首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To search for additional amplification and deletion sites that may serve as a starting point for the discovery of new oncogenes or tumor suppressor genes, 30 Japanese localized prostate cancers were analyzed by comparative genomic hybridization (CGH) in this study. CGH was used to search for changes in DNA sequence copy-number in a series of 30 primary prostate adenocarcinomas, consisting of 22 cases of pT2N0 (organ confined; without capsular invasion) and 8 cases of pT3N0 (with capsular invasion), removed by radical prostatectomy. CGH revealed that the shortest regions of overlap (SRO) of gains in pT2N0 were at 8q22.2 approximately q24.2, 11q13.1 approximately q14.1, and 12q23 approximately q24.2, whereas the SRO of losses were seen at 8p23.3 approximately p22, 13q21.2 approximately p22, and 18q21 approximately q22. The SRO of gains in pT3N0 were noted at 5q32 approximately q34, 8q22.3 approximately q24.1, 11q14.1 approximately q22.3, and 12q22 approximately q24.2, whereas the SRO of losses were seen at 18q21.2 approximately q23. These results suggest that gains or losses of DNA in these regions are important for prostate cancer progression. The detection of the SRO may serve as a starting point to discover novel oncogenes and tumor suppressor genes involved in prostate cancer progression.  相似文献   

2.
Chromosomal regions involved in the pathogenesis of osteosarcomas   总被引:6,自引:0,他引:6  
The comparative genomic hybridization technique (CGH) was used to identify common chromosomal imbalances in osteosarcomas (OS), which frequently display complex karyotypic changes. We analyzed 13 high-grade primary tumors, 5 corresponding cell lines, 2 primary tumors grade 2, and 1 recurrent tumor from a total of 16 patients. Some of the CGH results have been verified by fluorescence in situ hybridization (FISH) studies. Gains of chromosomal material were more frequent than losses. Most common gains were observed at 8q (11 cases), 4q (9 cases), 7q (8 cases), 5p (7 cases), and 1p (8 cases). The smallest regions of overlap have been narrowed down to 8q23 (10 cases), 4q12-13 (8 cases), 5p13-14 (7 cases), 7q31-32 (7 cases), 8q21 (7 cases), and 4q28-31 (5 cases). These data demonstrate that a number of chromosomal regions and even two distinct loci on 4q and 8q are involved in the pathogenesis of OS, with gain of 4q12-13 chromosomal material representing a newly identified locus. Seven of 16 cases displayed, besides gain of 8q23 sequences, gain of MYC copies in CGH and FISH. Previous CGH reports confined gain of 8q material to 8cen-q13, 8q21.3-8q22, and 8q23-qter, whereas our data suggest that the loci 8q21 and 8q23-24 are affected in the development of OS. In contrast to recent reports, copy number increases at 8q and 1q21 did not have an unfavorable impact on prognosis in the present series. Genes Chromosomes Cancer 28:329-336, 2000.  相似文献   

3.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

4.
Osteosarcoma (OS) is a highly malignant bone neoplasm of children and young adults. It is characterized by chaotic karyotypes with complex marker chromosomes. We applied a combination of molecular cytogenetic techniques including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH) to decipher the chromosomal complexity in a panel of 25 tumors. Combined SKY and G-banding analysis identified several novel recurrent breakpoint clusters and 9 nonrecurrent reciprocal translocations. CGH identified several recurrent chromosomal losses including 2q, 3p, 9, 10p, 12q, 13q, 14q, 15q, 16, 17p, and 18q, gains including Xp, Xq, 5q, 6p, 8q, 17p, and 20q, and high-level chromosomal amplifications at Xp11.2, 1q21-q22, 4p11, 4q12, 5p15, 6p12.1, 8q13, 8q23, 10q11, 10q22, 11q13, 11q23, 12q13-q14, 13q21-q34, 16q22, 17p11.2, 17q21-q22, 18q22, 20p11.2, and 20q12. Frequent amplification and rearrangement involving chromosomal bands at 6p12-p21 and 17p11.2 were found in 28% and 32% of cases, respectively. In an attempt to identify the genes involved in these amplicons, we used three nonoverlapping BAC clones contained within each amplicon as probes for FISH analysis, leading to a more detailed characterization and quantification of the 6p and 17p amplicons.  相似文献   

