首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main pathology underlying disease symptoms in Parkinson's disease (PD) is a progressive degeneration of nigrostriatal dopamine (DA) neurons. No effective disease-modifying treatment currently exists. Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective and neuroregenerative effects and it enhances dopaminergic function in animal models of PD. These findings raise the possibility that intrastriatal administration of GDNF might be developed into a new clinical strategy for functional preservation and restoration also in PD patients. Gene therapy is a novel tool to increase local levels of GDNF. Transplantation of encapsulated, GDNF-secreting cells is one strategy for ex vivo cell-based gene delivery which has the advantage to allow for removal of the cells if untoward effects occur. Here we summarize studies with such cells in animals, and discuss the results from previous trials with GDNF in PD patients and their implications for the further development of neuroprotective/neuroregenerative therapies. Finally, we describe the different scientific and regulatory issues that need to be addressed in order to reach the clinic and start the first trial in patients.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line‐derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF‐releasing Notch‐induced human bone marrow‐derived mesenchymal stem cells (MSC) grafted into striatum of the 6‐hydroxydopamine (6‐OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6‐OHDA striatal lesion. At 4 weeks, rats that had received GDNF‐transduced SB623 cells had significantly decreased amphetamine‐induced rotation compared with control rats, although this effect was not observed in rats that received GFP‐transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase‐immunoreactive (TH‐IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF‐secreting cells and was not observed in controls. These observations suggest that human bone‐marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Previous work has demonstrated that viral vector mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF), when administered prior to a striatal injection of the specific neurotoxin, 6-hydroxydopamine (6-OHDA), can protect nigral dopamine (DA) neurons from cell death. When considering gene therapy for Parkinson's disease (PD), vector delivery prior to the onset of neuropathology is not possible and chronic delivery will likely be necessary in a GDNF-based PD therapy. The present study was undertaken to determine if GDNF delivered via a recombinant adeno-associated viral vector (rAAV) could affect nigral DA cell survival when initiated just after the administration of striatal 6-OHDA. The onset of rAAV-mediated GDNF transgene expression near the substantia nigra was determined to begin somewhere between 1 and 7 days after the 6-OHDA injection and subsequent vector administration. The cell survival data indicate that rAAV-GDNF delivery results in a highly significant sparing of nigral DA neurons. These data indicate that a single delivery of rAAV encoding GDNF is efficacious when delivered after the onset of progressive degeneration in a rat model of PD.  相似文献   

4.
Previously, we observed that an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF), injected near the rat substantia nigra (SN), protects SN dopaminergic (DA) neuronal soma from 6-hydroxydopamine (6-OHDA)-induced degeneration. In the present study, the effects of Ad GDNF injected into the striatum, the site of DA nerve terminals, were assessed in the same lesion model. So that effects on cell survival could be assessed without relying on DA phenotypic markers, fluorogold (FG) was infused bilaterally into striatae to retrogradely label DA neurons. Ad GDNF or control treatment (Ad mGDNF, encoding a deletion mutant GDNF, Ad lacZ, vehicle, or no injection) was injected unilaterally into the striatum near one FG site. Progressive degeneration of DA neurons was initiated 7 days later by unilateral injection of 6-OHDA at this FG site. At 42 days after 6-OHDA, Ad GDNF prevented the death of 40% of susceptible DA neurons that projected to the lesion site. Ad GDNF prevented the development of behavioral asymmetries which depend on striatal dopamine, including limb use asymmetries during spontaneous movements along vertical surfaces and amphetamine-induced rotation. Both behavioral asymmetries were exhibited by control-treated, lesioned rats. Interestingly, these behavioral protections occurred in the absence of an increase in the density of DA nerve fibers in the striatum of Ad GDNF-treated rats. ELISA measurements of transgene proteins showed that nanogram quantities of GDNF and lacZ transgene were present in the striatum for 7 weeks, and picogram quantities of GDNF in the SN due to retrograde transport of vector and/or transgene protein. These studies demonstrate that Ad GDNF can sustain increased levels of biosynthesized GDNF in the terminal region of DA neurons for at least 7 weeks and that this GDNF slows the degeneration of DA neurons and prevents the appearance of dopamine dependent motor asymmetries in a rat model of Parkinson's disease (PD). GDNF gene therapy targeted to the striatum, a more surgically accessible site than the SN, may be clinically applicable to humans with PD.  相似文献   

