首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PURPOSE: To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. MATERIALS AND METHODS: The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. RESULTS: In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. CONCLUSION: Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.  相似文献   

3.
PURPOSE: To investigate a rapid flow-suppression method for improving the contrast-to-noise ratio (CNR) between the vessel wall and the lumen for cardiovascular imaging applications. MATERIALS AND METHODS: In this study a new dark-blood steady-state free precession (SSFP) sequence utilizing two excitation pulses per TR was developed. The first pulse is applied immediately adjacent to the slice of interest, while the second is a conventional slice-selective pulse designed to excite an SSFP signal for the static spins in the slice of interest. The slice-selective pulse is followed by fully refocused gradients along all three imaging axes over each TR. The signal amplitude (SA) from the moving spins excited by the "saturation" pulse is attenuated since they are not fully refocused at the TE. RESULTS: This work provides confirmation, by both simulation and experiments, that modest adaptations of the basic True-FISP structure can limit unwanted "bright blood" signal within the vessels while simultaneously preserving the contrast and speed advantages of this well-established rapid imaging method. CONCLUSION: Animal imaging trials confirm that dark-blood contrast is achieved with the BASS sequence, which substantially reverses the lumen-to-muscle CNR of a conventional True-FISP "bright blood" acquisition from 14.77 (bright blood) to -13.96 (dark blood) with a modest increase (24.2% of regular TR of SSFP for this implementation) in acquisition time to accommodate the additional slab-selective excitation pulse and gradient pulses.  相似文献   

4.
A novel technique of generating noncontrast angiograms is presented. This method, called oscillating dual-equilibrium steady-state angiography (ODESSA), utilizes a modified steady-state free precession (SSFP) pulse sequence. The SSFP sequence is modified such that flowing material reaches a steady state which oscillates between two equilibrium values, while stationary material attains a single, nonoscillatory steady state. Subtraction of adjacent echoes results in large, uniform signal from all flowing spins and zero signal from stationary spins. Venous signal can be suppressed based on its reduced T2. ODESSA arterial signal is more than three times larger than that of traditional phase-contrast angiography (PCA) in the same scan time, and also compares favorably with other techniques of MR angiography (MRA). Pulse sequences are implemented in 2D, 3D, and volumetric-projection modes. Angiograms of the lower leg, generated in as few as 5 s, show high arterial signal-to-noise ratio (SNR) and full suppression of other tissues.  相似文献   

5.
Phase contrast MRI (PC‐MRI) is an established technique for measuring blood flow velocities in vivo. Although spoiled gradient recalled echo (GRE) PC‐MRI is the most widely used pulse sequence today, balanced steady state free precession (SSFP) PC‐MRI has been shown to produce accurate velocity estimates with superior SNR efficiency. We propose a referenceless approach to flow imaging that exploits the intrinsic refocusing property of balanced SSFP, and achieves up to a 50% reduction in total scan time. With the echo time set to exactly one half of the sequence repetition time (TE = TR/2), we show that non‐flow‐related image phase tends to vary smoothly across the field‐of‐view, and can be estimated from static tissue regions to produce a phase reference for nearby voxels containing flowing blood. This approach produces accurate in vivo one‐dimensional velocity estimates in half the scan time compared with conventional balanced SSFP phase‐contrast methods. We also demonstrate the feasibility of referenceless time‐resolved 3D flow imaging (called “7D” flow) in the carotid bifurcation from just three acquisitions. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Radiofrequency (RF)‐spoiled gradient‐echo imaging provides a signal intensity close to pure T1 contrast by using spoiler gradients and RF phase cycling to eliminate net transverse magnetization. Generally, spins require many RF excitations to reach a steady‐state magnetization level; therefore, when unsaturated flowing spins enter the imaging slab, they can cause undesirable signal enhancement and generate image artifacts. These artifacts can be reduced by partially saturating an outer slab upstream to drive the longitudinal magnetization close to the steady state, while the partially saturated spins generate no signal until they enter the imaging slab. In this work, magnetization evolution of flowing spins in RF‐spoiled gradient‐echo sequences with and without partial saturation was simulated using the Bloch equations. Next, the simulations were validated by phantom and in vivo experiments. For phantom experiments, a pulsatile flow phantom was used to test partial saturation for a range of flip angles and relaxation times. For in vivo experiments, the technique was used to image the carotid arteries, abdominal aorta, and femoral arteries of normal volunteers. All experiments demonstrated that partial saturation can provide consistent T1 contrast across the slab while reducing inflow artifacts. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
The purpose of this study was the simulation and measurement of balanced steady-state free precession (bSSFP) slice profiles for a detailed analysis of the influence of off-resonance effects on slice profile shape and bSSFP signal intensity. Due to the frequency response function of the bSSFP sequence, measurements that are not on-resonance result in broadened effective slice profiles with different off-resonance-dependent shapes and signal intensities. In this study, bSSFP slice profile effects and their dependence on off-resonance were investigated based on bSSFP signal simulations of phantom data as well as blood and tissue. For a better assessment of the similarity of measured and simulated slice profiles the field map was integrated in the slice profile simulations. The results demonstrate that simulations can accurately predict bSSFP slice profiles. Both measurements and simulations indicate that there is a substantial increase in signal intensity close to the banding artifacts, i.e., at spatial locations with off-resonance frequencies corresponding to a dephasing/TR = +/- pi resulting in signal void (bands). For routine bSSFP imaging, off-resonance-dependent slice broadening may thus result in a substantial difference between nominal and true slice thickness and lead to spatially varying slice thickness and signal intensities across the imaging slice.  相似文献   

