首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied a combination of molecular cytogenetic methods, including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in eight widely used cervical cancer (CC) cell lines. CGH identified the most frequent chromosomal losses including 2q, 3p, 4q, 6q, 8p, 9p, 10p, 13q, and 18q; gains including 3q, 5p, 5q, 8q, 9q, 11q, 14q, 16q, 17q, and 20q; and high-level chromosomal amplification at 3q21, 7p11, 8q23-q24, 10q21, 11q13, 16q23-q24, 20q11.2, and 20q13. Several recurrent structural chromosomal rearrangements, including der(5)t(5;8)(p13;q23) and i(5)(p10); deletions affecting chromosome bands 5p11, 5q11, and 11q23; and breakpoint clusters at 2q31, 3p10, 3q25, 5p13, 5q11, 7q11.2, 7q22, 8p11.2, 8q11.2, 10p11.2, 11p11.2, 14q10, 15q10, 18q21, and 22q11.2 were identified by SKY. We detected integration of HPV16 sequences by FISH on the derivative chromosomes involving bands 18p10 and 18p11 in cell line C-4I, 2p16, 5q21, 5q23, 6q, 8q24, 10, 11p11, 15q, and 18p11 in Ca Ski, and normal chromosome 17 at 17p13 in ME-180. FISH analysis was also used further to determine the copy number changes of PIKA3CA and MYC. This comprehensive cytogenetic characterization of eight CC cell lines enhances their utility in experimental studies aimed at gene discovery and functional analysis.  相似文献   

2.
3.
Cytogenetic study of malignant triton tumor: a case report   总被引:3,自引:0,他引:3  
Malignant triton tumor (MTT) is a highly malignant neoplasm, classified as a variant of malignant peripheral nerve sheath tumor (MPNST) with rhabdomyoblastic differentiation. Few cytogenetic studies of MTT have been reported using conventional cytogenetic analysis. Here, we report a comprehensive cytogenetic study of a case of MTT using G-banding, Spectral Karyotyping(), and fluorescence in situ hybridization (FISH) for specific regions. A complex hyperdiploid karyotype with multiple unbalanced translocations was observed: 48 approximately 55,XY,der(7)add(7)(p?)dup(7)[2],der(7) t(7;20)(p22;?)ins(20;19)[5],der(7)ins(8;7)(?;p22q36)t(3;8)t(8;20)[15],-8[5],-8[19],r(8)dup(8), +der(8)r(8;22)[4],-9[9],der(11)t(11;20)(p15;?)ins(20;19)[22],der(12)t(8;12)(q21;p13)[21],der(13) t(3;13)(q25;p11),-17,-19,der(19)t(17;19)(q11.2;q13.1),-20,-22,+4 approximately 7r[cp24]/46,XY[13]. The 1995 International System for Human Cytogenetic Nomenclature was followed where possible. Note that breakpoints were frequently omitted where only SKY information was known for a small part of an involved chromosome. Our analysis revealed some breakpoints in common with those previously reported in MTT, MPNST, and rhabdomyosarcoma, namely 7p22, 7q36, 11p15, 12p13, 13p11.2, 17q11.2, and 19q13.1. FISH showed high increase of copy number for MYC and loss of a single copy for TP53.  相似文献   

4.
We report a 4-year-old female with a de novo complex karyotype with multiple chromosomal rearrangements and a distinctive phenotype. Her medical history is significant for having been a twin born at 35 weeks gestation, breech presentation, with feeding problems and poor growth as an infant, gastroesophageal reflux disease, peripheral pulmonic stenosis, omphalocele, high myopia, and severe mental retardation. She is small for her age with microcephaly, posteriorly sloping forehead, shallow orbits, long palpebral fissures, prominent nose, wide mouth, absent uvula, kyphosis, brachydactyly, bridged palmar crease, and hypertonia. Peripheral blood lymphocytes revealed a karyotype of 46,XX,t(1;12)(p22.3;q21.3),inv(6)(p24q23),t(7;18)(q11.2;q21.2) in all cells. Parental karyotypes and that of her twin were normal. Spectral Karyotyping (SKY) and fluorescence in situ hybridization (FISH) with whole chromosome paints for chromosomes 1, 6, 7, 12, and 18 did not reveal additional rearrangements. Prometaphase G-banding analysis suggested that the "inverted" chromosome 6 might contain a cryptic rearrangement. Although no deletion nor duplication was detected using metaphase comparative genomic hybridization (CGH), multicolor high resolution banding (mBAND) demonstrated a double inversion of chromosome 6, resulting in a final karyotype as above but including der(6)(pter --> p23::q21 --> q22.3::q21 --> p23::q22.3 --> qter).  相似文献   

