首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lennart Brodin  Sten Grillner   《Brain research》1985,360(1-2):139-148
The activation of N-methyl-D-aspartate (NMDA) and kainate receptors will evoke fictive locomotion in the appropriate motor pattern for locomotion in the isolated lamprey spinal cord, but not a selective activation of quisqualate receptors. The present experiments test whether the initiation of locomotion in response to sensory stimulation depends on these types of receptors. An in vitro preparation of the lamprey spinal cord with part of its tailfin left innervated has been used. In this preparation a sequence of fictive locomotion (i.e. alternating bursts in the segmental ventral roots with a rostrocaudal phase lag) can be elicited by continual sensory stimulation of the tailfin. The effects of excitatory amino acid antagonists were studied by recordings from ventral roots (extracellularly) and motoneurones (intracellularly). It was found that the strong initial bursts of each swimming sequence induced by sensory stimulation were depressed by combined NMDA/kainate antagonists (cis-2,3-piperidine dicarboxylate (PDA) and gamma-D-glutamylglycine (gamma-DGG] whereas the less intense burst activity, occurring particularly towards the end of each swimming sequence, was depressed by a selective NMDA antagonist, 2-amino-5-phosphonovalerate (2-APV). This condition could be mimicked in an isolated spinal cord preparation by an application of L-glutamate; the low-level fictive locomotion induced by low doses of L-Glu (less than 100 microM) was depressed by a NMDA antagonist (2-APV), and, if higher doses were applied, the activity was only depressed by PDA/gamma-DGG. The mode and time course of the depression (by excitatory amino acid antagonists) of fictive locomotion, induced by sensory stimulation, shows that the putative excitatory amino acid neurotransmitter directly or indirectly acts at the pattern generating circuitry within the spinal cord.  相似文献   

2.
L. Brodin  S. Grillner  C.M. Rovainen   《Brain research》1985,325(1-2):302-306
The motor pattern underlying swimming can be elicited in an in vitro preparation of the lamprey spinal cord by applying excitatory amino acids in the bath activating N-methyl-D-aspartate (NMDA) receptors and kainate receptors, but not quisqualate receptors. L-DOPA exerts a weak rythmogenic effect due to an action on kainate receptors. The kainate-induced rhythm is unchanged when a NMDA receptor antagonist is applied (2APV) and the N-methyl-aspartate-induced fictive locomotion can occur when kainate receptors are blocked (PDA). The burst frequency of the NMA-induced activity (dose range 30-5000 microM) is wide and ranges from 0.05-0.1 Hz up to 2.5-4 Hz, while the kainate-induced activity (dose range 7-30 microM) ranges from 0.5-1 Hz up to 4-8 Hz. This frequency range overlaps largely with that of the intact swimming animal. The findings further consolidate that NMDA receptors are efficient and demonstrates that kainate can also be effective in inducing fictive locomotion, and also that activation of either receptor type is sufficient. It has previously been shown that fictive locomotion elicited via sensory stimuli is depressed by NMDA and kainate receptor antagonists. It is suggested that these effects, presumably via aspartate and/or glutamate actions, are exerted on the input stage of interneuronal network.  相似文献   

3.
The quinoxalinedione, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), has been introduced as a relatively selective antagonist of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. We studied the ability of CNQX to block excitatory amino acid-induced neurotoxicity in murine cortical cell cultures. 100 microM CNQX blocked the acute neuronal swelling induced by 500 microM kainate, but it also attenuated the swelling and degeneration induced by 500 microM NMDA. Addition of 1 mM glycine to the CNQX eliminated antagonism of NMDA toxicity, while preserving antagonism of the neuronal degeneration induced by kainate or AMPA. This selective non-NMDA antagonist combination of CNQX plus glycine substantially attenuated the acute neuronal swelling induced by brief exposure to 500 microM glutamate, but had little effect on subsequent late degeneration, supporting the conclusion that rapidly triggered glutamate-induced cortical neuronal death is predominantly mediated by NMDA receptors.  相似文献   