5.
We screened 26 ependymomas in 22 patients (7 WHO grade I, myxopapillary, myE; 6 WHO grade II, E; 13 WHO grade III, anaplastic, aE) using comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). 25 out of 26 tumors showed chromosomal imbalances on CGH analysis. The chromosomal region most frequently affected by losses of genomic material clustered on 13q (9/26). 6/7 myE showed a loss on 13q14-q31. Other chromosomes affected by genomic losses were 6q (5/26), 4q (5/26), 10 (5/26), and 2q (4/26). The most consistent chromosomal abnormality in ependymomas so far reported, is monosomy 22 or structural abnormality 22q, identified in approximately one third of Giemsa-banded cases with abnormal karyotypes. Using FISH, loss or monosomy 22q was detected in small subpopulations of tumor cells in 36% of cases. The most frequent gains involved chromosome arms 17 (8/26), 9q (7/26), 20q (7/26), and 22q (6/26). Gains on 1q were found exclusively in pediatric ependymomas (5/10). Using FISH, MYCN proto-oncogene DNA amplifications mapped to 2p23-p24 were found in 2 spinal ependymomas of adults. On average, myE demonstrated 9.14, E 5.33, and aE 1.77 gains and/or losses on different chromosomes per tumor using CGH. Thus, and quite paradoxically, in ependymomas, a high frequency of imbalanced chromosomal regions as revealed by CGH does not indicate a high WHO grade of the tumor but is more frequent in grade I tumors.  相似文献   

6.
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10–31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21q24, 1q25q31, 7p21, 7q31, 8q23q24, and 14q21; frequent losses were at 18q21q22, 18q12, 19p, and 3p12p14. High-level gains were observed on 8q23q24, 5p, and 1p21p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3;17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes.  相似文献   

7.
We used comparative genomic hybridization (CGH) and conventional cytogenetics (CC) to define chromosomal changes and to evaluate the usefulness of CGH in 65 patients having childhood acute lymphoblastic leukemia (ALL). Subsequently, fluorescence in situ hybridization (FISH) was used to evaluate the CGH and cytogenetic results. Comparative genomic hybridization revealed DNA copy number changes in 49 (75%) patients (including 7 patients with unsuccessful cytogenetics and 2 patients with normal karyotype). A total of 85 losses and 195 gains were detected. The most commonly gained chromosomes were 21 (35%), X (31%), 18 (27%), 10 (26%), 6 (25%), 17 (25%), 4 (23%), and 14 (22%). Losses were most frequently observed on chromosomes 9p (18%) and 12p (11%). Other losses were detected on chromosomes 13q (9%), 6q (9%), 7p (8%), and chromosome X (6%). Conventional cytogenetics revealed chromosomal changes in 53 (82%) patients. The employment of CGH and FISH together with CC analysis revealed chromosomal changes in 62 (95%) of the childhood ALL patients investigated. The CGH completed CC results in 36 patients; in 9 patients, the changes escaped detection without using CGH. The results of our study were compared to 6 other CGH studies previously reported. Our observations underline the benefits of supplementing routine cytogenetic investigation in childhood ALL by FISH and CGH, because small unbalanced changes may escape detection when conventional cytogenetics is the only diagnostic method used.  相似文献   

8.
Nasopharyngeal carcinoma (NPC) cell lines and xenografts represent valuable models for functional and therapeutic studies on this common malignancy in Southeast Asia. The karyotypic information in most NPC cell lines and xenografts, however, remains largely unclear to date. We have characterized the chromosomal aberrations in six commonly used human NPC cell lines and xenografts using the molecular cytogenetic technique of comparative genomic hybridization (CGH). Genomic imbalances identified in cell lines were further correlated with structural abnormalities indicated from spectral karyotyping (SKY) analysis. CGH revealed consistent overrepresentations of 8q (six out of six cases) with a smallest overlapping region identified on 8q21.1q22. Other common gains included 7p (4/6 cases), 7q (4/6 cases), 12q (4/6), and 20q (4/6 cases), where minimal overlapping regions were suggested on 7p15p14, 7q11.2q21, and 12q22q24.1. Common losses were detected on 3p12p21 (4/6 cases) and 11q14qter (4/6 cases). Although SKY analysis on cell lines revealed predominantly unbalanced rearrangements, reciprocal translocations that involved chromosome 2 [i.e., t(1;2), t(2;3), and t(2;4)] were suggested. Furthermore, SKY examination illustrated additional breakpoints on a number of apparently balanced chromosomes. These breakpoints included 3p21, 3q26, 5q31, 6p21.1p25, 7p14p22, and 8q22. Our finding of regional gains and losses and breakpoints represents information that may contribute to NPC studies in vitro.  相似文献   

