首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CC chemokine eotaxin is a potent eosinophil-specific chemoattractant that is crucial for allergic inflammation. Allergen-induced tumour necrosis factor (TNF) has been shown to induce eotaxin synthesis in eosinophils. Nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPK) have been found to play an essential role for the eotaxin-mediated eosinophilia. We investigated the modulation of NF-kappaB and MAPK activation in TNF-induced eotaxin release of human eosinophils. Human blood eosinophils were purified from fresh buffy coat using magnetic cell sorting. NF-kappaB pathway-related genes were evaluated by cDNA expression array system. Degradation of IkappaBalpha and phosphorylation of MAPK were detected by Western blot. Activation of NF-kappaB was determined by electrophoretic mobility shift assay. Eotaxin released into the eosinophil culture medium was measured by ELISA. TNF was found to up-regulate the gene expression of NF-kappaB and IkappaBalpha in eosinophils. TNF-induced IkappaBalpha degradation was inhibited by the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132) and a non-steroidal anti-inflammatory drug sodium salicylate (NaSal). Using EMSA, both MG-132 and NaSal were found to suppress the TNF-induced NF-kappaB activation in eosinophils. Furthermore, TNF was shown to induce phosphorylation of p38 MAPK time-dependently but not extracellular signal-regulated kinases (ERK). Inhibition of NF-kappaB activation and p38 MAPK activity decreased the TNF-induced release of eotaxin from eosinophils. These results indicate that NF-kappaB and p38 MAPK play an important role in TNF-activated signalling pathway regulating eotaxin release by eosinophils. They have also provided a biochemical basis for the potential of using specific inhibitors of NF-kappaB and p38 MAPK for treating allergic inflammation.  相似文献   

2.
BACKGROUND: It has been shown that the inhibition of eosinophilic apoptosis is an important mechanism for the development of blood and tissue eosinophilia in allergic diseases. Considerable attention has recently been focused on the role played by different intracellular kinase cascades in the control of apoptosis. In the present study, we investigated the effect of sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug, on mitogen-activated protein kinases (MAPK) and apoptosis of human eosinophils. METHODS: Human blood eosinophils were purified from buffy coat. NaSal-induced apoptosis of eosinophils was assessed by morphological changes and Annexin-V binding assay. Changes of MAPK activity upon treatment with NaSal were measured by kinase activity assay and Western blot. RESULTS: NaSal could induce apoptosis of human blood eosinophils in a dose- and time-dependent manner. It could also activate c-Jun N-terminal kinase (JNK) and p38 MAPK but not extracellular signal-regulated protein kinase (ERK) activity within 1 h. Pretreatment of eosinophils with p38 MAPK and JNK anti-sense (AS) phosphorothioate oligodeoxynucleotides (ODN) or specific p38 MAPK inhibitor SB 203580 did not have any significant effect on NaSal-induced apoptosis. However, ERK AS ODNs could trigger the apoptosis of normal eosinophils. CONCLUSION: There is no direct relationship between the activation of JNK and p38 MAPK pathways and NaSal-induced apoptosis in human peripheral blood eosinophils.  相似文献   

3.
Sesame seed oil increases the survival after cecal ligation and puncture in mice and the increased IL-10 levels with non-lethal lipopolysaccharides (LPS) challenge. We showed that sesamin and sesamolin, major lignans of sesame oil, regulated LPS-induced nitric oxide production in the murine microglia and BV-2 cell line. In this study, we studied the effect of sesamin on cytokine production by LPS stimulation. The result showed that sesamin significantly inhibited LPS-stimulated IL-6 mRNA and protein, and to a lesser degree TNF-alpha, in BV-2 microglia. Sesamin and sesamolin also reduced LPS-activated p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB activations. Furthermore, SB203580, a specific inhibitor of p38 MAP kinase, specifically inhibited LPS-induced IL-6 production. These results suggest that sesamin inhibited LPS-induced IL-6 production by suppression of p38 MAPK signal pathway and NF-kappaB activation.  相似文献   