4.
The effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, or FG 9065) on excitatory amino acid responses in cultured neurons from rat hippocampus were studied using tight-seal whole-cell recording techniques. CNQX reduced the magnitude of peak inward currents produced by exogenously applied kainate, quisqualate, and N-methyl-D-aspartate (NMDA) with Ki's of 2.5, 3.5, and 96 microM, respectively. The antagonism was competitive against kainate and quisqualate, but noncompetitive against NMDA. Glycine markedly reduced CNQX antagonism of NMDA responses. The same recording technique using pairs of monosynaptically connected neurons demonstrated reversible diminution of excitatory postsynaptic potentials in 7 of 7 pairs, using CNQX at concentrations as low as 10 microM. CNQX applied alone did not evoke inward or outward currents at membrane potentials near the resting membrane potential and did not affect the current-voltage relationship at membrane potentials between -90 and -30 mV. These observations represent the first quantitative characterization of glutamate receptor antagonism by CNQX with respect to physiological rather than biochemical parameters and demonstrate that CNQX is far more potent and more selective than currently available non-NMDA antagonists. The results suggest that CNQX will be a useful pharmacologic tool for the study of synaptic transmission in a variety of systems in which glutamate or related excitatory amino acids are involved.  相似文献   

5.
Non-NMDA receptor-mediated neurotoxicity in cortical culture   总被引:16,自引:0,他引:16  
The neurotoxicity of 3 non-NMDA glutamate receptor agonists--kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), and quisqualate--was investigated quantitatively in dissociated murine cortical cultures. Five minute exposure to 500 microM kainate, but not AMPA, produced widespread acute neuronal swelling. Kainate-induced swelling was resistant to 2-amino-5-phosphonovalerate (APV) or replacement of extracellular sodium with choline but attenuated by either kynurenate or low concentrations of quisqualate. Unlike NMDA agonists, kainate or AMPA did not produce much late neuronal loss after a 5 min exposure. In contrast, 5 min exposure to 500 microM quisqualate produced both acute neuronal swelling and widespread late neuronal degeneration. This acute swelling was blocked by APV or by replacement of extracellular sodium by choline, consistent with mediation by NMDA receptors; we speculate that high concentrations of quisqualate may directly activate NMDA receptors or induce the release of endogenous glutamate. Quisqualate-induced late neuronal degeneration may be due to another unexpected process: cellular quisqualate uptake and delayed release, converting brief addition into prolonged exposure. Hours after thorough washout of exogenously added quisqualate, micromolar concentrations could be detected in the bathing medium by high performance liquid chromatography. With lengthy exposure (20-24 hr), all 3 non-NMDA agonists were potent neurotoxins, able to destroy neurons with EC50's of about 20 microM for kainate, 4 microM for AMPA, and 1 microM for quisqualate. Kynurenate and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but not APV or L-glutamate diethyl ester, were effective in attenuating the neuronal degeneration induced by these agonists. CNQX was about 3 times more selective than kynurenate against kainate-induced neuronal injury, but CNQX was still nearly equipotent with APV against NMDA-induced injury. Gamma-D-glutamylaminomethyl sulfonate exhibited partial antagonist specificity for AMPA-induced toxicity.  相似文献   

6.
Injection of N-methyl-D-aspartate (NMDA, 7.5 micrograms) kainate (1 microgram) or quisqualate (2 micrograms) into the rat dorsal hippocampus induced wet-dog shakes and convulsions. As shown by an in situ immunohistochemical analysis, 3 h after the excitatory amino acids injections the rats displayed a bilateral profound elevation of the proenkephalin and prodynorphin mRNA levels in dentate gyrus granule cells (2-3 or 1.5-2 fold higher than control levels, respectively). Pretreatment of rats with D-amino-phosphonovalerate (D-APV, 10 micrograms), a selective antagonist of NMDA receptor, prevented the behavioral and biochemical changes evoked by NMDA. The changes in the behavior and gene expression evoked by kainate or quisqualate were diminished in rats which received 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX, 2 micrograms), a putative antagonist of quisqualate and kainate receptors. The study demonstrated that activation of NMDA, quisqualate or kainate receptors in the hippocampus induced seizures associated with a marked increase in the proenkephalin (PENK) and the prodynorphin (PDYN) gene expression in the rat dentate gyrus.  相似文献   