5.
6.
The presence of an extra ring chromosome containing material from 17q and 22q, or, less frequently, a t(17;22)(q22;q13), is a cytogenetic hallmark of dermatofibrosarcoma protuberans (DFSP). However, occasionally tumors with other, atypical karyotypes are encountered. We describe a case of recurrent DFSP without a ring chromosome or a t(17;22) on standard cytogenetic analysis. In all cells analyzed by G-banding, an additional, large marker chromosome was present as a sole abnormality. This chromosome apparently included chromosome 8 or the 8q arm, but the origin of its remaining part could not be determined with certainty. To characterize further the abnormal chromosome, we applied spectral karyotyping (SKY). SKY confirmed the presence of an extra chromosome 8 or arm 8q in the marker and showed that its remaining part was composed of segments from chromosomes 7, 17, 21, and 22, with two copies of a 17;22 fusion. Our results and the literature data suggest that, in addition to a specific 17;22 fusion, amplification of material from chromosomes 17, 22, 8, 5, 7, and 21 may play a role in DFSP development and/or progression. Furthermore, our case demonstrates the usefulness of SKY in detection of a diagnostically relevant 17;22 fusion in DFSP patients who have unusual karyotypic features.  相似文献   

7.
Spectral karyotyping study of chromosome abnormalities in human leukemia.   总被引:3,自引:0,他引:3  
Chromosomal analysis plays an important role in the diagnosis, treatment and prognosis of human leukemia. Currently, the GTG-banding technique (G-banding) is the most commonly used diagnostic method in clinical cytogenetics. G-banding analysis of subtle chromosomal rearrangements or complex karyotypes with multiple markers can be inadequate because of poor chromosome morphology and/or an insufficient yield of analyzable metaphases. Fluorescence in situ hybridization (FISH) is a highly sensitive and specific method to detect chromosomal alterations. Conventional FISH is used optimally in instances where only one or a few abnormalities are investigated. Spectral karyotyping (SKY), a novel cytogenetic technique, has been developed to unambiguously display and identify all chromosomes at one time using a spectrum of 24 different colors. This report presents the use of SKY for examination of the entire karyotype in specimens with complex chromosomal abnormalities from three leukemia patients. Conventional cytogenetic analysis (G-banding) showed complex hyperdiploid clones with multiple markers in each case. SKY was able to clarify and identify additional cryptic chromosomal translocations [e.g., t(2;10), t(3;10), t(5;7), t(7;18), t(9;17), t(10;12), t(13;16)] insertions [e.g., ins(17;9), ins(20;Y)], duplications [e.g., i(8)(q10), dup(4)(q31q35)] and marker chromosomes in each case. This study demonstrates that the combination of SKY and G-band techniques results in a more complete characterization of the complex chromosomal aberrations seen in leukemia.  相似文献   

