female monkeys were ovariectomized and administered either estradiol cypionate or vehicle by intramuscular injection. Using an antibody against the spine-associated protein, spinophilin, spine numbers were estimated in layer I of area 46 and in layer I of the opercular portion of area V1 (V1o). Spine numbers in layer I of area 46 were significantly increased (55%) in the ovariectomy + estrogen group compared to the ovariectomy + vehicle group, yet spine numbers in layer I of area V1o were equivalent across the two groups. The present results suggest that estrogen's effects on synaptic organization influence select neocortical layers and regions in a primate model, and provide a morphological basis for enhanced prefrontal cortical functions following estrogen replacement.  相似文献   

12.
13.
Retrieval of information from episodic memory reliably engages regions within the anterior prefrontal cortex (aPFC). This observation has led researchers to suggest that these regions may subserve processes intimately tied to episodic retrieval. However, the aPFC is also recruited by other complex tasks not requiring episodic retrieval. One hypothesis concerning these results is that episodic retrieval recruits a general cognitive process that is subserved by the aPFC. The current study tested a specific version of this hypothesis--namely, that the integration of internally represented information is this process. Event-related fMRI was employed in a 2 (memory task: encoding versus retrieval) x 2 (level of integration: low versus high) factorial within-subjects design. A functional dissociation was observed, with one aPFC subregion uniquely sensitive to level of integration and another jointly sensitive to level of integration and memory task. Analysis of event-related activation latencies indicated that level of integration and memory task effects occurred with significantly different timing. The results provide the first direct evidence regarding the functional specialization within lateral aPFC and the nature of its recruitment during complex cognitive tasks. Moreover, the study highlights the benefits of activation latency analysis for understanding functional contributions and dissociations between closely linked brain regions.  相似文献   

14.
The prefrontal cortex (PFC) of the rat supports cognitive flexibility, the ability to spontaneously adapt goal-directed behavior in response to radically changing situational demands. We have shown previously that transient inactivation of the rat medial PFC (mPFC) impairs initial reversal learning in a spatial 2-lever discrimination task. Given the importance of dopamine (DA) for PFC function, we studied DA (and noradrenaline [NA]) efflux in the mPFC during reversal learning. We observed a higher and more extended increase in DA efflux in rats performing the first reversal compared with controls performing the previously acquired discrimination. The results of an additional experiment suggest that such a difference between the reversal- and control-induced DA increases was absent during a third reversal. During the extinction session, DA efflux did not increase from basal levels. Increases in NA efflux were less than in DA and did not differ between control and any condition. We conclude that prefrontal DA activity is increased during execution of instrumental discrimination tasks and that this increase is amplified during the acquisition of a first, but not of later reversals. These data corroborate our previous findings and indicate that DA is critically involved in this form of cognitive flexibility.  相似文献   

15.
BACKGROUND: Adenosine A(1) receptor blockade has been suggested as a treatment in conditions with sodium and fluid retention because it increases urinary Na(+) excretion and increases proximal tubular fluid output. In the present study, we examine the time course for the renal responses to adenosine A(1) receptor blockade in order to investigate whether the effects may be prolonged and not just temporary. METHODS: The acute effects of the adenosine A(1) receptor inhibitor FK 838 on segmental tubular Na(+) handling were examined by a renal clearance technique in conscious chronically instrumented rats. Lithium clearance (C(Li)) was used as a clearance marker of proximal tubular fluid output. RESULTS: Acute adenosine A(1) receptor inhibition did not affect the glomerular filtration rate (GFR) significantly. In contrast, the inhibition led to significant increases in C(Li) (from 290+/-28 to 431+/-28 microl/min/100 g), fractional Li(+) excretion (FE(Li)) (from 33+/-2 to 47+/-3%) and fractional Na(+) excretion (FE(Na)) (from 0.44+/-0.07 to 2.03+/-0.42%). Sodium excretion, expressed as a fraction of proximal tubular fluid output (C(Na)/C(Li)), rose from 1.3+/-0.2 to 4.2+/-0.4%, suggesting that the natriuretic effect was supported by inhibition of distal nephron Na(+) reabsorption. All values returned to baseline values during the clearance study and thereby indicated that neither proximal tubular fluid output nor urinary sodium excretion remained elevated for a prolonged time. CONCLUSION: It is concluded that in conscious unstressed rats, acute adenosine A(1) receptor inhibition by FK 838 led to a significant natriuresis that was caused by inhibition of proximal tubular Na(+) reabsorption, possibly with a contribution from inhibition of distal nephron Na(+) reabsorption. The increased proximal tubular fluid output and the increased urinary Na(+) excretion returned to baseline values during the clearance study, indicating that none of these effects of adenosine A(1) blockade were long lasting.  相似文献   

