首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国神经再生研究》2016,(12):1869-1883
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans.At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.  相似文献   

2.
Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models.  相似文献   

3.
4.
Excitatory amino acids such as glutamate play important roles in the central nervous system. We previously demonstrated that a neurosteroid, dehydroepiandrosterone (DHEA), has powerful effects on the cell proliferation of human neural progenitor cells (hNPC) derived from the fetal cortex, and this effect is modulated through NMDA receptor signaling. Here, we show that glutamate can significantly increase the proliferation rates of hNPC. The increased proliferation could be blocked by specific NMDA receptor antagonists, but not other glutamate antagonists for kainate-AMPA or metabotropic receptors. The NR1 subunit of the NMDA receptor was detectable in elongated bipolar or unipolar cells with small cell bodies. These NR1-positive cells were colocalized with GFAP immunoreactivity. Detection of the phosphorylation of cAMP response element-binding protein (pCREB) revealed that a subset of NR1-positive hNPC could respond to glutamate. Furthermore, we hypothesized that glutamate treatment may affect mainly the hNPC with a radial morphology and found that glutamate as well as DHEA selectively affected elongated hNPC; these elongated cells may be a type of radial glial cell. Finally we asked whether the glutamate-responsive hNPC had an increased potential for neurogenesis and found that glutamate-treated hNPC produced significantly more neurons following differentiation. Together these data suggest that glutamate stimulates the division of human progenitor cells with neurogenic potential.  相似文献   

5.
M. Paradisi, M. Fernández, G. Del Vecchio, G. Lizzo, G. Marucci, M. Giulioni, E. Pozzati, T. Antonelli, G. Lanzoni, G. P. Bagnara, L. Giardino and L. Calzà (2010) Neuropathology and Applied Neurobiology 36, 535–550
Ex vivo study of dentate gyrus neurogenesis in human pharmacoresistant temporal lobe epilepsy Aims: Neurogenesis in adult humans occurs in at least two areas of the brain, the subventricular zone of the telencephalon and the subgranular layer of the dentate gyrus in the hippocampal formation. We studied dentate gyrus subgranular layer neurogenesis in patients subjected to tailored antero‐mesial temporal resection including amygdalohippocampectomy due to pharmacoresistant temporal lobe epilepsy (TLE) using the in vitro neurosphere assay. Methods: Sixteen patients were enrolled in the study; mesial temporal sclerosis (MTS) was present in eight patients. Neurogenesis was investigated by ex vivo neurosphere expansion in the presence of mitogens (epidermal growth factor + basic fibroblast growth factor) and spontaneous differentiation after mitogen withdrawal. Growth factor synthesis was investigated by qRT‐PCR in neurospheres. Results: We demonstrate that in vitro proliferation of cells derived from dentate gyrus of TLE patients is dependent on disease duration. Moreover, the presence of MTS impairs proliferation. As long as in vitro proliferation occurs, neurogenesis is maintained, and cells expressing a mature neurone phenotype (TuJ1, MAP2, GAD) are spontaneously formed after mitogen withdrawal. Finally, formed neurospheres express mRNAs encoding for growth (vascular endothelial growth factor) as well as neurotrophic factors (brain‐derived neurotrophic factor, ciliary neurotrophic factor, glial‐derived neurotrophic factor, nerve growth factor). Conclusion: We demonstrated that residual neurogenesis in the subgranular layer of the dentate gyrus in TLE is dependent on diseases duration and absent in MTS.  相似文献   

6.
背景:研究发现人羊膜上皮细胞具有类似胚胎干细胞或多能干细胞的多向分化潜能,说明其可能是未来组织工程重建的一种新型种子细胞。 目的:研究体外培养的人羊膜上皮细胞的干细胞特性。 方法:取足月剖宫产的人羊膜组织,经酶消化法和差异黏附法获得纯度高的人羊膜上皮细胞,接种于含体积分数为10%胎牛血清的DMEM/F12培养基中进行原代和传代培养,用免疫荧光法和流式细胞仪检测法检测人羊膜上皮细胞表面胚胎干细胞的表面标记蛋白OCT-4和干细胞表面分子标记CD29、CD34、CD44、CD45、CD105的表达。 结果与结论:人羊膜上皮细胞在体外培养条件下呈上皮细胞特有的铺路石样外观,其胞浆中有OCT-4免疫荧光表达,其干细胞标记分子CD29、CD34的表达是阳性,但干细胞标记分子CD44、CD45、CD105的表达为阴性。结果表明人羊膜上皮细胞具有干细胞的某些特性,其可能是未来组织工程重建的一种新型种子细胞。  相似文献   