4.
5.
Double-stranded RNA (dsRNA) has been implicated as a potential immune stimulant in activating microglia, which can cause chronic neurodegeneration. In this study, we examined the involvement of different types of mitogen-activated protein kinases (MAPKs) in the induction of inducible nitric oxide synthase (iNOS) by dsRNA in microglial cells. Nitric oxide production was increased after exposure of microglia to 50 μg/mL dsRNA. Levels of dsRNA-induced nitrite production in a line of immortalized murine microglia (BV2) and in primary cultures of murine microglia were decreased by inhibition of JNK or p38 MAPK, but were increased by inhibition of extracellular signal-regulated kinase. Similar results were shown in the levels of dsRNA-induced iNOS gene expression in BV2 cells. Phosphorylation levels of p38 MAPK were increased, depending on p38 MAPK inhibitor concentrations, while activation levels of MAPKAPK2, a known p38 substrate, were inhibited. Thus, it is likely that SB203580 inhibited the kinase activity of p38 MAPK, resulting in the loss of a feedback inhibition regulatory loop of p38 MAPK in BV2 cells. These findings suggest that dsRNA stimulated iNOS expression via MAPK signaling pathways, including JNK and p38 MAPK.  相似文献   

6.
7.
We have previously reported that thrombin stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of thrombin in the thrombin-stimulated IL-6 synthesis and the involvement of Rho-kinase in MC3T3-E1 cells. Thrombin time-dependently induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and myosin phosphatase targeting subunit-1 (MYPT-1), a Rho-kinase substrate. While SP600125, an inhibitor of SAPK/JNK, failed to reduce IL-6 synthesis, PD98059, a specific inhibitor of MEK, and SB203580 and BIRB0796, potent inhibitors of p38 MAP kinase, suppressed the IL-6 synthesis induced by thrombin. Y27632, a specific Rho-kinase inhibitor, significantly reduced thrombin-stimulated IL-6 synthesis as well as the MYPT-1 phosphorylation. Fasudil, another inhibitor of Rho-kinase, suppressed thrombin-stimulated IL-6 synthesis. Y27632 and fasudil failed to affect thrombin-induced phosphorylation of p44/p42 MAP kinase. Y27632 as well as fasudil attenuated thrombin-induced phosphorylation of p38 MAP kinase. These results strongly suggest that Rho-kinase regulates thrombin-stimulated IL-6 synthesis via p38 MAP kinase activation in osteoblasts.  相似文献   

8.
We investigated the intracellular signaling mechanisms for cytokine interleukin (IL)-3, IL-5, or granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced expression of adhesion molecules including very late antigen 4 (CD49 d), macrophage antigen-1 (CD11b), leukocyte function-associated antigen-1 (CD11a/CD18), intercellular adhesion molecule (ICAM)-1, and ICAM-3 on eosinophils. The expression of adhesion molecules and nuclear factor (NF)-kappaB pathway was measured by flow cytometry and cDNA expression array, respectively. The phosphorylation of inhibitor kappaB-alpha and p38 mitogen-activated protein kinase (MAPK) was detected by Western blot, whereas NF-kappaB activity was measured by electrophoretic mobility shift assay. IL-3, IL-5, and GM-CSF could enhance p38 MAPK and NF-kappaB activity and induce ICAM-1, CD11b, and CD18 expressions on eosinophils. They could suppress ICAM-3 expression, but had no effect on CD49 d expression. Either SB 203580 or MG-132 was able to offset the cytokine-induced expression of ICAM-1. Only SB 203580 could reverse the effect on CD11b, CD18, and ICAM-3 expressions. Therefore, the expression of ICAM-1 might involve both p38 MAPK and NF-kappaB activities, whereas the regulation of CD11b, CD18, and ICAM-3 expressions might be mediated through p38 MAPK but not NF-kappaB. These cytokines therefore play a crucial role, via the p38 MAPK and NF-kappaB pathways, in the expression of important adhesion molecules on eosinophils in allergic inflammation.  相似文献   

9.
Eosinophils are the principal effector cells for the pathogenesis of allergic inflammation. Glucocorticoids such as dexamethasone have long been used therapeutically for eosinophilia in allergic inflammation by inducing eosinophil apoptosis, but little is known about the intracellular mechanisms mediating dexamethasone-induced apoptosis. In the present study, we investigated the effect of dexamethasone on three mitogen-activated protein kinases (MAPK) involved in the intracellular signalling pathway: c-Jun NH2-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK). We found that dexamethasone could activate JNK and p38 MAPK in a time-dependent manner but not ERK. Further, SB 203580, a specific p38 MAPK inhibitor, was additive with dexamethasone in inducing eosinophil apoptosis, while JNK1/2 antisense phosphorothioate oligodeoxynucleotides did not show any significant effect. These suggest that dexamethasone-induced JNK1/2 and p38 MAPK activation are not crucial to the induction of apoptosis. Pretreatment of eosinophils with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.FMK), a broad-spectrum caspase inhibitor, could inhibit dexamethasone-induced apoptosis in eosinophils dose-dependently. Moreover, Z-VAD.FMK partially inhibited dexamethasone-activated JNK and p38 MAPK activities. However, dexamethasone treatment did not activate specific caspase-3, -8 activity in eosinophils compared with spontaneous apoptosis. We therefore conclude that dexamethasone-induced apoptosis and activation of JNK and p38 MAPK activity in eosinophils are regulated by caspases but not through the common apoptosis-related caspase-3, -8 as in other cell types. Elucidation of the important role of caspases in eosinophil apoptosis may facilitate the development of more specific and effective treatment for allergic inflammation.  相似文献   