7.
Cultured astrocytes from neonatal rat cerebral hemispheres are depolarized by the excitatory neurotransmitter glutamate. In this study we have used selective agonists of different neuronal glutamate receptor subtypes, namely, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate type, to characterize pharmacologically the glutamate receptor in astrocytes. The agonists of the neuronal quisqualate receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) and quisqualate, depolarized the membrane. Kainate, an agonist of the neuronal kainate receptor, depolarized astrocytes more effectively than quisqualate. Combined application of kainate and quisqualate depolarized astrocytes to a level which was intermediate to that evoked by quisqualate and kainate individually. Agonists activating the neuronal NMDA receptor, namely NMDA and quinolinate, were ineffective. Application of NMDA did not alter the membrane potential even in combination with glycine or in Mg2+-free solution, conditions under which neuronal NMDA receptor activation is facilitated. The nonselective agonists L-cysteate, L-homocysteate, and beta-N-oxalylamino-L-alanine (BOAA) mimicked the effect of glutamate. Dihydrokainate, a blocker of glutamate uptake, did not, and several antagonists of neuronal glutamate receptors only slightly affect the glutamate response. These findings suggest that astrocytes express one type of glutamate receptor which is activated by both kainate and quisqualate, lending further support to the notion that cultured astrocytes express excitatory amino acid receptors which have some pharmacological similarities to their neuronal counterparts.  相似文献   

8.
Cultures of chicken day 8 embryo retinal cells, essentially free of contaminating non-neuronal elements, were used to examine the neurotoxicity of various excitatory amino acid transmitter receptor agonists. At 7 days in vitro, N-methyl-D-aspartate (NMDA), following 24 hr exposure to 0.1-1.0 mM, destroyed 60-70% of the multipolar neurons, but apparently spared photoreceptors. The cytotoxic effect of NMDA was prevented by extracellular Mg2+ or phencyclidine, suggesting a role for the NMDA ion channel; competitive NMDA antagonists were also neuroprotective. The mixed excitatory amino acid receptor agonist glutamate (0.1-1.0 mM) was also neurotoxic (approximately 70% loss of multipolar neurons) and strongly blocked by NMDA (but weakly by non-NMDA) antagonists and Mg2+, indicating a major action at NMDA receptors. As with NMDA, glutamate did not appear to affect photoreceptors. The neurotoxic action of kainate against multipolar retinal neurons, as reported by others, was confirmed here. Kainate neuronal injury was sensitive to the quinoxalinedione non-NMDA antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyanoquinoxaline-2,3-dione (CNQX), but not to Mg2+ or phencyclidine. Ibotenate and quisqualate, even at millimolar concentrations, were not neurotoxic. The monosialoganglioside GM1 was also effective in reducing NMDA and non-NMDA agonist neurotoxicity to retinal neurons. Maximal ganglioside benefit required 1-2 hr of pretreatment with 100-200 microM GM1. The percentage of multipolar neurons remaining after the neurotoxin insult approximately doubled with GM1 treatment. Gangliosides may thus have a therapeutic potential in excitatory amino acid-initiated neuropathologies.  相似文献   

9.
The developmental pharmacology of excitatory amino acid (EAA) receptors in the chick cochlear nucleus (nucleus magnocellularis, NM) was studied by means of bath application of drugs and recording of synaptically-evoked field potentials in brain slices taken from chicks aged embryonic day (E) 14 through hatching (E21). The abilities of various EAA agonists (N-methyl-D-aspartate [NMDA], kainic acid, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]) to suppress postsynaptic responses by depolarization block and of EAA antagonists ((3-[RS]-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CCP], dizocilpine [MK-801], 6-nitro-7-sulfamoyl-benzo(F)quinoxaline-2,3 dione [NBQX], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX] and 6,7-dinitroquinoxaline-2,3-dione [DNQX]) to suppress these responses directly were assessed quantitatively. The results support the existence of NMDA receptors in NM and suggest that the ability of these receptors to influence synaptically-evoked responses declines dramatically during the last week of embryonic life. The results similarly suggest that the non-NMDA receptors in NM undergo changes in density and/or function during a period of development when the cochlear nucleus is undergoing a variety of morphological and functional transformations.  相似文献   

10.
Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective activation of N-methyl-D-aspartate (NMDA) receptors. L-Glutamate was the most potent NMDA agonist (EC50 2.3 microM) and quinolinic acid the least potent (EC50 2.3 mM). Dose-response curves were well fit by the logistic equation, or by a model with 2 independent agonist binding sites. The mean limiting slope of log-log plots of NMDA receptor current versus agonist concentration (1.93) suggests that a 2-site model is appropriate. There was excellent correlation between agonist EC50S determined in voltage clamp experiments and KdS determined for NMDA receptor binding (Olverman et al., 1988). With no added glycine, and 1 mM extracellular Mg, responses to NMDA were completely blocked; responses to kainate and quisqualate were unchanged. Under these conditions, glutamate and the sulfur amino acids activated a rapidly desensitizing response, similar to that evoked by micromolar concentrations of quisqualate and AMPA, but mM concentrations of L-aspartate, homoquinolinic acid, and quinolinic acid failed to elicit a non-NMDA receptor-mediated response. Except for L-glutamate (EC50 480 microM), the low potency of the sulfur amino acids prevented the study of complete dose-response curves for the rapidly desensitizing response at quisqualate receptors. Small-amplitude nondesensitizing quisqualate receptor responses were activated by much lower concentrations of all quisqualate receptor agonists. Full dose-response curves for the nondesensitizing response were obtained for 9 amino acids; L-glutamate was the most potent endogenous agonist (EC50 19 microM). Domoate (EC50 13 microM) and kainate (EC50 143 microM) activated large-amplitude, nondesensitizing responses.  相似文献   