9.
Pancreatic acinar cell carcinoma (PAC) is a rare pancreatic tumor for which no information about chromosomal anomalies is available. We examined six primary PACs by comparative genomic hybridization (CGH). All cases showed chromosomal changes. A total of 106 gains and 48 losses was detected. Consensus regions of gain were identified on chromosomes 1, 12, and X: 1q21 in four cases, 1q42 in three cases, 12p11.2 in four cases, and Xq12-21 in three cases. Recurrent losses were found at 16p13.2-p13.1 in three cases and at 16q23 in three cases. To verify these chromosomal imbalances, microsatellite analysis of matched normal and tumor DNA was performed using PCR-amplified markers for chromosomes 1, 12, and 16 in the regions showing nonrandom gains or losses. This analysis showed allelic imbalances in tumor DNA consistent with the CGH profiles. Our CGH study suggests that PAC shows a characteristic pattern of chromosomal alterations, involving gain at 1q, 12p, and Xq and loss of sequences at 16p and 16q. This pattern appears unique among solid tumors and is markedly different from that detected in pancreatic ductal carcinomas by the same technique. This suggests that PAC tumorigenesis involves different molecular pathways than those involved in the more common pancreatic ductal tumors. Genes Chromosomes Cancer 28:294-299, 2000.  相似文献   

10.

Purpose

A larynx squamous cell carcinoma (LSCC) is one of the most common forms of cancer and may exhibit various complex karyotypes.

Materials and Methods

We used comparative genomic hybridization (CGH) to analyze DNA gains and losses in 15 squamous cell carcinomas that consisted of 4 glottic, 10 supraglottic, and 1 transglottic localization samples.

Results

The majority of the chromosomal alterations detected were gains: 3 samples of LSCCs revealed high level amplification, while 6 samples displayed gains in various chromosomal regions (17p, 3p, 4p, 5p, 6q, 8p, 9p, 14q, 18p and Xq). One sample was found to have losses (chromosomes 15q and 22q) and 5 had normal CGH profiles.

Conclusion

Many of these gained regions (4p, 5p, 8p, 10q, 18q and Xq) were novel sites, which may harbor oncogene(s) that potentially play an important role in squamous cell tumorigenesis and progression at supraglottic localizations.  相似文献   

11.
We applied a combination of molecular cytogenetic methods, including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in eight widely used cervical cancer (CC) cell lines. CGH identified the most frequent chromosomal losses including 2q, 3p, 4q, 6q, 8p, 9p, 10p, 13q, and 18q; gains including 3q, 5p, 5q, 8q, 9q, 11q, 14q, 16q, 17q, and 20q; and high-level chromosomal amplification at 3q21, 7p11, 8q23-q24, 10q21, 11q13, 16q23-q24, 20q11.2, and 20q13. Several recurrent structural chromosomal rearrangements, including der(5)t(5;8)(p13;q23) and i(5)(p10); deletions affecting chromosome bands 5p11, 5q11, and 11q23; and breakpoint clusters at 2q31, 3p10, 3q25, 5p13, 5q11, 7q11.2, 7q22, 8p11.2, 8q11.2, 10p11.2, 11p11.2, 14q10, 15q10, 18q21, and 22q11.2 were identified by SKY. We detected integration of HPV16 sequences by FISH on the derivative chromosomes involving bands 18p10 and 18p11 in cell line C-4I, 2p16, 5q21, 5q23, 6q, 8q24, 10, 11p11, 15q, and 18p11 in Ca Ski, and normal chromosome 17 at 17p13 in ME-180. FISH analysis was also used further to determine the copy number changes of PIKA3CA and MYC. This comprehensive cytogenetic characterization of eight CC cell lines enhances their utility in experimental studies aimed at gene discovery and functional analysis.  相似文献   

