共查询到20条相似文献,搜索用时 0 毫秒
1.
This report presents three cases of primary intracranial germ cell tumor encountered in unusual sites, or essentially non-midline structures. The three provided the opportunity to examine surgically obtained tissues with the electron microscope. The histological diagnosis was initially made by light microscopic observations. The first case was a 10-year-old boy in whom the tumor occupied the right thalamic and basal ganglionic region and was diagnosed as a yolk sac tumor. The second an 11-year-old boy who presented with a mass lesion on the left thalamic and basal ganglionic region, diagnosed as germinoma. The third was a 39-year-old man who presented with multiple tumors in the ventricular system and posterior fossa, also diagnosed as germinoma. Among the three cases, neither diabetes insipidus nor ophthalmologic disorder was manifested. Extensive examination and autopsy findings indicated that these intracranial lesions had not metastasized from primary extracranial tumors, including those of the genital organs. 相似文献
2.
The aging brain is characterized by a demonstrable decrease in weight and volume, particularly after the age of 50. This atrophy, which affects both grey and white matter, is presumed to result from a loss of neurons and myelinated axons. Glial cells, on the other hand, appear to increase in the aging brain, which exhibits greater immunoreactivity with both astrocytic and microglial markers. This review is focused on the morphologic and phenotypic changes that occur in microglial cells with normal aging. Although there is a consistent aging-related upregulation of microglial activation markers in experimental animals and humans that could be interpreted as aging-related neuroinflammation, it is generally difficult to show a direct correlation between ostensible microglial activation and neurodegeneration. This raises questions about whether aging-related microglial activation indeed represents reactive gliosis in the conventional sense. As an alternative, we discuss the possibility that structural and phenotypic changes that occur in microglia are a direct reflection of the aging process on microglia. Thus, microglia cells themselves may be subject to cellular senescence in the sense that they no longer function efficiently. The concept of microglial senescence offers a novel perspective on aging-related neurodegeneration, namely that neurodegeneration could also occur secondary to microglial degeneration. 相似文献
3.
A case of a primary yolk sac tumor of the spinal cord is reported. The patient was a 17-month-old Japanese girl, who was
found to have an intramedullary mass at the upper thoracic level. The preoperative diagnosis was primary glioma, but histological
examination of the surgical specimen revealed a yolk sac tumor. As there were no other lesions, the spinal cord lesion was
considered to be the primary tumor. Based on our previous experience, we treated this patient with low-dose irradiation followed
by combination chemotherapy with cisplatin, vinblastine and bleomycin. However, the effectiveness of this therapy was poor
in this particular case, and the patient died of pyelonephritis with uncontrollable imbalance of serum electrolytes.
Received: 3 December 1997 Revised: 20 February 1998 相似文献
4.
The current study determined whether short durations of ischemia that produce ischemia-induced tolerance stimulate glial proliferation in brain. Adult male gerbils were injected with BrdU (50 mg/kg) and dividing cells were detected using immunocytochemistry after sham operations, 2.5 or 5 minutes of global ischemia, or ischemia-induced tolerance. The 2.5-minute ischemia and the ischemia-induced tolerance did not kill hippocampal CA1 pyramidal neurons, whereas the 5-minute ischemia did kill the neurons. At 4 days after 2.5-minute global ischemia, when cell proliferation was maximal, BrdU-labeled cells increased in striatum and in neocortex, but not in hippocampus. The majority of the BrdU-labeled cells were double-labeled with isolectin B4, showing that these dividing cells were primarily microglia or macrophages, or both. Similarly, BrdU-labeled microglia/macrophages were found in striatum and neocortex but not in hippocampus of most animals 4 days after ischemia-induced tolerance (2.5 minutes of global ischemia followed 3 days later by 5 minutes of global ischemia). No detectable neuronal cell death existed in striatal and cortical regions where the microglia/macrophage proliferation occurred. Though 3 of 7 animals subjected to 2.5 minutes of ischemia showed decreased myelin-associated glycoprotein (MAG) immunostaining and increased numbers of adenomatous polyposis coli-stained oligodendrocytes in lateral striatum, this did not explain the microglia/macrophage proliferation. Data show that ischemia-induced tolerance in the gerbil is associated with proliferation of microglia/macrophages in striatum and cortex but not in hippocampus. Because there is no apparent neuronal death, it is postulated that the microglia/macrophage proliferation occurs in response to an unknown nonlethal injury to neurons or glia and may be beneficial. 相似文献
5.