11.
The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide radical production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, kainate plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/kainate receptor antagonist, or kainate plus 2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. We investigated superoxide production and mitochondrial MnSOD activity after injection. The measurements took place at different times (5, 15 min, 2, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. Used glutamate antagonists APV and CNQX both expressed sufficient neuroprotection in sense of decreasing superoxide production and increasing MnSOD levels, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. Following intrahippocampal antagonists injection they, also, interpose different neuroprotection effect on the induction of MnSOD activity in distinct brain regions affected by the injury, which are functionally connected via afferents and efferents. It suggests that MnSOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity.  相似文献   

12.
The essential amino acid L-proline produces a depressor response when microinjected into the caudal ventrolateral medulla (CVLM) of anesthetized rats. L-proline may activate some excitatory amino acid (EAA) receptors. The present study tested this hypothesis by investigating the effects of two ionotropic excitatory amino acid receptor antagonists on the depressor response to L-proline in the CVLM: the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor-selective antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the N-methyl-D-aspartate (NMDA) receptor-selective antagonist MK801. Urethane-anesthetized rats received arterial catheters and their ventrolateral medulla surface was exposed. Injections of the antagonists CNQX and MK801 (2 mM, 68 nl in each case) into the CVLM completely blocked depressor responses to subsequent administration of AMPA (2 pmol/34 nl) and NMDA (2 pmol/34 nl), respectively. The depressor response to L-proline (3.4 nmol/34 nl) was strongly inhibited by prior injection of CNQX (2 mM, 68 nl) and significantly attenuated by prior injection of a high dose (20 mM, 68 nl), but not a low dose (2 mM, 68 nl), of MK801. The results indicate that the depressor response to L-proline in the CVLM includes mechanisms of ionotropic excitatory amino acid receptors.  相似文献   

13.
Previous studies have reported that information from carotid chemoreceptors activates sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM) exclusively viaN-methyl-d-aspartic acid (NMDA) receptors. In this study, we examined the possible involvement of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors in the RVLM on sympathetic chemoreceptor reflex in pentobarbitone anaesthetised, vagotomised and artificially ventilated rats. Carotid chemoreceptor stimulation with brief N2 inhalation increased splanchnic sympathetic nerve activity and arterial pressure in animals that had received an intravenous injection of the non-competitive NMDA receptor blocker, MK-801 (2 mg/kg). RVLM sympathetic premotor neurons could also be activated by brief hypoxia in the presence of MK-801. However, microinjection of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selective AMPA/kainate receptor antagonist, 2 mM, 100 nl) into the RVLM after intravenous MK-801 abolished the hypoxia evoked sympathoexcitatory response. These results demonstrate that AMPA/kainate receptors in the RVLM are involved in the chemoreceptor reflex pathway.  相似文献   

14.
The quinoxaline derivative, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), significantly reduced the currents evoked by exogenous application of quisqualate (QQ), kainate (KA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) when applied to ganglion cells, using whole-cell recording in a slice preparation of the tiger salamander retina. A comparison between NBQX and CNQX indicates that NBQX is more effective in blocking AMPA receptors. Also, at up to 10 μM, NBQX has no effect on NMDA-induced currents. Thus at this concentration, NBQX shows no affinity for the glycine binding site of NMDA receptors. For this reason, NBQX is preferred over CNQX for a more effective and selective antagonism toward non-NMDA receptors.  相似文献   