5.
Potential future treatments for Parkinson's disease (PD) include those that not only provide symptomatic relief to patients but are also neuroprotective and/or neurorestorative. Glial cell line-derived neurotrophic factor (GDNF) may be a valuable candidate in this regard. Positive results using monkeys have encouraged the use of GDNF in human trials. These trials have unfortunately shown mixed results, illustrating the influence that various parameters of administration can have on clinical outcome. The aim of this review is to compare the findings of these clinical studies with available primate data. While bolus intraventricular injections of GDNF in primates have shown some behavioural efficacy, there was no clinical benefit in the first human trial using this method, which was most likely a result of inefficient GDNF distribution in the striatal parenchyma. In primates, however, continuous (rather than bolus) delivery of GDNF into the ventricles results in significant distribution in the striatum. While chronic delivery of GDNF into the ventricles has not been assessed in humans, intraputamenal protein delivery in two Phase I trials have demonstrated that GDNF considerably reduces PD symptoms, suggesting that the putamen is the optimal location for delivery. Primate studies have shown that vector mediated delivery of GDNF may provide a suitable means for long-term intraputamenal delivery. However, the possibility of high levels of GDNF resulting in widespread distribution of GDNF to non-targeted areas is a cause of concern, and vectors with transgene regulation are needed. The development of these vectors may be the way forward for GDNF treatment.  相似文献   

6.
The survival of rat postnatal mesencephalic dopamine (DA) neurons in dissociated cell cultures was studied by examining the combinatorial effects of dibutyryl cyclic adenosine monophosphate (db-cAMP), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), as well as selective inhibitors of protein kinase A (PKA), and mitogen-activated protein kinase (MAPK). Postnatal DA neurons were maintained for 14 days in vitro, and were identified by immunohistochemistry using tyrosine hydroxylase antibody. The survival and growth of DA neurons was significantly increased by the inclusion of either >100 microM db-cAMP or 10 microM Forskolin plus 100 microM IBMX in the culture medium. Neither 10-50 ng/ml GDNF nor 50 ng/ml BDNF alone significantly increased DA neuron survival in vitro. However, the combined use of GDNF and BDNF did increase DA neuron survival, and the addition of either db-cAMP or IBMX/Forskolin to media containing these neurotrophins markedly increased DA neuron survival and growth. The cAMP inhibitor Rp-cAMP, the cAMP-dependent protein kinase A inhibitor H89, and the MAP kinase (MAPK) pathway inhibitor PD98059 significantly reduced the survival of DA neurons when applied alone in the absence of added growth factors. Application of GDNF plus BDNF, or db-cAMP significantly protected the DA neurons from the deleterious effects on survival of either 20 microM H89 or 20 microM PD 98059. The results suggest that BDNF, GDNF, and cAMP produce convergent signals to activate PKA and MAPK pathways which are involved in the survival of postnatal mesencephalic DA neurons in vitro.  相似文献   

7.
Glial cell line-derived neurotrophic factor (GDNF) can exert neuroprotective effects on the substantia nigra pars compacta (SNc) dopaminergic (DA) neurons that are undergoing degeneration in Parkinson's disease (PD). In an attempt to investigate the molecular signaling mechanisms underlying GDNF protection the DA neurons from degeneration, we established early PD rat models in which the DA neurons in SNc were degenerating. Whether the cytoplasmic NF-κB signaling pathway was involved in the protection of GDNF on the degenerating DA neurons was examined in the present study. The results showed that the nuclear NF-κB p65 levels in the DA neurons increased when GDNF was injected into SNc of early PD rat models. Immunoprecipitation assays showed that the nuclear NF-κB p65/p52 complex levels increased after GDNF administration, while the p65/p50 complex levels decreased. These results indicated that GDNF could activate the NF-κB signaling pathway in the degenerating DA neurons. And it was the noncanonical NF-κB signaling pathway, which contained the NF-κB p65/p52 complex that was involved in the effects of GDNF on DA neurons.  相似文献   