7.
8.
Hippocampal neurogenesis declines substantially in chronic temporal lobe epilepsy (TLE). However, it is unclear whether this decline is linked to altered production of new cells and/or diminished survival and neuronal fate‐choice decision of newly born cells. We quantified different components of hippocampal neurogenesis in rats exhibiting chronic TLE. Through intraperitoneal administration of 5′‐bromodeoxyuridine (BrdU) for 12 days, we measured numbers of newly born cells in the subgranular zone‐granule cell layer (SGZ‐GCL) at 24 h and 2.5 months post‐BrdU administration. Furthermore, the differentiation of newly added cells into neurons and glia was quantified via dual immunofluorescence for BrdU and various markers of neurons and glia. Addition of new cells to the SGZ‐GCL over 12 days was comparable between the chronically epileptic hippocampus and the age‐matched intact hippocampus. Furthermore, comparison of BrdU+ cells measured at 24 h and 2.5 months post‐BrdU administration revealed similar survival of newly born cells between the two groups. However, only 4–5% of newly born cells (i.e., BrdU+ cells) differentiated into neurons in the chronically epileptic hippocampus, in comparison to 73–80% of such cells exhibiting neuronal differentiation in the intact hippocampus. Moreover, differentiation of newly born cells into S‐100β+ astrocytes or NG2+ oligodendrocyte progenitors increased to ∼79% in the chronically epileptic hippocampus from ∼25% observed in the intact hippocampus. Interestingly, the extent of proliferation of astrocytes and microglia (identified through Ki‐67 and S‐100β and Ki‐67 and OX‐42 dual immunofluorescence) in the SGZ‐GCL was similar between the chronically epileptic hippocampus and the age‐matched intact hippocampus, implying that the proliferation of neural stem/progenitor cells in the SGZ‐GCL of the chronically epileptic hippocampus was not obscured by an increased division of glia. Thus, severely diminished DG neurogenesis in chronic TLE is not associated with either decreased production of new cells or reduced survival of newly born cells in the SGZ‐GCL. Rather, it is linked to a dramatic decline in the neuronal fate‐choice decision of newly generated cells. Overall, the differentiation of newly born cells turns mainly into glia with chronic TLE from predominantly neuronal differentiation seen in control conditions. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The use of human induced pluripotent stem cells (hiPSCs) eliminates the ethical issues associated with fetal or embryonic materials, thus allowing progress in cell therapy research for ischemic stroke. Strict regulation of cell therapy development requires the xeno‐free condition to eliminate clinical complications. Maintenance of hiPSCs with feeder‐free condition presents a higher degree of spontaneous differentiation in comparison with conventional cultures. Therefore, feeder‐free derivation might be not ideal for developing transplantable hiPSC derivatives. We developed the feeder‐free condition for differentiation of cortical neurons from hiPSCs. Then, we evaluated the cells' characteristics upon transplantation into the sham and focal brain ischemia on adult male Wistar rats. Grafts in lesioned brains demonstrated polarized reactivity toward the ischemic border, indicated by directional preferences in axonal outgrowth and cellular migration, with no influence on graft survival. Following the transplantation, forelimb asymmetry was better restored compared with controls. Herein, we provide evidence to support the use of the xeno‐free condition for the development of cell therapy for ischemic stroke.  相似文献   