8.
Spatial misregistration of signal recovered from flowing spins within vascular structures is a common phenomenon seen in MR imaging of the CNS. The condition is displayed as a bright line or dot offset from the true anatomic location of the lumen of the imaged vessel. Its origin is the time delay between application of the phase- and frequency-encoding gradients used to locate spins within the plane of section. The principal condition necessary for the production of spatial misregistration is flow oblique to the axis of the phase-encoding gradient. Flow-related enhancement (entry slice phenomenon), even-echo rephasing, and gradient-moment nulling contribute to the production of the bright signal of spatial misregistration. Familiarity with the typical appearance of flow-dependent spatial misregistration permits confirmation of a vessel's patency; identification of the direction of flow; estimation of the velocity of flow; and differentiation of this flow artifact from atheromas, dissection, intraluminal clot, and artifacts such as chemical shift.  相似文献   

9.
Exciting multiple slices at the same time, “controlled aliasing in parallel imaging results in higher acceleration” (CAIPIRINHA) and “phase‐offset multiplanar” have shown to be very effective techniques in 2D multislice imaging. Being provided with individual rf phase cycles, the simultaneously excited slices are shifted with respect to each other in the FOV and, thus, can be easily separated. For SSFP sequences, however, similar rf phase cycles are required to maintain the steady state, impeding a straightforward application of phase‐offset multiplanar or controlled aliasing in parallel imaging results in higher acceleration. In this work, a new flexible concept for applying the two multislice imaging techniques to SSFP sequences is presented. Linear rf phase cycles are introduced providing both in one, the required shift between the slices and steady state in each slice throughout the whole measurement. Consequently, the concept is also appropriate for real‐time and magnetization prepared imaging. Steady state properties and shifted banding behavior of the new phase cycles were investigated using simulations and phantom experiments. Moreover, the concept was applied to perform whole heart myocardial perfusion SSFP imaging as well as real‐time and cine SSFP imaging with increased coverage. Showing no significant penalties in SNR or image quality, the results successfully demonstrate the general applicability of the concept. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Delay alternating with nutation for tailored excitation (DANTE) pulse trains are well appreciated as frequency‐selective excitation methods in Fourier transform NMR and for spatial tagging in MRI. In this study, nonselective DANTE pulse trains are used in combination with gradient pulses and short repetition times as motion‐sensitive preparation modules. We show that while the longitudinal magnetization of static tissue is mostly preserved, flowing spins are largely (or fully) attenuated as they fail to establish transverse steady state due to a spoiling effect caused by flow along the applied gradient. The attenuation of flowing spins is effectively insensitive to spin velocity (above a low threshold) and can be approximately quantified with a simple T1 longitudinal magnetization decay model. The relevant analytical equations for moving spins and static spins during DANTE module application are derived for both transient and steady state epochs. The equations are validated by comparing analytical solutions and numerical Bloch equation simulations against experimental observations in phantoms and in vivo. Based on this contrast mechanism, the application of the DANTE preparation to black blood vessel imaging is proposed. A simple demonstration of DANTE black blood imaging modules shows that it provides excellent blood signal suppression and static tissue signal preservation. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Balanced steady-state free precession (SSFP) imaging is sensitive to off-resonance effects, which can lead to considerable artifacts during a transient phase following magnetization preparation or steady-state interruption. In addition, nonlinear k-space encoding is required if contrast-relevant k-space regions need to be acquired at specific delays following magnetization preparation or for transient artifact reduction in cardiac-gated k-space segmented CINE imaging. Such trajectories are problematic for balanced SSFP imaging due to nonconstant eddy current effects and resulting disruption of the steady state.In this work, a novel acquisition strategy for balanced SSFP imaging is presented that utilizes scan time reduction by parallel imaging for optimized "double average" eddy current compensation and artifact reduction during the transient phase following steady-state storage and magnetization preparation. Double average parallel SSFP imaging was applied to k-space segmented CINE SSFP tagging as well as nongated centrically encoded SSFP imaging. Phantom and human studies exhibit substantial reduction in steady-state storage and eddy current artifacts while maintaining spatial resolution, signal-to-noise ratio, and similar total scan time of a standard SSFP acquisition. The proposed technique can easily be extended to other acquisition schemes that would benefit from nonlinear reordering schemes and/or rely on interruption of the balanced SSFP steady state.  相似文献   