Transplantation of glial progenitor cells results in transplant-derived myelination and improved function in rodents with genetic dysmyelination or chemical demyelination. However, glial cell transplantation in adult CNS inflammatory demyelinating models has not been well studied. Here we transplanted human glial-restricted progenitor (hGRP) cells into the spinal cord of adult rats with inflammatory demyelination, and monitored cell fate in chemically immunosuppressed animals. We found that hGRPs migrate extensively, expand within inflammatory spinal cord lesions, do not form tumors, and adopt a mature glial phenotype, albeit at a low rate. Human GRP-transplanted rats, but not controls, exhibited preserved electrophysiological conduction across the spinal cord, though no differences in behavioral improvement were noted between the two groups. Although these hGRPs myelinated extensively after implantation into neonatal shiverer mouse brain, only marginal remyelination was observed in the inflammatory spinal cord demyelination model. The low rate of transplant-derived myelination in adult rat spinal cord may reflect host age, species, transplant environment/location, and/or immune suppression regime differences. We conclude that hGRPs have the capacity to myelinate dysmyelinated neonatal rodent brain and preserve conduction in the inflammatory demyelinated adult rodent spinal cord. The latter benefit is likely dependent on trophic support and suggests further exploration of potential of glial progenitors in animal models of chronic inflammatory demyelination. 相似文献
6.
Background: Most individuals with dementia live in the community, receiving care from family or lay carers. Carers’ wellbeing, and the quality of the care they provide, partly depends on their ability to derive meaning from caring for someone with dementia. Both carers’ previous relationship with their relative and the caregiving process itself contribute to this sense of meaning. However, it remains unclear why some carers derive meaning from these sources, whereas others do not. Objective: To further explore the processes by which carers derive a sense of meaning from caring. Methods: Representative case sampling was used to recruit a purposive sample of 20 carers for individuals living with dementia. In-depth semi-structured interviews were audio-recorded and transcribed, and analysed using pluralist qualitative methodology. Results: A framework of three sources from which carers derived meaning from caring was identified, encompassing: carers’ perceptions of how ‘right’ or ‘symmetrical’ caring felt in light of their current and previous relationship with the person with dementia; maintenance of a ‘protected’ sense of self within the care relationship; and carers’ perceptions of their ‘social connectedness’ outside the relationships. Conclusion: Holistic assessment based on this framework could help to tailor individualised provision of support, foster resilience and safeguard carers’ well-being. 相似文献
7.
In order to study microglial cells and microglia-derived brain macrophages in vitro, a method has been developed which allows the transfer of mitotic microglial cells from adult rat brain into tissue culture. The studies were performed on facial motor nuclei which were explanted after axotomy of the facial nerve. Outgrowing cells were identified and characterized by (i) morphological criteria using light and electron microscopy, (ii) in vivo [3H]thymidine labeling combined with subsequent in vitro autoradiography, (iii) immunocytochemistry for vimentin, GFAP, Fc and complement receptors, MHC antigens, laminin, fibronectin, factor VIII related- and 04 antigen as well as lectin histochemistry, and (iv) functional in vitro tests. In addition, a microglial cell line was established from proliferating cells. The results indicate that perineuronal microglia rather than astrocytes, perivascular cells, oligodendrocytes or endothelial cells may become phagocytic after having been activated by axotomy in situ. 相似文献
8.
A case of pineal region tumor in a 9-year-old boy with a high serum alpha fetoprotein (AFP) level is reported. The serum levels of beta-human chorionic gonadotropin (HCG) and placental alkaline phosphatase (PLAP) were not elevated. The tumor was composed of radiologically different components and was removed surgically. Postoperative radiation therapy was performed and the serum level of AFP gradually declined to the normal range. The pathological diagnosis was immature teratoma, and no elements of yolk sac tumor or embryonal carcinoma were found. In the immunohistochemical study, AFP was detected in the cytoplasm of gastrointestinal-type epithelium and primitive neuroepithelial element. This is considered a rare case of intracranial immature teratoma in which AFP was detected immunohistochemically in the columnar epithelium and immature neural tissue. 相似文献
9.
Polystyrene (PS) and chemically modified compounds in the PS family have long been used in commercial and industrial fields. However, it is poorly understood whether nanoscale-PS microplastic or PS nanoplastic exposure leads to perturbations in fundamental cellular functions, such as proliferation, differentiation, and apoptosis. Herein, we cultured three types of primary cells, including mouse embryonic fibroblasts (MEFs), mixed neuronal cells isolated from embryonic cortex, and cortical astrocytes, and investigated the effects of their exposure to PS nanoplastics with a 100 nm diameter. Although PS nanoplastic exposure did not affect the viability of MEFs or astrocytes, it significantly reduced the viability of mixed neuronal cells. Consistent with the observed effect on cellular viability, levels of the apoptosis marker, cleaved caspase-3, were elevated exclusively in mixed neuronal cells. To investigate whether cells uptake PS nanoplastics into the cytoplasm, we exposed MEFs and neurons to fluorescent PS latex beads and monitored fluorescence over time. We found that PS nanoplastics were deposited and accumulated in the cytoplasm in a concentration-dependent manner. Although astrocytes were not apoptotic upon exposure to PS nanoplastics, they underwent reactive astrocytosis, with increased levels of lipocalin-2 and proinflammatory cytokines. Therefore, our findings suggested that the vulnerability of cells to the deposition and accumulation of PS nanoplastics in the cytoplasm was dependent on cell type. Furthermore, based on our data from primary cells originating from mouse brains, we suggest that reactive astrocytosis may contribute to the neuronal apoptosis seen in defective neurons with PS nanoplastics accumulated in the cell body. 相似文献
10.