16.
Cortical synchronization at gamma-frequencies (35-90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4-90 Hz. As in previous work, coherence of gamma-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (< 30 Hz), but not at gamma-frequencies. Perception-related modulations of LFP coherence were also restricted to the low-medium range. In conclusion, our results do not support the expectation that gamma-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies.  相似文献   

17.
Lesions of the basal forebrain (BF) cortical cholinergic system impair performance on a rodent five-choice visual attentional task. This study examines the effects on the same task of selective depletion of acetylcholine from the prefrontal cortex (PFC) using 192 IgG-saporin, the cholinergic immunotoxin. Rats were trained to detect brief visual stimuli, either presented unpredictably both temporally and spatially to increase attentional load, or under less demanding conditions where stimuli were temporally and spatially predictable. Following training, 192 IgG-saporin (50 ng or 100 ng/infusion) or its vehicle was infused bilaterally into the ventromedial PFC. The 100 ng lesion group exhibited post-operatively a transient increase in perseveration, specifically when the visual stimuli were temporally unpredictable. A vigilance decrement, as well as a reinstatement of perseverative responding occurred in both lesion groups under conditions of enhanced attentional load, specifically with high target frequency sustained over many trials. Lesioned subjects were also more impulsive with increased anticipatory errors. Systemic administration of the muscarinic receptor antagonist scopolamine further dissociated the groups with attentional accuracy in the 100 ng group decreasing relative to shams. These findings are consistent with an important modulatory influence of PFC function by BF cholinergic neurons, particularly during increased attentional demand.  相似文献   

18.
BACKGROUND: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated via adenosine receptors to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although spinal phrenic motoneurons immunopositive for adenosine receptors have been demonstrated (C3-C5), it is unclear if adenosine receptor protein levels are altered after C2 hemisection and theophylline administration. OBJECTIVE: To assess the effects of C2 spinal cord hemisection and theophylline administration on the expression of adenosine receptor proteins. METHODS: Adenosine A1 and A2A receptor protein levels were assessed in adult rats classified as (a) noninjured and theophylline treated, (b) C2 hemisected, (c) C2 hemisected and administered theophylline orally (3x daily) for 3 days only, and (d) C2 hemisected and administered theophylline (3x daily for 3 days) and assessed 12 days after drug administration. Assessment of A1 protein levels was carried out via immunohistochemistry and A2A protein levels by densitometry. RESULTS: Adenosine A1 protein levels decreased significantly (both ipsilateral and contralateral to injury) after C2 hemisection; however, the decrease was attenuated in hemisected and theophylline-treated animals. Attenuation in adenosine A1 receptor protein levels persisted when theophylline administration was stopped for 12 days prior to assessment. Adenosine A2A protein levels were unchanged by C2 hemisection; however, theophylline reduced the levels within the phrenic motoneurons. Furthermore, the decrease in A2A levels persisted 12 days after theophylline was withdrawn. CONCLUSION: Our findings suggest that theophylline mitigates the effects of C2 hemisection by attenuating the C2 hemisection-induced decrease in A1 protein levels. Furthermore, A2A protein levels are unaltered by C2 hemisection but decrease after continuous or interrupted theophylline administration. The effects on protein levels may underlie the stimulant actions of theophylline.  相似文献   

19.
We recorded the neuronal activity in the arm area of the motor cortex and parietal area 7a of two monkeys during interception of stimuli moving in real and apparent motion. The stimulus moved along a circular path with one of five speeds (180-540 degrees/s), and was intercepted at 6 o'clock by exerting a force pulse on a semi-isometric joystick which controlled a cursor on the screen. The real stimuli were shown in adjacent positions every 16 ms, whereas in the apparent motion situation five stimuli were flashed successively at the vertices of a regular pentagon. The results showed, first, that a group of neurons in both areas above responded not only during the interception but also during a NOGO task in which the same stimuli were presented in the absence of a motor response. This finding suggests these areas are involved in both the processing of the stimulus as well as in the preparation and production of the interception movement. In addition, a group of motor cortical cells responded during the interception task but not during a center --> out task, in which the monkeys produced similar force pulses towards eight stationary targets. This group of cells may be engaged in sensorimotor transformations more specific to the interception of real and apparent moving stimuli. Finally, a multiple regression analysis revealed that the time-varying neuronal activity in area 7a and motor cortex was related to various aspects of stimulus motion and hand force in both the real and apparent motion conditions, with stimulus-related activity prevailing in area 7a and hand-related activity prevailing in motor cortex. In addition, the neural activity was selectively associated with the stimulus angle during real motion, whereas it was tightly correlated to the time-to-contact in the apparent motion condition, particularly in the motor cortex. Overall, these observations indicate that neurons in motor cortex and area 7a are processing different parameters of the stimulus depending on the kind of stimulus motion, and that this information is used in a predictive fashion in motor cortex to trigger the interception movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号