10.
Hippocampus has attracted the attention of the neuroscientists for its involvement in a wide spectrum of higher-order brain functions and pathological conditions, especially its persistent neurogenesis in subgranular zone (SGZ). The development of hippocampus was intensively investigated on animals such as rodents. However, in prenatal human hippocampus, little information on the distribution of neural stem/progenitor cells, newly generated neurons and mature neurons is available and the timetable of a series of neurogenesis event is even more obscure. So in the present study, we aim at immunohistochemically providing more information on neurogenesis in prenatal human hippocampus from 9 weeks to 32 weeks of gestation. We found that the ki67-positive cells were always detected in hippocampus from 9 weeks to 32 weeks, with a peak at 9 weeks in cornu ammonis (CA) or 14 weeks in dentate gyrus (DG). At 9 weeks the nestin-expressing cells were distributed throughout the hippocampus, with concentrated immunoreactivity in intermediate zone (IZ), marginal zone (MZ), fimbria, and relatively sparse immunoreactivity in the ventricular zone (VZ) and hippocampal plate (HP). With development, the optical density (OD) and the number of nestin-positive cells decreased gradually. At 32 weeks, there were relatively more nestin-positive cells in DG than that in CA. About DCX-positive cells, they displayed a similar distribution as nestin-positive cells (immunoreactivity concentrated in IZ, MZ, fimbria and HP) and a dramatic decrease of OD or cell number density from 9 weeks on. NeuN-positive cells, with small nuclei, were firstly found in MZ and subplate of hippocampus at 9 weeks. After 14 weeks, many NeuN-positive cells extended from subplate into HP and the density of NeuN-positive cells peaked at 22 weeks. That the immunoreactivity for NeuN was the strongest and the nuclei were the biggest at 32 weeks suggests that the neurons reach maturity gradually. Therefore this study provides an important timetable of neurogenesis in prenatal human hippocampus for the clinicians in neuroscience or pediatrics.  相似文献   

11.
Oligodendrocytes (OLs) show heterogeneous properties that depend on their location in the central nervous system (CNS). In this regard, the investigation of oligodendrocyte precursor cells (OPCs) derived from human pluripotent stem cells (hPSCs) should be reconsidered, particularly in cases of brain-predominant disorders for which brain-derived OPCs are more appropriate than spinal cord-derived OPCs. Furthermore, animal-derived components are responsible for culture variability in the derivation and complicate clinical translation. In the present study, we established a xeno-free system to induce forebrain OPCs from hPSCs. We induced human forebrain neural stem cells (NSCs) on Laminin 511-E8 and directed the differentiation to the developmental pathway for forebrain OLs with SHH and FGF signaling. OPCs were characterized by the expression of OLIG2, NKX2.2, SOX10, and PDGFRA, and subsequent maturation into O4+ cells. In vitro characterization showed that >85% of the forebrain OPCs (O4+) underwent maturation into OLs (MBP+) 3 weeks after mitogen removal. Upon intracranial transplantation, the OPCs survived, dispersed in the corpus callosum, and matured into (GSTπ+) OLs in the host brains 3 months after transplantation. These findings suggest our xeno-free induction of forebrain OPCs from hPSCs could accelerate clinical translation for brain-specific disorders.  相似文献   