12.
Steady state free precession (SSFP) signal theory is commonly derived in the limit of quasi-instantaneous radiofrequency (RF) excitation. SSFP imaging protocols, however, are frequently set up with minimal pulse repetition times and RF pulses can thus constitute a considerable amount to the actual pulse repetition time. As a result, finite RF pulse effects can lead to 10-20% signal deviation from common SSFP theory in the transient and in the steady state which may impair the accuracy of SSFP-based quantitative imaging techniques. In this article, a new and generic approach for intrinsic compensation of finite RF pulse effects is introduced. Compensation is based on balancing relaxation effects during finite RF excitation, similar to flow or motion compensation of gradient moments. RF pulse balancing, in addition to the refocusing of gradient moments with balanced SSFP, results in a superbalanced SSFP sequence free of finite RF pulse effects in the transient and in the steady state; irrespective of the RF pulse duration, flip angles, relaxation times, or off-resonances. Superbalancing of SSFP sequences can be used with all quantitative SSFP techniques where finite RF pulse effects are expected or where elongated RF pulses are used.  相似文献   

13.
Small‐tip fast recovery (STFR) imaging is a new steady‐state imaging sequence that is a potential alternative to balanced steady‐state free precession. Under ideal imaging conditions, STFR may provide comparable signal‐to‐noise ratio and image contrast as balanced steady‐state free precession, but without signal variations due to resonance offset. STFR relies on a tailored “tip‐up,” or “fast recovery,” radiofrequency pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip‐up pulse is based on the acquisition of a separate off‐resonance (B0) map. Unfortunately, the design of fast (a few ms) slice‐ or slab‐selective radiofrequency pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on “non‐slice‐selective” tip‐up pulses, which simplifies the radiofrequency pulse design problem significantly. Out‐of‐slice magnetization pathways are suppressed using radiofrequency‐spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady‐state T2/T1‐weighted imaging with intrinsic suppression of cerebrospinal fluid, through‐plane vessel signal, and off‐resonance artifacts. In the future, we expect STFR imaging to benefit significantly from parallel excitation hardware and high‐order gradient shim systems. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.  相似文献   

15.
Spatial misregistration of signal recovered from flowing spins within vascular structures is a common phenomenon seen in MR imaging of the CNS. The condition is displayed as a bright line or dot offset from the true anatomic location of the lumen of the imaged vessel. Its origin is the time delay between application of the phase- and frequency-encoding gradients used to locate spins within the plane of section. The principal condition necessary for the production of spatial misregistration is flow oblique to the axis of the phase-encoding gradient. Flow-related enhancement (entry slice phenomenon), even-echo rephasing, and gradient-moment nulling contribute to the production of the bright signal of spatial misregistration. Familiarity with the typical appearance of flow-dependent spatial misregistration permits confirmation of a vessel's patency; identification of the direction of flow; estimation of the velocity of flow; and differentiation of this flow artifact from atheromas, dissection, intraluminal clot, and artifacts such as chemical shift.  相似文献   

16.
In a magnetic resonance imaging system, an RF power amplifier is employed to boost an RF pulse to sufficient strength to excite the nuclear spins in a subject. The nonideal behavior of this amplifier distorts a selective-excitation pulse, and this distortion in turn degrades the slice profile. We have found two types of nonideal behavior particularly troublesome: nonlinearity and incidental phase modulation. One of their effects is the introduction of an unwanted "skirt" in the out-of-slice region of a slice profile. We present an effective method of correction in which a selective-excitation pulse is prewarped to compensate for the distortion.  相似文献   