8.
Multicolor spectral karyotyping of serous ovarian adenocarcinoma.   总被引:2,自引:0,他引:2  
We applied multicolor spectral karyotyping (SKY) to decipher the chromosomal complexity of a panel of seven cell lines and four primary tumors derived from patients with high‐grade serous adenocarcinoma of the ovary. By this method we identified a total of 188 unbalanced translocations, nine reciprocal translocations [t(2;15)(q13;q23), t(7;17) (q32;q21), t(8;22)(p11;q11), t(8;22) (q24;q13), t(10;19) (q24;q13.2), t(11;19) (q13;p11), t(12;21)(q13;q22),t(18;20) (q?11;q?11), t(18;22)(q?11;q?13)], 6 isochromosomes [i(1q), i(7q), i(8q), i(9p), i(17q), i(21q)], and 23 deletions. By detailed mapping of rearrangement breakpoints, it was possible to identify several recurring breakpoint clusters at chromosomal bands 1p36, 2p11, 2p23, 3p21, 3q21, 4p11, 6q11, 8p11, 9q34, 10p11, 11p11, 11q13, 12p13, 12q13, 17q21, 18p11, 18q11, 20q11, and 21q22. Recurrent interstitial deletion of chromosomal bands 8p11, 11p11, and 12q13 and a recurrent unbalanced translocation—der(6)t(6;8)(q11;q11)—were also identified. In addition, a homogeneously staining region localized in one cell line to 11q13 was found using SKY to be derived from genetic material originating from chromosome 12. Subsequent comparative genomic hybridization (CGH) studies on this tumor revealed the amplification of DNA sequences derived from the short arm of chromosome 12 at the 12p11.2 region. These studies demonstrate the power of SKY, CGH, and G‐banding to resolve the full spectrum of chromosomal rearrangements in serous ovarian adenocarcinoma. © 2002 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
Cytogenetic analysis including multicolor spectral karyotyping (SKY) and interphase fluorescence in situ hybridization (FISH) was performed on 154 consecutive cases with suspected lymphoma. The cytogenetic results were reviewed in correlation with the final pathologic diagnosis. A diagnosis of lymphoma was established in 94 cases, with 16 Hodgkin lymphomas and 78 non-Hodgkin lymphomas (NHL). Cytogenetic results were obtained in 63 NHLs (81%); 61 of those showed abnormal karyotypes (97%). The t(14;18) or IGH-BCL2 fusion was detected in 83% (20/24) of follicular lymphomas and in 57% (12/21) of diffuse large B-cell lymphomas (DLBCL). The application of interphase FISH and SKY has contributed to a high detection rate of t(14;18) in DLBCLs. This study showed that genes at 1q25, 3p21, 3q21, 5q31, 6p23, 7q22, 8q11 approximately q12, 9q34, 11q23, 12q13, and 19q13.1 may have been involved as the less common changes in follicular lymphoma and DLBCL. Comparison of the recurrent secondary aberrations in the groups of follicular lymphoma and DLBCL revealed a pattern of clonal evolution from the changes rea(1)(p36), del(6q), +7, +12 or dup or trp(12)(q13q22), +der(18)t(14;18), and +21 in follicular lymphoma to the changes rea(1)(p36), del(6q), +6, +7, +9, rea(11)(q23), +12, -13 or del(13(q12q14), +18, +21, and +X in DLBCL. The clonal evolution of the secondary aberrations is thought to contribute to the progression of the disease. About 90% (16/18) of other types of NHL had abnormal karyotypes showing specific translocations or gene rearrangements consistent with the pathologic diagnosis. A comprehensive cytogenetics approach including SKY and interphase FISH using probes for specific genes, such as IGH, BCL2, CCND1, and ALK, is a very useful ancillary diagnostic tool for lymphomas. The combined approach also led to the identification of t(2;19)(p23;q13.1) as a new variant of t(2;5)(p23;q35) in a case of Ki-1-positive anaplastic large cell lymphoma with a null cell phenotype.  相似文献   

12.
目的 综合应用分子细胞遗传学技术对1例染色体微小易位的病例进行检测.方法 按常规制备染色体,G显带进行核型分析,并先后进行光谱核型分析(spectral karyotyping,SKY),染色体涂染,双色荧光原位杂交技术(fluorescence in situ hybridisation,FISH)检测,亚端粒探针F...  相似文献   