8.
目的研究微囊化后的猪视网膜色素上皮细胞(retinal pigment epithelial,RPE)对帕金森病大鼠模型的移植疗效。方法原代培养RPE 并传代,高效液相色谱法测定培养液上清中多巴胺(dopamine, DA)和高香草酸(homovanillic acid, HVA)的含量,ELISA法检测脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)和胶质细胞源性神经营养因子(glial-derived neurotrophic factor, GDNF)的含量。用高压静电成囊装置制备海藻酸钠-多聚赖氨酸-海藻酸钠微囊化细胞。6-羟基多巴胺(6-hydroxydopamine, 6-OHDA)毁损内侧前脑束 (medial fore-brain bundle,MFB)建立 SD 大鼠帕金森病模型。立体定向移植 RPE+ 微囊,检验旋转实验、免疫组化和脑内生化的变化。结果 RPE 培养上清液中DA、HVA、BDNF、GDNF 的含量稳定,微囊化后细胞长期存活,活性没有明显变化。6-OHDA毁损MFB建立大鼠帕金森病模型的成模率为83%。移植微囊化的RPE后有效率为33%。结论猪 RPE 体外培养生长旺盛,持续分泌 DA、BDNF 和 GNDF,微囊化不影响其分泌功能。RPE 移植对帕金森病大鼠有一定的治疗作用。  相似文献   

9.
Purpose: Neurotrophic factor delivery into the brain is a promising approach in the treatment of Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent neurotrophic factors for dopaminergic neurons. Although multiple injections of GDNF into the brain are commonly performed in experimental studies, the present study investigates the efficacy of using a single injection of GDNF, which may be useful in elinically applying this treatment. Methods: Unilateral 6-hydroxydoparnine (6-OHDA) administration into the striatum was perforrned in Sprague-Dawley rats to create a partial lesion of the nigrostriatal DA system. These parkinsonian model rats received a single injection of human recombinant GDNF into the same portion of the striatum either 24 h before or 4 weeks after 6-OHDA treatrnent. Results: GDNF injected into the striatum before 6-OHDA administration potently protected the dopaminergic system, as shown by the numbers of mesencephalic dopaminergie neuron cell bodies and dopaminergic nerve terminal densities in the striatum. Dopaminergic neuron cell bodies and fiber densities were also significantly restored when GDNF was given after 6-OHDA administration, although the degree of restoration was lower than in the protective experiment. ODNF administration ameliorated apomorphine-induced rotational behavior in animals receiving it either before or after 6-OHDA treatment. However, the degree of improvement was less prominent when GDNF was iniected after 6-OHDA. Conclusion: Intracerebral GDNF adininistration exerts both protective and regenerative effects on the nigrostriatal dopaminergic system, a finding which may have implications for the development of new treatment strategies for Parkinson's disease.  相似文献   

10.
The glial cell line-derived neurotrophic factor (GDNF)-family of neurotrophic factors consisted until recently of three members, GDNF, neurturin, and persephin. We describe here the cloning of a new GDNF-family member, neublastin (NBN), identical to artemin (ART), recently published (Baloh et al., 1998). Addition of NBN/ART to cultures of fetal mesencephalic dopamine (DA) neurons increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons by approximately 70%, similar to the maximal effect obtained with GDNF. To investigate the neuroprotective effects in vivo, lentiviral vectors carrying the cDNA for NBN/ART or GDNF were injected into the striatum and ventral midbrain. Three weeks after an intrastriatal 6-hydroxydopamine lesion only about 20% of the nigral DA neurons were left in the control group, while 80-90% of the DA neurons remained in the NBN/ART and GDNF treatment groups, and the striatal TH-immunoreactive innervation was partly spared. We conclude that NBN/ART, similarly to GDNF, is a potent neuroprotective factor for the nigrostriatal DA neurons in vivo.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) shows potent neuroprotective as well as neurorestorative actions on the adult neurons impacted in animal models of Parkinson's disease (PD). Long-term pharmaco-physiological effects of GDNF on developing dopaminergic (DA) neurons have not yet been explored because of technical difficulties in producing prolonged cell type-specific delivery of this neurotrophic factor in mammalian embryonic brain. The current studies used our previously characterized 9.0-kb tyrosine hydroxylase promoter to produce transgenic mice with neuronal cell type-specific expression of GDNF in substantia nigra pars compacta (SNc) and locus coeruleus (LC). These mice were used to test the parsimonious hypothesis that increased developmental expression of GDNF in SNc and LC would significantly enhance the number of postmitotic adult neurons. To our surprise, adult transgenic mice carrying the TH9.0kb-GDNF hybrid gene showed dramatic reductions in both the numbers and the volumes of SNc-DA and LC-noradrenergic (NA) neurons by quantitative morphometric analysis. The decrease in the number of DA neurons was apparent as early as postnatal day 2, the period before the major naturally occurring apoptotic cell death in midbrain. Aged transgenic mice exhibited no further significant deficits in motor behaviors. These data suggest that continuous, early developmental GDNF expression exerts physiological effects on newly differentiated, immature dopamine neurons that differ from those observed on more mature and adult DA neurons. Further elucidation of the mechanisms underlying differential GDNF actions will greatly improve the pharmacological efficacy of GDNF in fetal neural transplantation as well as adult neuronal gene therapy in PD patients.  相似文献   