Microglia are a heterogenous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related. 相似文献
12.
Microglia cells exhibit two forms of motility, constant movement of filopodia probing surrounding brain tissue, and outgrowth of larger processes in response to nearby damage. The mechanisms and functions of filopodia sensing and process outgrowth are not well characterized but are likely critical for normal immune function in the brain. Using two photon laser scanning microscopy we investigated microglia process outgrowth in response to damage, and explored the relationship between process outgrowth and filopodia movement. Further, we examined the roles of Cl ? or K + channel activation, as well as actin polymerization in these two distinct processes, because mechanistic understanding could provide a strategy to modulate microglia function. We found that volume sensitive Cl ? channel blockers (NPPB, tamoxifen, DIDS) prevented the rapid process outgrowth of microglia observed in response to damage. In contrast, filopodia extension during sensing was resistant to Cl ? channel inhibitors, indicating that these motile processes have different cellular mechanisms. However, both filopodia sensing and rapid process outgrowth were blocked by inhibition of actin polymerization. Following lesion formation under control conditions, rapidly outgrowing processes contacted the damaged area and this was associated with a 37% decrease in lesion volume. Inhibition of process outgrowth by Cl ? channel block, prevention of actin polymerization, or by selectively ablating microglia all allowed lesion volume to increase and spread into the surrounding tissue. Therefore, process outgrowth in response to focal brain damage is beneficial by preventing lesion expansion and suggests microglia represent a front line defence against damage in the brain. © 2009 Wiley‐Liss, Inc. 相似文献
14.
Microglia are immunocompetent cells of the brain that continuously survey their environment with highly motile extensions. Although first described almost a century ago, the developmental origin of microglia is still debated. Besides early myeolomonocytic cell populations that colonize the developing neuroectoderm already during embryogenesis, newly migrated myeloid cells are considered important disease modulators in the adult brain. Thus, understanding the mechanisms of myeloid cell recruitment from the periphery and their development into bone marrow-derived phagocytes in the adult brain is pivotal for manipulating immune cell entry into the CNS and potentially reducing disease burden. A major question is whether bone marrow-derived mononuclear phagocytes have similar features and fates as their endogenous counterparts. Significant advances in our understanding of microglia biology under physiological as well as under pathological conditions have been made in the last few years, especially by combining novel gene-targeting techniques that allow cell manipulation and trafficking analysis. These new aspects will be discussed in the present review. 相似文献
17.
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity. 相似文献
19.
We previously demonstrated that IGF-1 blocks glutamate-mediated death of late oligodendrocyte progenitors (OPs) by preventing Bax translocation, mitochondrial cytochrome c release and cleavage of caspases 9 and 3. Here, we demonstrate that IGF-1 prevents caspase 3 activation in late OPs when administered up to 16 h following exposure to glutamate. Moreover, late addition of IGF-1 to OPs previously exposed to toxic levels of glutamate promotes oligodendrocyte maturation as measured by myelin basic protein expression. We also demonstrate that intraventricularly administered IGF-1 retains OPs in the perinatal white matter after hypoxia-ischemia when given after insult. These results suggest that delayed administration of IGF-1 will rescue OPs in the immature white matter and promote myelination following hypoxia-ischemia. 相似文献
20.
The goal of the present study was threefold: to determine whether viable human retinal progenitor cells (hRPCs) could be obtained from cadaveric retinal tissue, to evaluate marker expression by these cells, and to compare hRPCs to human brain progenitor cells (hBPCs). Retinas were dissected from post-mortem premature infants, enzymatically dissociated, and grown in the presence of epidermal growth factor and basic fibroblast growth factor. The cells grew as suspended spheres or adherent monolayers, depending on culture conditions. Expanded populations were banked or harvested for analysis by RT-PCR, immunocytochemistry, and flow cytometry. hBPCs derived from forebrain specimens from the same donors were grown and used for RT-PCR. Post-mortem human retinal specimens yielded viable cultures that grew to confluence repeatedly, although not beyond 3 months. Cultured hRPCs expressed a range of markers consistent with CNS progenitor cells, including nestin, vimentin, Sox2, Ki-67, GD2 ganglioside, and CD15 (Lewis X), as well as the tetraspanins CD9 and CD81, CD95 (Fas), and MHC class I antigens. No MHC class II expression was detected. hRPCs, but not hBPCs, expressed Dach1, Pax6, Six3, Six6, and recoverin. Minority subpopulations of hRPCs and hBPCs expressed doublecortin, beta-III tubulin, and glial fibrillary acidic protein, which is consistent with increased lineage restriction in subsets of cultured cells. Viable progenitor cells can be cultured from the post-mortem retina of premature infants and exhibit a gene expression profile consistent with immature neuroepithelial cells. hRPCs can be distinguished from hBPC cultures by the expression of retinal specification genes and recoverin. 相似文献
|