13.
Cytogenetic findings in two synovial sarcomas   总被引:1,自引:0,他引:1  
Cytogenetic analysis was performed after short-term tissue culture of two recurrent synovial sarcomas. The tumors were classified on the basis of morphology, location, and immunohistochemistry. In a poorly differentiated tumor, the karyotype 49,XY, +7, +8, +19,t(5:18) (q11.2;q11.2), and in a biphasic tumor two clonal cell lines with common translocations t(X;18)(p11.2;q11.2) and t(12;17)(p11.2;q11.2) were present. In the predominant cell line several other structural aberrations including t(1;12)(q21;q24.3), t(3;18)(p23;q21), and 17p+ were found. A comparison of our results with previously published studies suggests that in addition to t(X;18), translocations of chromosome 18 with other chromosomes may represent a consistent feature of chromosomal changes in synovial sarcoma.  相似文献   

14.
Cell lines derived from tumors contain numerous chromosomal aberrations and are the focus of study in tumor evolution. The ovarian teratocarcinoma cell line PA-1 demonstrates a single chromosomal aberration: a reciprocal t(15;20)(p11.2;q11.2). A complete molecular genetic analysis was undertaken to characterize this cell line. The PA-1 cell line was studied with fluorescence in situ hybridization (FISH), spectral karyotyping (SKY), bacterial artificial chromosome (BAC) microarray, and Western blotting. Amplification of 20q is frequently implicated in both breast and ovarian cancer; this region contains a number of oncogenes including MDM2, ZNF217, and the ovarian tumor marker WFDC2 (alias HE4). FISH revealed gene amplification of AIB1 (now known as NCOA3) but not STK15 (now known as AURKA). Immunoblot analysis demonstrated 3.6-fold overexpression of the AIB1 protein product, but no elevation of the STK15. BAC cancer gene microarray analysis showed gene amplification of > or =1.20 for five oncogenes. The presence of a consistent single change in PA-1, the t(15;20)(p11.2;q11.2), suggests that the aberration is significant with respect to the transformation status of the cell line. This translocation appears to cause overexpression of AIB1 (and perhaps other proteins), which may provide an immortalizing effect on this cell line.  相似文献   

15.
A continuously growing human hepatocellular carcinoma (HCC) cell line was established from a Chinese male, carrier of the hepatitis B virus (HBV). This cell line, designated HKCI-1, grows as an adhering monolayer of polygonal epithelial cells that embody one or more nuclei. HKCI-1 secretes alpha-fetoprotein but shows no evidence of HBV carriage. Conventional banding analysis of the short-term cultured primary tumor and the propagated HKCI-1 revealed a chromosome modal number of near-triploidy. It was, however, impossible to derive their complete karyotype due to the complex nature of chromosomal rearrangements and many marker chromosomes of uncertain origin. Spectral karyotyping (SKY) is a newly developed molecular cytogenetic technique that allows the unprecedented discernment of chromosomal abnormalities. Spectral karyotyping analysis on HKCI-1 and the primary tumor elucidated all aberrant chromosomes and revealed complex karyograms. Recurring aberrations detected in both primary tumor and HKCI-1 included der(X)t(X;11)(q10;p10), der(1)t(1;10)(q10;?pq), der(4)t(4;16)(p10;q10), i(5p), del(5)(q13), der(7)t(7;21)(q32q10::q10), der(8)t(8;17)(q10;p10), and der(9)t(9;22)(q34;?pq). Comparative genomic hybridization (CGH) was employed to monitor the culture evolution in vitro. Genomic imbalances in HKCI-1 involved chromosomal losses on 4q, 5q13-qter, 8p, 9pter-q33, 10q, 11q, 13q, 16q, 17q12-qter, and 22, and low-level gains on 6pter-q22, 7p, 8q, 9q34, 10p, 11p, 12, 17pter-q11.2, 18, 19, 20, 21, and Y. High-level amplifications were also detected on 5pter-q12, 7q11.2-qter, and Xq. The corresponding CGH finding on the primary tumor indicated similar imbalances. TP53 mutational analysis showed that both HKCI-1 and the primary tumor had the aflatoxin-associated mutation in codon 249 and an additional TP53 polymorphism in codon 72. Our present study demonstrates the value of combined SKY and CGH study in defining complex rearrangements and identifying cryptic translocations, and provides a comprehensive analysis on the chromosomal abnormalities in HKCI-1.  相似文献   