15.
Jin S  Yang J  Lee WL  Wong PT 《Brain research》2000,882(1-2):128-138
We investigated the roles of kainate-, alpha-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA)- and N-methyl-D-aspartate (NMDA)-receptors in mediating striatal kainate injection-induced decrease in the binding of acetylcholine M(1) receptors in rat forebrain. After unilateral intrastriatal injection of kainate (4 nmol), the bindings of [3H]kainate (10 nM), [3H]MK-801 (4 nM) and [3H]pirenzepine (4 nM) to the rat ipsilateral forebrain membranes declined, reaching the lowest on day 2 to 4 and recovering on day 8. Saturation binding studies, performed on day 2 post-injection, showed that kainate (1, 2, 4 nmol) dose-dependently decreased B(max) and K(d) of the three ligands. (+)-5-Methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a selective NMDA receptor channel blocker, antagonised (from a dose of 4 nmol) kainate-induced decreases in the bindings of [3H]kainate (up to approximately 20%), [3H]MK-801 (up to approximately 90%) and [3H]pirenzepine (up to approximately 70%). In contrast, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a selective non-NMDA receptor antagonist, almost completely abolished (from a dose of 12 nmol) kainate-induced decreases in the bindings of all the three ligands (up to approximately 95-98%). Cyclothiazide, a selective potentiator that enhances AMPA receptor-mediated responses, significantly enhanced (from a dose of 4 nmol) kainate-induced decrease in the binding of [3H]kainate but not that of [3H]pirenzepine or [3H]MK-801. In summary, these results indicate that striatal kainate injection-induced decrease in the binding of acetylcholine M(1) receptors in rat forebrain is dependent on activation of kainate receptors and, to a certain extent, a consequent involvement of NMDA receptors. These and previous studies provide some evidence showing that kainate receptors might play a crucial role in regulating excitatory amino acids (EAA)-modulated cholinergic neurotransmission in the central nervous system (CNS).  相似文献   

16.
We have studied the effect of excitatory amino acids on the expression of mRNA for the immediate early genes c-fos, c-jun, jun-B, and NGF-1A in isolated cortical astrocytes. The expression of the different genes was induced by 100 microM kainate, quisqualate, AMPA and high concentrations of K+ (140 mM). NMDA did not induce the expression of any of the genes studied. The effect of quisqualate stimulation was not inhibited by the antagonist CNQX or by withdrawal of external Ca2+. In contrast the kainate effect was abolished by CNQX but not by the removal of external Ca2+. However, elevated K+ induced c-fos only when calcium was present in the external medium. These findings suggest that type-1 astrocytes lack NMDA receptors and that the induction of genes by quisqualate and kainate is in part independent of the presence of calcium in the external medium and may be mediated through second messenger pathways.  相似文献   

17.
N-methyl-d-aspartic acid (NMDA) receptors are implicated in fictive locomotion; however, their precise role there is not clear. In cultures of dissociated cells from foetal rat spinal cord, synchronous bursting (but not fictive locomotion) can be induced by disinhibition, which is produced by blocking glycinergic and gamma-aminobutyric acid (GABA)A-dependent synaptic conductances. In this study, we investigate the role of NMDA-R in rhythm generation during disinhibition with multielectrode arrays and patch-clamp. We previously determined that bursting activity is generated by repetitive recruitment of a network through recurrent excitation. Blocking NMDA-R with d(-)-2-amino-5-phosphonopentanoic acid (APV) decreased the burst duration, suggesting a role of such receptors in the maintenance of high network activity during the bursts. In addition, APV reduced burst rate in about a third of the experiments, suggesting a contribution of NMDA-R in network recruitment. When (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA)/kainate receptors were blocked with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the presence of disinhibition, the burst rate was reduced and burst onset was slowed in two-thirds of the experiments. In the remaining experiments, bursting ceased completely with CNQX. Neither APV nor CNQX changed the spatial patterns of activity in the network, suggesting a co-operation of both receptors in rhythm generation. While NMDA alone was not able to create a rhythm, it accelerated bursting in the presence of disinhibition, made it more regular and slowed down network recruitment. These effects were most likely due to the depolarization of the interneurons in the network. We conclude that NMDA-R contribute to rhythm generation in spinal cultures by supporting recurrent excitation and network recruitment and by depolarizing the network.  相似文献   