12.
Purpose: Neurotrophic factor delivery into the brain is a promising approach in the treatment of Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent neurotrophic factors for dopaminergic neurons. Although multiple injections of GDNF into the brain are commonly performed in experimental studies, the present study investigates the efficacy of using a single injection of GDNF, which may be useful in elinically applying this treatment. Methods: Unilateral 6-hydroxydoparnine (6-OHDA) administration into the striatum was perforrned in Sprague-Dawley rats to create a partial lesion of the nigrostriatal DA system. These parkinsonian model rats received a single injection of human recombinant GDNF into the same portion of the striatum either 24 h before or 4 weeks after 6-OHDA treatrnent. Results: GDNF injected into the striatum before 6-OHDA administration potently protected the dopaminergic system, as shown by the numbers of mesencephalic dopaminergie neuron cell bodies and dopaminergic nerve terminal densities in the striatum. Dopaminergic neuron cell bodies and fiber densities were also significantly restored when GDNF was given after 6-OHDA administration, although the degree of restoration was lower than in the protective experiment. ODNF administration ameliorated apomorphine-induced rotational behavior in animals receiving it either before or after 6-OHDA treatment. However, the degree of improvement was less prominent when GDNF was iniected after 6-OHDA. Conclusion: Intracerebral GDNF adininistration exerts both protective and regenerative effects on the nigrostriatal dopaminergic system, a finding which may have implications for the development of new treatment strategies for Parkinson's disease.  相似文献   

13.
目的研究微囊化后的猪视网膜色素上皮细胞(retinal pigment epithelial,RPE)对帕金森病大鼠模型的移植疗效。方法原代培养RPE并传代,高效液相色谱法测定培养液上清中多巴胺(dopamine,DA)和高香草酸(homovanillic acid,HVA)的含量,ELISA法检测脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)和胶质细胞源性神经营养因子(glial-derived neurotrophic factor,GDNF)的含量。用高压静电成囊装置制备海藻酸钠-多聚赖氨酸-海藻酸钠微囊化细胞。6-羟基多巴胺(6-hydroxydopamine,6-OHDA)毁损内侧前脑束(medial forebrain bundle,MFB)建立SD大鼠帕金森病模型。立体定向移植RPE+微囊,检验旋转实验、免疫组化和脑内生化的变化。结果RPE培养上清液中DA、HVA、BDNF、GDNF的含量稳定,微囊化后细胞长期存活,活性没有明显变化。6-OHDA毁损MFB建立大鼠帕金森病模型的成模率为83%。移植微囊化的RPE后有效率为33%。结论猪RPE体外培养生长旺盛,持续分泌DA、BDNF和GNDF,微囊化不影响其分泌功能。RPE移植对帕金森病大鼠有一定的治疗作用。  相似文献   

14.
Kordower JH 《Annals of neurology》2003,53(Z3):S120-32; discussion S132-4
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects approximately 1,000,000 Americans. The cause of the disease remains unknown. The histopathological hallmarks of the disease are dopaminergic striatal insufficiency secondary to a loss of dopaminergic neurons in the substantia nigra pars compacta and intracellular inclusion called Lewy bodies. Currently, only symptomatic treatment for PD is available. Although some treatments are efficacious for many years, all have significant limitations and new therapeutic approaches are needed. Gene therapy is ideal for delivering therapeutic molecules to site-specific regions of the central nervous system. Via gene therapy, a piece or pieces of DNA placed into a carrying vector encoding for a substance of interest can be introduced into specific cells. Although there are several ways that gene therapy can be applied for PD, this review focuses on in vivo gene delivery of glial cell line-derived neurotrophic factor (GDNF) as a neuroprotective strategy for PD.  相似文献   

