首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Rupture, with subsequent thrombosis, of thin-cap fibroatheromas (TCFAs) is a major cause of myocardial infarction. A TCFA has two main components: these are a large, soft lipid pool and a thin, stiff fibrous cap covering it. Quantification of their morphology and stiffness is essential for monitoring atherosclerosis and quantifying the effect of plaque-stabilizing pharmaceutical treatment. To accomplish this, we have developed a model-based Young's modulus reconstruction method. From a plaque strain elastogram, measured with an intravascular ultrasound catheter, it reconstructs a Young's modulus image of the plaque. To this end, a minimization algorithm automatically varies the morphology and stiffness parameters of a TCFA computer model, until the corresponding computer-simulated strain elastogram resembles the measured strain elastogram. The morphology parameters of the model are the control-points of two deformable Bézier curves; one curve delineates the distal border of the lipid pool region, the other the distal border of the cap region. These component regions are assumed to be homogeneous and their stiffness is characterized by a Young's modulus. Reconstructions from strain elastograms that were 1. simulated using a histology-derived computer TCFA, 2. measured from a physical phantom with a soft lipid pool, and 3. simulated with a computer TCFA, where the complexity of its plaque component borders was increased, demonstrated the superior reconstruction/delineation behavior of this method, compared with a previously developed circular reconstruction method that used only circles for border delineation. Consequently, this method may become a valuable tool for the quantification of both the morphology and stiffness of vulnerable atherosclerotic plaque components.  相似文献   

2.
The purpose of this study was to investigate the association of area strain and tissue components and vulnerability of atherosclerotic plaques in a rabbit model. Forty purebred New Zealand rabbits underwent balloon-induced abdominal aorta endothelium injury, then a high-cholesterol diet for 24 weeks. Intravascular ultrasound (IVUS) images of abdominal aortas were acquired in situ and two consecutive frames near the end-diastole were used to construct an IVUS elastogram. Histologic slices matched with corresponding IVUS images were stained for fatty and collagen components, smooth muscle cells (SMCs) and macrophages. Regions-of-interest (ROIs) in plaques were classified as fibrous, fibro-fatty or fatty according to histologic study. Vulnerability indexes of ROIs were calculated as (fat + macrophage)/(collagen + SMCs). The area strain of these ROIs was calculated by use of an in-house–designed software system with a block-matching–based algorithm. Area strain was significantly higher in fatty ROIs (0.056 ± 0.003) than in fibrous (0.019 ± 0.002, p < 0.001) or fibro-fatty ROIs (0.033 ± 0.003, p < 0.001). The sensitivity and specificity of area strain for fatty ROIs characterization was 75.0% and 80.2% (area under the curve [AUC] 0.858, 95% confidence interval [CI] = 0.800–0.916, p < 0.001) and 75.0% and 75.3% (AUC 0.859, 95% CI = 0.801–0.917, p < 0.001) for fibrous ROIs, as demonstrated by receiver operating characteristic curve analysis. Area strain was positively correlated with vulnerability index (r2 = 0.495, p < 0.001), fatty components (r2 = 0.332, p < 0.001) and macrophage infiltration (r2 = 0.406, p < 0.001); and negatively correlated with collagen and SMC composition (r2 = 0.115 and r2 = 0.169, p < 0.001, respectively). Area strain calculation with IVUS elastography based on digital B-mode analysis is feasible and can be useful for tissue characterization and plaque vulnerability assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号