18.
The AMPA/KA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the NMDA receptor antagonist 2-amino-5-phosphonovalerate (D-APV) were used to investigate the contribution of excitatory amino acid (EAA) receptors to graded bursting activity recorded in the CA1 region of the rat hippocampal slice following bath application of the convulsant drug bicuculline methiodide (BIC, 2-3 microM). CNQX (5-9 microM) significantly antagonised the burst in a reversible, concentration-dependent manner (n = 5). The effect involved a reduction in the amplitude but not the number of population spikes of the burst and also a depression of the underlying burst excitatory post-synaptic potential (EPSP). D-APV (5-25 microM), in contrast, reduced the amplitude and number of spikes in the burst but had no effect on the burst EPSP (n = 5). Following a single concentration of CNQX (5 microM), applied in the presence of bicuculline, it was observed that the components of epileptiform response which remained could be completely abolished with D-APV (10 microM; n = 10). It was also shown that, following elimination of synaptic transmission with CNQX (5 microM), application of bicuculline (2-3 microM) induced a small burst that could be reversibly antagonised with D-APV (10 microM). These results show that evoked epileptiform activity witnessed in the presence of bicuculline involves the activation of both AMPA and NMDA receptors, the AMPA receptor activation making the major contribution. The burst mediated by NMDA receptors is not dependent on prior activation of AMPA receptors.  相似文献   

19.
Midbrain dopamine neurons in vivo discharge in a single-spike firing pattern or in a burst-firing pattern. Such activity in vivo strikingly contrasts with the pacemaker activity of the same dopamine neurons recorded in vitro. We have recently shown that burst activity in vivo of midbrain dopamine neurons is due to the local activation of excitatory amino acid receptors, as microapplication of the broad-spectrum antagonist of excitatory amino acids, kynurenic acid, strongly regularized the spontaneous firing pattern of these dopamine neurons. In the present study, we investigated which subtypes of excitatory amino acid receptors are involved in the burst-firing of midbrain dopamine neurons in chloral hydrate-anaesthetized rats, Iontophoretic or pressure microejections of 6-cyano,7-nitroquinoxaline-2,3-dione (CNQX), a non- N -methyl- d -aspartate (NMDA) receptor antagonist, did not alter the spontaneous burst firing of dopamine neurons ( n = 36). In contrast, similar ejections of (±)2-amino,5-phos-phonopentanoic acid (AP-5), a specific antagonist at NMDA receptors, markedly regularized the firing pattern by reducing the occurrence of bursts ( n = 52). In addition, iontophoretic ejections of NMDA, but not kainate or quisqualate, elicited a discharge of these dopamine neurons in bursts ( n = 20, 12 and 14, respectively). These data suggest that burst-firing of midbrain dopamine neurons in vivo results from the tonic activation of NMDA receptors by endogenous excitatory amino acids. In view of the critical dependency of catecholamine release on the discharge pattern of source neurons, excitatory amino acid inputs to midbrain dopamine neurons may constitute a major physiological substrate in the control of the dopamine level in target areas.  相似文献   

20.
R B Langdon  M Sur 《Brain research》1992,599(2):283-296
In the rat visual cortex in vitro, single-shock stimulations applied to the border between layer VI and the white matter evoke synchronized burst-firing by units in layer III. We have examined the effects of glutamate receptor antagonists on this activity, with antagonists applied via the bath to allow correlation of effects with concentrations. All synaptically driven components (recorded extracellularly as field potential 'S2' spikes, dipoles 'W1' and 'W2', and coinciding single-unit spikes) were inhibited by greater than 90% in 1.0 mM kynurenic acid and in 3 or 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, which selectively blocks AMPA/kainate receptors). S2 spike amplitudes were reduced by half in 0.7 microM CNQX. 2-Amino-5-phosphonovalerate (APV), a specific blocker of NMDA receptors, did not prevent S2 spike burst or horizontal spread of bursting within layer III. However, APV reduced the duration of synchronized bursts and the slower potentials which followed. In Mg(2+)-free medium, new components appeared which were APV-sensitive: (1) low amplitude spikes, distributed spatially like S2 spike, but recurring more slowly, and (2) slow potentials, distributed spatially like W1 and W2 potentials, but lasting for hundreds of milliseconds. The amplitudes of these spikes were reduced by half in 3 microM D-APV. Our data imply that: (1) glutamate receptors play a major role in mediating local, excitatory neurotransmission in the supragranular layers of neocortex, with NMDA and AMPA/kainate subtypes each subserving somewhat different functions; (2) AMPA/kainate receptors mediate rapid excitatory transmission between layer III neurons, responsible for driving the first 15 ms of synchronized bursts; (3) currents gated by NMDA receptors determine the duration of coherent firing bursts, and drive asynchronous neuronal firing following bursts; and (4) under conditions which circumvent block by extracellular Mg2+, activation of NMDA receptors greatly enhances and prolongs the response to single-shock stimulations. In vivo, activation of layer III neurons is likely to depend significantly upon currents gated by NMDA receptors whenever repetitively firing excitatory inputs summed over several tens of milliseconds provide enough depolarization to lift block by extracellular Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号