15.
Viral delivery of glial cell line-derived neurotrophic factor (GDNF) currently represents one of the most promising neuroprotective strategies for Parkinson's Disease (PD). However, the effect of this neurotrophic factor has never been tested in the newly available genetic models of PD based on the viral expression of mutated alpha-synuclein. In this study, we evaluated the ability of lentiviral vectors coding for GDNF (lenti-GDNF) to prevent nigral dopaminergic degeneration associated with the lentiviral mediated expression of the A30P mutant human alpha-synuclein (lenti-A30P). This virally based rat model develops a progressive and selective loss of dopamine neurons associated with the appearance of alpha-synuclein containing inclusions, thus recapitulating the major hallmarks of PD. Lenti-GDNF was injected in the substantia nigra 2 weeks before nigral administration of lenti-A30P. Although a robust expression of GDNF was observed in the whole nigrostriatal pathway due to retrograde and/or anterograde transport, lenti-GDNF did not prevent the alpha-synuclein-induced dopaminergic neurodegeneration in the lentiviral-based genetic rat model of PD. These results suggest that sustained GDNF treatment cannot modulate the cellular toxicity related to abnormal folded protein accumulation as mutated human alpha-synuclein.  相似文献   

16.
Parkinson’s disease (PD) is the second most prevalent, progressive neurodegenerative disease and is characterized by the irreversible and selective loss of nigrostriatal dopaminergic (DA) neurons. Glial cell line-derived neurotrophic factor (GDNF), which is a potent protective factor for DA  neurons, is considered a promising neuroprotective candidate for PD. microRNAs (miRNAs) have been shown to be involved in a number of neurodegenerative diseases. Both miRNAs and GDNF affect DA neuronal processes, but the molecular crosstalk between these molecules remains unclear. The present study aimed to evaluate whether GDNF modulates miRNA expression. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to investigate miRNAs expression in 6-hydroxydopamine (6-OHDA)-injured MN9D cells treated with GDNF for 30 min, 1 h, or 3 h. Our results showed that GDNF treatment led to differential expression of 143 miRNAs. To further identify mechanisms by which GDNF exerts its effects, we compared miRNAs and mRNAs microarray data at the 1-h time point. We found that various biological processes and pathways were regulated at the miRNA level following GDNF treatment. Collectively, these results provide evidence of the capacity of GDNF to influence miRNAs expression, suggesting a new mechanism of GDNF action.  相似文献   

17.
Although viral vector-mediated delivery of glial cell-line derived neurotrophic factor (GDNF) to the brain has considerable potential as a neuroprotective strategy in Parkinson's disease (PD), its ability to protect complex motor functions relevant to the human condition has yet to be established. In this study, we used an operant task that assesses the selection, initiation and execution of lateralized nose-pokes in Lister Hooded rats to assess the efficacy with which complex behaviours are protected against neurotoxic lesions by prior injection of a lentiviral vector expressing GDNF. Unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) caused rats to attempt fewer trials and to make more procedural errors. Lesioned rats also developed a pronounced ipsilateral bias, with a corresponding drop in contralateral accuracy. They were also slower to react to contralateral stimuli and to execute movements bilaterally. Rats that were pre-treated 4 weeks prior to lesion surgery with an equine infectious anaemia virus (EIAV) vector carrying GDNF [EIAV-GDNF, injected into the striatum and above the substantia nigra (SN)] performed significantly better on all of these parameters than control rats. In addition to the operant task, EIAV-GDNF successfully rescued contralateral impairments in the corridor, staircase, stepping and cylinder tasks, and prevented drug-induced rotational asymmetry. This study confirms that GDNF can protect against 6-OHDA-induced impairments in complex as well as simple behaviours, and reinforces the use of EIAV-based vectors for the treatment of PD.  相似文献   