12.
The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.  相似文献   

13.
Monoclonal antibodies were used in indirect immunofluorescence and immunoblot studies to examine the expression of four different classes of intermediate filaments, namely, neurofilaments, glial filaments, cytokeratin, and vimentin, in NTERA-2 cl.D1 (NT2/D1) pluripotent human embryonal carcinoma (EC) cells, and in the neurons derived from these cells by differentiation induced with retinoic acid. In the EC cell cultures, grown in the absence of retinoic acid, cytokeratin was the predominant intermediate filament detected by immunofluorescence; only a few cells expressed vimentin, and none expressed glial filament protein or any of the three neurofilament proteins (NF195, NF170, and NF70). Immunoblot analyses of cytoskeletal extracts of these cells supported these data. Two days after exposure to retinoic acid, all three neurofilament subunits were detected in a few cells with a non-neuronal morphology and, by double indirect immunofluorescence, were observed to colocalize with cytokeratin. The number of neurofilament-positive cells increased with time after initial exposure to retinoic acid, and although 95% of these cells contained cytokeratin initially, less than 5% of the neurofilament-positive cells retained cytokeratin 2 weeks later. By this time, many of the cells expressing all three neurofilaments but no cytokeratin exhibited a neuronal morphology. Vimentin was evident in a large number of cells in the cultures, but it was not detected in the neurofilament-positive cells. Also, many of the neurofilament-negative cells continued to express cytokeratin. No cells expressing glial filament proteins were found. Immunoblot analysis of the differentiated cultures also revealed all three neurofilament subunits, and vimentin and cytokeratin, but no glial filament protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle‐aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle‐aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1‐CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4–15 using 5′‐bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (~three fold increase) in the deafferented young and middle‐aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU‐DCX dual immunofluorescence demonstrated no changes in neuronal fate‐choice decision of newly born cells after deafferentation, in comparison to the age‐matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Neural stem cells (NSCs) give rise to neurons during development. NSCs persist and neurogenesis continues in restricted regions of postnatal and adult brains. Adult‐born neurons integrate into existing neural circuits by synaptic connections and participate in the regulation of brain function. Thus, understanding NSCs and neurogenesis may be crucial in the development of new strategies for brain repair. Here, we introduce the lineage of NSCs from embryonic to adult stages and summarize recent studies on maturation and integration of adult‐born neurons. We also discuss the regulation and potential functions of adult neurogenesis in physiological and pathological conditions.  相似文献   

17.
BACKGROUND: Burnout is generally recognized as a work-related stress-induced condition associated with memory problems, fatigue, a sense of inadequacy, and depressed mood. Neurogenesis, the formation of new neurons in the human adult brain, provides a newly discovered dimension of brain plasticity. OBJECTIVES: In a novel theory, we propose that the failure of adult hippocampal neurogenesis may provide the biological and cellular basis for altered brain plasticity in stress-related syndromes like burnout. METHODS: A number of recent animal studies have shown that the rate of neurogenesis in the adult hippocampus may provide an important neurobiological correlate to the symptoms of stress. RESULTS: As of yet, the normal physiological function of new neurons in the adult hippocampus remains unresolved although a number of studies and reviews indicate the importance of neurogenesis for memory and learning. CONCLUSION: In line with this hypothesis, we propose burnout to be an exponent of stress-mediated decrease in adult neurogenesis leading to a decreased ability to cope with stress through decreased hippocampal function possibly involving a disturbed hippocampal regulation of the hypothalamo-pituitary-adrenal axis (HPA axis).  相似文献   

18.
19.
There has been recent interest in the possibility that impaired neurogenesis may contribute to the decline in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). We have investigated the effects of commonly used treatments for PD on neural stem cell (NSC) activity in nondemented patients. Postmortem of brain tissue containing the subventricular zone (SVZ) and ependymal layer cells was obtained from 32 nondemented patients with PD. NSC activity was assessed by immunohistochemical staining for RNA‐binding protein Musashi1. Regression analyses were then used to identify which clinical factors independently influenced NSC activity. Disease duration was negatively associated with SVZ Musashi1 staining, whereas lifetime levodopa was positively associated in this region. Our findings suggest a positive impact of chronic L ‐dopa use on the number of NSC in the SVZ of PD patients, which may have relevance for future studies on neuroprotection in neurodegenerative diseases. © 2010 Movement Disorder Society.  相似文献   

20.
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian hippocampus. The distinct developmental steps in the course of adult neurogenesis, including NSC activation, expansion, and neuronal integration, are increasingly well characterized down to the molecular level. However, substantial gaps remain in our knowledge about regulators and mechanisms involved in this biological process. This review highlights three long-standing unknowns. First, we discuss potency and identity of NSCs and the quest for a unifying model of short- and long-term self-renewal dynamics. Next, we examine cell death, specifically focusing on the early demise of newborn cells. Then, we outline the current knowledge on cell integration dynamics, discussing which (if any) neurons are replaced by newly added neurons in the hippocampal circuits. For each of these unknowns, we summarize the trajectory of studies leading to the current state of knowledge. Finally, we offer suggestions on how to fill the remaining gaps by taking advantage of novel technology to reveal currently hidden secrets in the course of adult hippocampal neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号