17.
Balanced steady state free precession (balanced SSFP) has become increasingly popular for research and clinical applications, offering a very high signal‐to‐noise ratio and a T2/T1‐weighted image contrast. This review article gives an overview on the basic principles of this fast imaging technique as well as possibilities for contrast modification. The first part focuses on the fundamental principles of balanced SSFP signal formation in the transient phase and in the steady state. In the second part, balanced SSFP imaging, contrast, and basic mechanisms for contrast modification are revisited and contemporary clinical applications are discussed. J. Magn. Reson. Imaging 2013;38:2–11. © 2013 Wiley Periodicals, Inc.  相似文献   

18.

Purpose

To investigate blood inflow enhancement (or lack thereof) in three‐dimensional (3D) cardiovascular MR for both single phase whole‐heart and cine biventricular functions.

Materials and Methods

A 3D imaging sequence is proposed in which radiofrequency excitation gradient is changed without modifying image acquisition or phase/slice encoding. This imaging sequence enables direct inflow measurement while retaining static voxel signal‐to‐noise ratio. Inflow measurements were performed for both spoiled gradient‐echo (GRE) imaging and balanced steady‐state free precession (SSFP) in 18 healthy subjects.

Results

For single phase imaging, increasing slab thickness from 3 to 10 cm lead to 73% and 59% reductions in contrast‐to‐noise ratio (CNR) with GRE and SSFP, respectively. For cine acquisitions, systolic CNR was reduced by 85% and 50% for the GRE and SSFP acquisitions, respectively, while diastolic CNR was reduced by 64% and 42%.

Conclusion

There is significant loss of CNR between blood and myocardium when using larger 3D slabs due to saturation of inflowing spins. The loss of contrast is less pronounced for SSFP than for GRE, though both acquisition techniques suffer. J. Magn. Reson. Imaging 2008;28:1273–1279. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
A technique for measuring velocity is presented that combines cine phase contrast (PC) MRI and balanced steady-state free precession (SSFP) imaging, and is thus termed PC-SSFP. Flow encoding was performed without the introduction of additional velocity encoding gradients in order to keep the repetition time (TR) as short as in typical SSFP imaging sequences. Sensitivity to through-plane velocities was instead established by inverting (i.e., negating) all gradients along the slice-select direction. Velocity sensitivity (VENC) could be adjusted by altering the first moments of the slice-select gradients. Disturbances of the SSFP steady state were avoided by acquiring different flow echoes in consecutively (i.e., sequentially) executed scans, each over several cardiac cycles, using separate steady-state preparation periods. A comparison of phantom measurements with those from established 2D-cine-PC MRI demonstrated excellent correlation between both modalities. In examinations of volunteers, PC-SSFP exhibited a higher intrinsic signal-to-noise ratio (SNR) and consequently low phase noise in measured velocities compared to conventional PC scans. An additional benefit of PC-SSFP is that it relies less on in-flow-dependent signal enhancement, and thus yields more uniform SNRs and better depictions of vessel geometry throughout the whole cardiac cycle in structures with slow and/or pulsatile flow.  相似文献   

20.
Previous studies have applied balanced steady-state free precession (bSSFP) to functional brain imaging. Methods that exploit the strong frequency dependence of the MR signal in the bSSFP transition band are strongly affected by field inhomogeneity and frequency drifts. Recent bSSFP studies using "on-resonance" (in the bSSFP passband) acquisition claimed that higher sensitivity was achieved compared to traditional fMRI methods. However, the contrast mechanism that generates activation-related signal changes in bSSFP imaging is not yet fully understood. We performed a systematic study of on-resonance bSSFP signal behavior using a multiecho balanced SSFP sequence with different TRs at 3 Tesla. We conclude that intravoxel dephasing, or the off-resonance averaged steady state, dominates the bSSFP signal decay and determines the bSSFP fMRI contrast. Experimental findings were confirmed by simulations based on existing theories for signal formation around blood vessels in inhomogeneous tissues. The activation-induced signal change in on-resonance bSSFP increases with TE, and the TE dependence of the contrast-to-noise ratio (CNR) in bSSFP is similar to that in gradient echo-planar imaging (GE-EPI). However, GE-EPI has a significantly higher CNR efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号