18.
Protein injection studies of the glial cell line derived neurotrophic factor (GDNF) family member Neurturin (NTN) have demonstrated neuroprotective effects on dopaminergic (DA) neurons, which are selectively lost during Parkinson's disease (PD). However, unlike GDNF, NTN has not previously been applied in PD models using an in vivo gene therapy approach. Difficulties with lentiviral gene delivery of wild type (wt) NTN led us to examine the role of the pre-pro-sequence, and to evaluate different NTN constructs in order to optimize gene therapy with NTN. Results from transfected cultured cells showed that wt NTN was poorly processed, and secreted as a pro-form. A similarly poor processing was found with a chimeric protein consisting of the pre-pro-part from GDNF and mature NTN. Moreover, we found that the biological activity of pro-NTN differs from mature NTN, as pro-NTN did not form a signaling complex with the tyrosine kinase receptor Ret and GFRalpha2 or GFRalpha1. Deletion of the pro-region resulted in significantly higher secretion of active NTN, which was further increased when substituting the wt NTN signal peptide with the immunoglobulin heavy-chain signal peptide (IgSP). The enhanced secretion of active mature NTN using the IgSP-NTN construct was reproduced in vivo in lentiviral-transduced rat striatal cells and, unlike wt NTN, enabled efficient neuroprotection of lesioned nigral DA neurons, similar to GDNF. An in vivo gene therapy approach with a modified NTN construct is therefore a possible treatment option for Parkinson's disease that should be further explored.  相似文献   

19.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to possess potent neurotrophic effects on dopaminergic (DA) neurons. We attempted the transplantation of encapsulated GDNF-producing cells to generate a stable supply of GDNF in the brain to promote neuroprotective and restorative effects for DA neurons. We established baby hamster kidney (BHK) cells and introduced GDNF cDNA to produce human GDNF (BHK-GDNF). These BHK-GDNF cells, or nontransfected BHK cells (BHK-Control), were encapsulated into hollow fibers, and the polymer encapsulated cells were unilaterally implanted into the striatum of adult rats, either before or after the administration of 6-hydroxydopamine into the same striatum. The encapsulated BHK-GDNF cells produced GDNF continuously in the striatum for up to 6 months. The rats that received a BHK-GDNF capsule showed a significant decrease in rotational behaviour compared to those that received a BHK-control capsule. Preservation of the nigrostriatal pathway was significantly greater in those that received a BHK-GDNF capsule than in those that received a BHK-control capsule. This indicates that encapsulated GDNF-producing cells can supply GDNF in a stable fashion and have protective and restorative effects on host DA neurons. Our results support a role for this grafting technique in the treatment of Parkinson's disease.  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) is absolutely required for survival of dopaminergic (DA) nigrostriatal neurons and protect them from toxic insults. Hence, it is a promising, albeit experimental, therapy for Parkinson's disease (PD). However, the source of striatal GDNF is not well known. GDNF seems to be normally synthesized in neurons, but numerous reports suggest GDNF production in glial cells, particularly in the injured brain. We have studied in detail striatal GDNF production in normal mouse and after damage of DA neurons with MPTP. Striatal GDNF mRNA was present in neonates but markedly increased during the first 2-3 postnatal weeks. Cellular identification of GDNF by unequivocal histochemical methods demonstrated that in normal or injured adult animals GDNF is expressed by striatal neurons and is not synthesized in significant amounts by astrocytes or microglial cells. GDNF mRNA expression was not higher in reactive astrocytes than in normal ones. Approximately 95% of identified neostriatal GDNF-expressing cells in normal and injured animals are parvalbumin-positive (PV+) interneurons, which only represent ~0.7% of all striatal neurons. The remaining 5% of GDNF+ cells are cholinergic and somatostatin+ interneurons. Surprisingly, medium spiny projection neurons (MSNs), the vast majority of striatal neurons that receive a strong DA innervation, do not express GDNF. PV+ interneurons constitute an oscillatory functional ensemble of electrically connected cells that control MSNs' firing. Production of GDNF in the PV+ neurons might be advantageous to supply synchronous activity-dependent release of GDNF in broad areas of the striatum. Stimulation of the GDNF-producing striatal PV+ ensemble in PD patients could have therapeutic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号