12.
Only limited data are available on comparative genomic hybridization (CGH) in hepatocellular carcinoma (HCC). They concern mainly B virus related HCC. Therefore, we used CGH to detect chromosomal imbalances in 16 non-B virus related HCC in alcoholic cirrhosis in 7 cases (HA1 to HA7), in C virus cirrhosis in 7 cases (HC1 to HC7), in non-cirrhotic liver in 2 cases (NC1, NC2), and in 9 non-malignant cirrhotic tissues. The most frequent imbalances in HCC were gains of whole chromosomes or chromosomal regions 7 or 7q (10/16, 62%), 1q (9/16, 56%), 5 or 5q (9/16, 56%), 8q (8/16, 50%), 6p (6/16, 37%), 15q (5/16, 31%), 20 or 20q (5/16, 31%), and losses of 17p (6/16, 37%), and 8p (5/16, 31%). High-level gains were identified in HCC on 1q (2/16), 3q (1/16), 7q (1/16), and 8q (3/16). No chromosomal imbalances were detected in any of the cirrhotic tissues. Most of the gains, losses, and amplifications detected in this CGH study corresponded well to those identified in previous studies, except for gains of whole chromosome 5 or 7 and/or of chromosome arms 5q or 7q and losses on 4q. Our results suggest that other chromosomal regions are involved in hepatocarcinogenesis.  相似文献   

13.
 We combined laser-assisted microdissection from H&E-stained paraffin sections, degenerated oligonucleotide-primed polymerase chain reaction (DOP-PCR), and comparative genomic hybridization (CGH) to analyse chromosomal imbalances in small tumour areas consisting of 50–100 cells. This approach was used to investigate intratumour genetic heterogeneity in a case of metastatic prostatic adenocarcinoma and chromosomal changes in areas of prostatic intraepithelial neoplasia (PIN) adjacent to the invasive tumour. In four microdissected invasive tumour areas with different histological patterns (acinar, cribriform, papillary and solid) marked intratumour heterogeneity was found by CGH. Recurrent chromosomal imbalances detected in at least two microdissected tumour areas were gains on 1p32→p36, 2p22, 3q21, 7, 8q21→q24, 11q12→q13, 16p12→p13, 17, 19 and loss on 16q23. Additional chromosomal changes were found in only one of the microdissected areas (gains on 16q21→q23, 20q22 and losses on 8p21→p23, 12p11→q12, 12q21→q26, 13q21→q34, 16q12, and 18q22). In PIN, gains on chromosomes 8q21→q24 and 17 were found in both samples investigated (low and high grade PIN), while gains on chromosomes 7, 11q, 12q, 16p, and 20q and losses on 2p, 8p21→p23, 12q were found only in one PIN area. Controls to ensure reliable CGH results consisted in CGH analyses of (i) approximately 80 microdissected normal epithelial cells, which showed no aberrations after DOP-PCR and (ii) larger cell numbers (approximately 105 or 107 cells) of the primary tumour investigated without DOP-PCR and partially displaying the chromosomal imbalances (gain on 16p12→p13, losses on 2p25, 8p21→p23, 12p11→p12, 12q21→q26, 18q22) found in the small microdissected areas. Microsatellite and FISH analyses further confirmed our CGH results from microdissected cells. The combined approach of laser-assisted microdissection, DOP-PCR and CGH is suitable to identify early genetic changes in PIN and chromosomal imbalances associated with the particular histological patterns of invasive prostatic adenocarcinoma. Received: 30 January 1998 / Accepted: 25 May 1998  相似文献   

14.
Comparative genomic hybridization (CGH) was used to screen 42 wood dust-related sinonasal adenocarcinomas for chromosomal alterations. The tumour collection comprised 39 papillary-tubular cylinder cell adenocarcinomas (PTCCs; six cases G1, 23 G2, and ten G3), two alveolar goblet cell adenocarcinomas (AGCs), and one signet ring cell adenocarcinoma (SRC), according to the Kleinsasser and Schroeder classification. Copy number changes were detected in 41 tumours (97.6%). The one carcinoma without imbalances was a PTCC-G1. DNA gains were most frequently seen on chromosomes 12p (83%), 7q (74%), 8q (71%), and 20q (71%), 11q (61%), 22 (59%), and 1q (52%). Pronounced overrepresentations suggestive of high copy amplifications were detected on 8q (15 cases, 36%), 7q (six cases, 14%), 20q (five cases, 12%), 13q14 (three cases, 7%), 1q22, 5p, 12p and 20 (two cases, 5% each), and 2q24, 3q13, 3q22, 7p, 14q12, and 16q13 (one case, each 2%). Frequent chromosomal losses occurred at 5q (81%), 18q (76%), 4 (74%), 8p (61%), 9p (60%), 6q and 17p (52% each), and 3p, 13q, and 21 (50% each). There was a quantitative as well as a qualitative increase of alterations from PTCC-G1 to PTCC-G2 and finally PTCC-G3, confirming the usefulness of histopathological grading. While PTCC-G1 carried only a few alterations, namely gains on chromosomes 17 and 7 as well as losses of 4q and 13q, PTCC-G2 already carried many of the above-mentioned alterations, while PTCC-G3 showed significantly more gains of 7q, 8q, and 12p, and losses of 8p and 17p. Additionally, the latter subgroup was particularly prone to carry pronounced DNA gains. These data provide further evidence for a recurrent pattern of chromosomal imbalances in sinonasal adenocarcinomas and highlight distinct aberrations that are associated with tumour differentiation and progression.  相似文献   