10.
Hematopoietic cytokines such as interleukin (IL)-3, IL-5, and granulocyte macrophage colony-stimulating factor (GM-CSF) play a fundamental role in eosinophil functions in allergic asthma. The intracellular signal transduction mechanisms of these cytokines regulating the activation of eosinophils have been potential therapeutic targets. We investigated the roles of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-kappaB) in IL-3, IL-5, and GM-CSF-induced adhesion, morphological changes, and subsequence transmigration of human eosinophils. IL-3, IL-5, and GM-CSF could augment the phosphorylation of p38 MAPK and nucleus translocation of NF-kappaB in eosinophils. cDNA expression arrays demonstrated that the gene expression levels of several adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), alpha6, beta2 integrin (CD18), and CD44 were upregulated by these cytokines. Results from functional assays showed that adhesion of eosinophils onto airway epithelial cells was enhanced after IL-3 and IL-5 but not GM-CSF stimulation. These cytokines could markedly induce shape change and augment the transmigration of eosinophils. Moreover, administration of either p38 MAPK inhibitor, SB 203580, or proteasome inhibitor, N-cbz-Leu-Leu-leucinal (MG-132), could inhibit the cytokine-induced adhesion, shape change, and transmigration of eosinophils. Together, our findings suggest that IL-3, IL-5, and GM-CSF regulated the adhesion and chemotaxis of human eosinophils through shared signaling pathways involving both p38 MAPK and NF-kappaB. Our results therefore shed light on the further development of more effective agents for allergic and inflammatory diseases.  相似文献   

11.
Nonopsonic interaction of host immune cells with pathogens is an important first line of defense. We hypothesized that nonopsonic recognition between type III group B streptococcus and human neutrophils would occur and that the interaction would be sufficient to trigger neutrophil activation. By using a serum-free system, it was found that heat-killed type III group B streptococci bound to neutrophils in a rapid, stable, and inoculum-dependent manner that did not result in ingestion. Transposon-derived type III strain COH1-13, which lacks capsular polysaccharide, and strain COH1-11 with capsular polysaccharide lacking terminal sialic acid demonstrated increased neutrophil binding, suggesting that capsular polysaccharide masks an underlying binding site. Experiments using monoclonal antibodies to complement receptor 1 and to the I domain or lectin site of complement receptor 3 did not inhibit binding, indicating that the complement receptors used for ingestion of opsonized group B streptococci were not required for nonopsonic binding. Nonopsonic binding resulted in rapid activation of cellular p38 and p44/42 mitogen-activated protein kinases. This interaction was not an effective trigger for superoxide production but did promote release of the proinflammatory cytokine interleukin-8. The release of interleukin-8 was markedly suppressed by the p38 mitogen-activated protein kinase inhibitor SB203580 but was only minimally suppressed by the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059. Thus, nonopsonic binding of type III group B streptococci to neutrophils is sufficient to initiate intracellular signaling pathways and could serve as an arm of innate immunity of particular importance to the immature host.  相似文献   

12.
13.
14.
15.
The protozoan parasite Leishmania fails to activate naive macrophages for proinflammatory cytokines production, and selectively impairs signal transduction pathways in infected macrophages. Because mitogen-activated protein kinases (MAPK)- and NF-kappaB-dependent signaling pathways regulate proinflammatory cytokines release, we investigated their activation in mouse bone marrow-derived macrophages (BMM) exposed to Leishmania donovani promastigotes. In naive BMM, the parasite failed to induce the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK)1/2, as well as the degradation of IkappaB-alpha. The use of L. donovani mutants defective in the biosynthesis of lipophosphoglycan revealed that evasion of ERK1/2 activation requires surface expression of the repeating unit moiety of this virulence determinant. In IFN-gamma-primed BMM, L. donovani promastigotes strongly induced the phosphorylation of p38 MAPK and ERK1/2, and the use of selective inhibitors for ERK (PD98059) and p38 MAPK (SB203580) revealed that both kinases are required for L. donovani-induced TNF-alpha but not NO(2)(-) release. Collectively, these data suggest that both p38 MAPK and ERK1/2 pathways participate in some Leishmania-induced responses in IFN-gamma-primed BMM. The ability of L. donovani promastigotes to avoid MAPK and NF-kappaB activation in naive macrophages may be part of the strategy evolved by this parasite to evade innate immune responses.  相似文献   