16.
We report the results of detailed clinical and molecular-cytogenetic studies in seven patients with ring chromosome 18. Classical cytogenetics and fluorescence in situ hybridization (FISH) analysis with the chromosome 18 painting probe identified five non-mosaic and two complex mosaic 46,XX,dup(18)(p11.2)/47,XX,dup(18)(p11.2),+r(18) and 46,XX,dup(18)(p11.32)/47,XX,dup(18)(p11.32),+r(18) cases. FISH analysis was performed for precise characterization of the chromosome 18 breakpoints using chromosome 18-specific short-arm paint, centromeric, subtelomeric, and a panel of fifteen Alu- and DOP-PCR YAC probes. The breakpoints were assessed with an average resolution of approximately 2.2 Mb. In all r(18) chromosomes, the 18q terminal deletions ranging from 18q21.2 to 18q22.3 ( approximately 35 and 9 Mb, respectively) were found, whereas only in four cases could the loss of 18p material be demonstrated. In two cases the dup(18) chromosomes were identified as inv dup(18)(qter-->p11.32::q21.3-->qter) and inv dup(18)(qter-->p11.32::p11.32-->p11.1: :q21.3-->qter)pat, with no evidence of an 18p deletion. A novel inter-intrachromatid mechanism of formation of duplications and ring chromosomes is proposed. Although the effect of "ring instability syndrome" cannot be excluded, the phenotypes of our patients with characteristic features of 18q- and 18p- syndromes are compared and correlated with the analyzed genotypes. It has been observed that a short neck with absence of cardiac anomalies may be related to the deletion of the 18p material from the r(18) chromosome.  相似文献   

17.
The t(2;18)(p12;q21), known as a rare variant of the t(14;18)(q32;q21), together with t(3;14)(q27;q32), t(8;15)(q24;q22) and two other unusual translocations involving chromosomes 6, 9, 12, and 13, were demonstrated in the bone marrow cells of a 70-year-old male with suspected non-Hodgkin lymphoma/acute lymphoblastic leukemia. The complex chromosomal aberrations were identified by chromosome banding analysis and by fluorescence in situ hybridization (FISH) with whole chromosome painting probes, centromere-specific alpha-satellite probes, and probes specific for genomic sequences of some likely to be involved candidate genes. Several but not all of the chromosomal aberrations could be proved by multicolor FISH. Possible mechanisms leading to this unusual karyotype commonly associated with different histologic lymphoma subtypes and their prognostic implications are discussed.  相似文献   

18.
We report the results of detailed clinical and molecular‐cytogenetic studies in seven patients with ring chromosome 18. Classical cytogenetics and fluorescence in situ hybridization (FISH) analysis with the chromosome 18 painting probe identified five non‐mosaic and two complex mosaic 46,XX,dup(18)(p11.2)/47,XX,dup(18)(p11.2),+r(18) and 46,XX,dup(18)(p11.32)/47,XX,dup(18)(p11.32),+r(18) cases. FISH analysis was performed for precise characterization of the chromosome 18 breakpoints using chromosome 18–specific short‐arm paint, centromeric, subtelomeric, and a panel of fifteen Alu‐ and DOP‐PCR YAC probes. The breakpoints were assessed with an average resolution of ∼2.2 Mb. In all r(18) chromosomes, the 18q terminal deletions ranging from 18q21.2 to 18q22.3 (∼35 and 9 Mb, respectively) were found, whereas only in four cases could the loss of 18p material be demonstrated. In two cases the dup(18) chromosomes were identified as inv dup(18)(qter→p11.32::q21.3→qter) and inv dup(18)(qter→p11.32::p11.32→p11.1: :q21.3→qter)pat, with no evidence of an 18p deletion. A novel inter‐intrachromatid mechanism of formation of duplications and ring chromosomes is proposed. Although the effect of “ring instability syndrome” cannot be excluded, the phenotypes of our patients with characteristic features of 18q‐ and 18p‐ syndromes are compared and correlated with the analyzed genotypes. It has been observed that a short neck with absence of cardiac anomalies may be related to the deletion of the 18p material from the r(18) chromosome. © 2001 Wiley‐Liss, Inc.  相似文献   

19.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号