15.
A total of 127 adult de novo acute myelocytic leukemia (AML) patients were analyzed by comparative genomic hybridization (CGH) at diagnosis. Conventional cytogenetic analysis (CCA) showed a normal karyotype in 45 cases and an abnormal karyotype in 56 cases; in the remaining cases, CCA either failed to yield sufficient metaphase cells (19/26) or was not done (7/26). Abnormal CGH profiles were identified in 39 patients (30.7%). DNA copy number losses (61%) were high compared to gains (39%), whereas partial chromosome changes (76%) were more common than whole chromosomes changes (24%). Recurrent losses were detected on chromosomes 7, 5q (comprising bands 5q15 to 5q33), 7q (7q32 approximately q36), 16q (16q13 approximately q21), and 17p, and gains were detected on chromosomes 8, 22, and 3q (comprising bands 3q26.1 approximately q27). Furthermore, distinct amplifications were identified in chromosome regions 21q, 13q12 approximately q13, and 13q21.1. No cryptic recurrent chromosomal imbalances were identified by CGH in cases with normal karyotypes. The concordance between CGH results and CCA was 72.5%. In the remaining cases, CGH gave additional information compared to CCA (20%) and partially failed to identify the alterations previously detected by CCA (7.5%). The majority of discrepancies arose from the limitations of the CGH technique, such as insensitivity to detect unbalanced chromosomal changes when occurring in a low proportion of cells. CGH increased the detection of unbalanced chromosomal alterations and allowed precise defining of partial or uncharacterized cytogenetical abnormalities. Application of the CGH technique is thus a useful complementary diagnostic tool for CCA in de novo AML cases with abnormal karyotypes or with unsuccessful cytogenetics.  相似文献   

16.
Until now, few data on additional chromosomal aberrations in t(11;14)-positive mantle cell lymphomas (MCLs) have been published. We analyzed 39 t(11;14)-positive MCLs by either comparative genomic hybridization (CGH; n = 8), fluorescence in situ hybridization (FISH) with a set of DNA probes detecting the most frequent aberrations in B-cell neoplasms (n = 12), or both techniques (n = 19). The t(11;14) was present in all cases. In 37 of 39 cases, chromosomal imbalances were found. In 27 cases, complex karyotypes, i.e., >/= 3 aberrations, were identified. The most frequent aberrations were losses of 13q14-21 or 13q32-34 (27 cases), 9p21 (16 cases), and 11q22-23 (12 cases) and gains of 3q26-29 (19 cases), 8q22-24 (11 cases), and 18q21-22 (9 cases). In 26% of cases (7 of 27) analyzed by CGH, a total of 10 high-level DNA amplifications were identified. Although in comparison with B-cell chronic lymphopcytic leukemia (B-CLL) MCL is characterized by a much higher complexity of chromosomal aberrations, there are striking similarities: 13q14 deletions were identified in more than 50% of both MCL and B-CLL cases. In contrast, in our CGH database containing 293 B-cell lymphomas, this aberration was found in only 11% of other nodal lymphomas. Even more strikingly, 11q deletions, which are present in 20%-30 % of MCL and B-CLL, were found very rarely in other nodal B-cell lymphomas (CGH: 1 of 208 cases; FISH: 1 of 69 cases). These data show that MCL is characterized by specific secondary aberrations and that there may be similarities in the pathogenesis of MCL and B-CLL. Genes Chromosomes Cancer 27:285-294, 2000.  相似文献   