16.
Crohn's disease and ulcerative colitis are inflammatory bowel diseases (IBD) characterized by chronic relapsing mucosal inflammation. Tumour necrosis factor (TNF)‐α, a known agonist of the mitogen‐activated protein kinase (MAPK) pathway, is a key cytokine in this process. We aimed first to determine whether p38 MAPK is activated in IBD inflamed mucosa, and then studied the effect of four different p38α inhibitory compounds on MAPK phosphorylation and secretion of proinflammatory cytokines by IBD lamina propria mononuclear cells (LPMCs) and organ culture biopsies. In vivo phospho‐p38α and p38α expression was evaluated by immunoblotting on intestinal biopsies from inflamed areas of patients affected by Crohn's disease and ulcerative colitis, and from normal mucosa of sex‐ and age‐matched control subjects. Both mucosal biopsies and isolated LPMCs were incubated with four different p38α selective inhibitory drugs. TNF‐α, interleukin (IL)‐1β and IL‐6 were measured in the organ and cell culture supernatants by enzyme‐linked immunosorbent assay. We found higher levels of phospho‐p38α in the inflamed mucosa of IBD patients in comparison to controls. All the p38α inhibitory drugs inhibited p38α phosphorylation and secretion of TNF‐α, IL‐1β and IL‐6 from IBD LPMCs and biopsies. Activated p38α MAPK is up‐regulated in the inflamed mucosa of patients with IBD. Additionally, all the p38α selective inhibitory drugs significantly down‐regulated the activation of the MAPK pathway and the secretion of proinflammatory cytokines.  相似文献   

17.
Lipopolysaccharide (LPS) is a key inflammatory mediator. It has been proposed to function as an important molecule that alerts the host of potential bacterial infection. Although highly conserved, LPS contains important structural differences among different bacterial species that can significantly alter host responses. For example, LPS obtained from Porphyromonas gingivalis, an etiologic agent for periodontitis, evokes a highly unusual host cell response. Human monocytes respond to this LPS by the secretion of a variety of different inflammatory mediators, while endothelial cells do not. In addition, P. gingivalis LPS inhibits endothelial cell expression of E-selectin and interleukin 8 (IL-8) induced by other bacteria. In this report the ability of P. gingivalis LPS to activate p38 mitogen-activated protein (MAP) kinase was investigated. It was found that p38 MAP kinase activation occurred in response to P. gingivalis LPS in human monocytes. In contrast, no p38 MAP kinase activation was observed in response to P. gingivalis LPS in human endothelial cells or CHO cells transfected with human Toll-like receptor 4 (TLR-4). In addition, P. gingivalis LPS was an effective inhibitor of Escherichia coli-induced p38 MAP kinase phosphorylation in both endothelial cells and CHO cells transfected with human TLR-4. These data demonstrate that P. gingivalis LPS activates the LPS-associated p38 MAP kinase in monocytes and that it can be an antagonist for E. coli LPS activation of p38 MAP kinase in endothelial and CHO cells. These data also suggest that although LPS is generally considered a bacterial component that alerts the host to infection, LPS from P. gingivalis may selectively modify the host response as a means to facilitate colonization.  相似文献   

18.
19.
20.
This study evaluated the protective role of p38 mitogen-activated protein kinase (p38 MAPK) inhibitors and sequestosome 1 (Sqstm1/A170/p62), a stress-induced signal modulator, in acoustic injury of the cochlea in mice. Two weeks after the exposure of mice to acoustic stress, threshold shifts of the auditory brainstem response (ABR) from the pre-exposure level and hair cell loss were evaluated. The activation of p38 MAPK was observed in cochlea by immunostaining 4 h after acoustic stress. To examine the role of p38 MAPK in tissue injury, its inhibitors were i.p. injected into male wild-type C57BL mice before the acoustic overexposure. The inhibitors SB202190 and SB203580 but not the inactive analogue SB202474 dose-dependently decreased the auditory threshold shift and outer hair cell loss induced by acoustic overexposure, suggesting the involvement of p38 MAPK in ototoxicity. We found that acoustic overexposure induced the up-regulation of Sqstm1 mRNA expression in the cochlea of wild-type mice and that SQSTM1-deficient mice exhibited an enhanced ABR threshold shift and hair cell loss, suggesting a role of SQSTM1 in the protection of tissue from acoustic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号