17.
Comparative genomic hybridization (CGH) was used in parallel with fluorescence in-situ hybridization (FISH) and conventional karyotyping to perform a genome-wide survey of DNA gains and losses in the endometriosis-derived permanent cell line, FbEM-1. The cytogenetic analysis showed a complex karyotype with numerical changes and multiple chromosome aberrations, including the der(1) complement marker exhibiting a large homogenous staining region (HSR). The chromosomal rearrangement interpreted as der(5) t(5;6)(q34;p11) was found in the majority of the metaphases indicating a clonal abnormality. Repeated CGH experiments demonstrated over-representation of chromosomes 1, 2, 3, 5, 6p, 7, 16, 17q, 20, 21q and 22q, while chromosomes 6q, 9, 11p, 12, 13q, 18 and X were under-represented. Using DNA from the original endometriotic tissues, including a peritoneal implant and ovarian endometrioma, CGH analysis revealed loss of DNA copy number on 1p, 22q and chromosome X, while gain was found on chromosomal arms 6p and 17q. FISH analysis confirmed that the gain at 17q includes amplification of the proto-oncogene HER-2/neu in 16% of the FbEM-1 nuclei and in 12% of cells from the primary ovarian endometrioma tissue. These findings demonstrate that FbEM-1 cells share certain molecular cytogenetic features with the original tissue and suggest that chromosomal instability is important in the development of endometriosis.  相似文献   

18.
Osteosarcomas (OS) are aggressive tumors of the bone and often have a poor prognosis. The tumors exhibit karyotypes with a high degree of complexity, which has made it difficult to determine whether any recurrent chromosomal aberrations characterize OS. To address inherent difficulties associated with classical cytogenetic analysis, comparative genomic hybridization (CGH) was applied to OS tissue. Forty-one pediatric OS specimens were analyzed by a CGH technique: 24 female and 17 male patients, with a median age of 12 years and 4 months. Chromosomal abnormalities were highly diverse and variable, including gains of chromosome 1p, 2p, 3q, 5q, 5p, and 6p and losses of 14q (50% in 14q11.2), 15q, and 16p. A high level of losses of chromosome 21 was present (26/41 cases; P = 0.008), most often loss of the 21q11.2 approximately 21 region. These novel findings in chromosome 21 of pediatric OS tumors suggest that specific sequences mapping to these chromosomal regions are likely to play a role in the development of OS.  相似文献   

19.
Comparative genomic hybridization (CGH) has been applied to detect recurrent chromosome alterations in 62 primary gastric carcinomas. Several nonrandom chromosomal changes, including gains of 8q (31 cases, 50%), 20q (29 cases, 47%) with a minimum gain region at 20q11. 2-q12, 13q (21 cases, 34%) with a minimum gain region at 13q22, and 3q (19 cases, 31%) were commonly observed. The regions most frequently lost included: 19p (23 cases, 37%), 17p (21 cases, 33%), and 1p (14 cases, 23%). High copy number gain (DNA sequence amplification) was detected in 6 cases. Amplification of 8q23-q24.2 and 20q11.2-q12 were observed in 3 cases. Gain of 20q and loss of 19p were confirmed by fluorescence in situ hybridization using corresponding bacterial artificial chromosomes (BAC) clones from those regions. The gain and loss of chromosomal regions identified in this study provide candidate regions involved in gastric tumorigenesis.  相似文献   

20.
Chromosomal imbalances of primary and metastatic lung adenocarcinomas.   总被引:6,自引:0,他引:6  
Comparative genomic hybridization (CGH) was used to screen 83 lung adenocarcinomas of 60 patients for chromosomal imbalances. The most common alteration was DNA overrepresentation on chromosome 1q, with a peak incidence at 1q22-q23 in 73% of the primary tumours, followed by DNA overrepresentation on chromosomes 8q and 20q, and deletions on chromosomes 3p, 4q, 6q, 9p, 9q, and 13q, in at least 60%. The generation of a difference histogram of metastasizing versus non-metastasizing tumours and a case-by-case histogram for the comparison of 23 paired samples of primary tumours and corresponding metastases suggested that deletions on chromosomes 3p12-p14, 3p22-p24, 4p13-15.1, 4q21-qter, 6q21-qter, 8p, 10q, 14q21, 17p12-p13, 20p12, and 21q, and overrepresentations on chromosomes 1q21-q25, 7q11.2, 9q34, 11q12-q13, 14q11-q13, and 17q25 are associated with the metastatic phenotype. In contrast, losses on chromosome 19 and gains on 3p, 4q, 5p, and 6q were preferentially found in non-metastasizing tumours. The analysis of the paired samples revealed considerable chromosomal instability, but indicated a clonal relationship in each case. The primary tumours often showed additional deletions, suggesting that loss of function mutations are critical in the initial phase of tumour dissemination, whereas the metastases preferentially acquired DNA gains, probably modulating the metastatic phenotype. The primary data from this study (ratio profiles, clinicopathological parameters, histograms) are also available at http://amba.charite.de/cgh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号