首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that treatment of rat pheochromocytoma (PC12) cells with acetyl-L-carnitine (ALCAR) stimulates the synthesis of nerve growth factor receptors (NGFR). ALCAR has also been reported to prevent some age-related impairments of the central nervous system (CNS). In particular, ALCAR reduces the loss of NGFR in the hippocampus and basal forebrain of aged rodents. On these bases, a study on the effect of NGF on the PC12 cells was carried out to ascertain whether ALCAR induction of NGFR resulted in an enhancement of NGF action. Treatment of PC12 cells for 6 days with ALCAR (10 mM) stimulated [125I]NGF PC12 cell uptake, consistent with increased NGFR levels. Also, neurite outgrowth elicited in PC12 cells by NGF (100 ng/ml) was greatly augmented by ALCAR pretreatment. When PC12 cells were treated with 10 mM ALCAR and then exposed to NGF (1 ng/ml), an NGF concentration that is insufficient to elicit neurite outgrowth under these conditions, there was an ALCAR effect on neurite outgrowth. The concentration of NGF necessary for survival of serum-deprived PC12 cells was 100-fold lower for ALCAR-treated cells as compared to controls. The minimal effective dose of ALCAR here was between 0.1 and 0.5 mM. This is similar to the reported minimal concentration of ALCAR that stimulates the synthesis of NGFR in these cells. The data here presented indicate that one mechanism by which ALCAR rescues aged neurons may be by increasing their responsiveness to neuronotrophic factors in the CNS.  相似文献   

2.
This study investigated the effects of exogenous nerve growth factor (NGF) on the survival and differentiation in primary culture of sensory neurons isolated from adult (6 months) and aged (2 years) mice. For neurons prepared from adult mice, a concentration effect was evident during a 2 week culture period: Neuronal counts in cultures supplemented with 25 and 50 ng/ml NGF did not differ significantly from those of control cultures without exogenous NGF or those with anti-NGF included in the culture medium, whereas cultures supplemented with either 100 or 200 ng/ml NGF contained higher numbers of neurons throughout the culture period. Cultures prepared from aged mice contained less neurons than those from adult mice, although those supplemented with 100 ng/ml NGF retained higher neuronal numbers than cultures from aged mice which did not receive exogenous NGF. Neuronal diameters were measured to investigate whether specific subpopulations of neurons were more dependent on NGF; the results indicate that neurons of a medium-larger diameter were more prevalent than cells with a smaller diameter following NGF administration. A shape index was calculated for each culture regimen; with longer culture periods a higher proportion of spindle-shaped neurons was observed. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Morphological response of axotomized septal neurons to nerve growth factor   总被引:10,自引:0,他引:10  
Septal efferent fibers from the neurons in the medial septal nucleus are destroyed by fimbria-fornix aspirative lesion. In the present study we used quantitative morphometric techniques to evaluate the response of these axotomized septal neurons to a constant infusion of nerve growth factor (NGF). By 2 weeks following the lesion, approximately 75% of the cholinergic neurons had degenerated in the untreated rats. The remaining cholinergic neurons showed few signs of the effect of the lesion when stained for a polyclonal antibody to ChAT and examined in 40-micron-thick sections. In 1-micron-thick sections the remaining ChAT-immunoreactive (IR) neurons also appeared no different from the intact ChAT neurons. However, non-ChAT-IR neurons had a shrunken nucleus, while all other morphometric parameters appeared normal. NGF infusion protected most of the ChAT-IR neurons from degenerating. The saved neurons had the same parameters as the undamaged ChAT-IR neurons when examined in either 40-micron- or 1-micron-thick sections. In addition, the shrunken appearance of the non-ChAT-IR neurons' nuclei was avoided by the NGF infusions. Enlarged ChAT-IR processes were evident in the dorsolateral quadrant of the septum following damage to the fimbria-fornix. NGF-infusions prevented the formation of these processes. Instead, in the treated animals the dorsal lateral quadrant contained a dense plexus of fine ChAT-IR varicosities. Taken together these results demonstrate that NGF not only can protect the cholinergic neurons from axotomy-induced degeneration but can also cause the saved neurons to maintain the same morphometric appearance as intact ChAT-IR neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Fifteen-day embryonic rat dorsal root ganglion (DRG) neurons were exposed to 1 to 200 ng/ml nerve growth factor (NFG). Maximal neurite outgrowth was obtained with 10 to 20 ng/ml. Neurite outgrowth was reduced to 89% of maximal by increasing NGF to 50 ng/ml, to 66% by 100 ng/ml, and to 18% by 200 ng/ml NGF. Identical effects were seen with mouse 2.5S NGF and recombinant human NGF. Neuron cell counts demonstrated that significant cell death did not occur. In time course experiments, significant inhibition, compared with control, began within 1 hour of adding 200 ng/ml and 3 hours of adding 50 ng/ml NGF. The inhibitory effect of NGF on neurite outgrowth was reversed within 3 hours when DRG were incubated with 5 ng/ml NGF after treatment with 50 or 200 ng/ml NGF medium for 12 hours. The inhibition demonstrated for neurons did not occur in PC12 cells; axonal growth was not inhibited by up to 1,000 ng/ml NGF. Excess brain-derived neurotrophic factor or neurotrophin-3 did not inhibit neurite outgrowth. We conclude that high concentrations of NGF produces specific and reversible arrest of neurite outgrowth from sensory neurons. This observation has important clinical implications, because these inhibitory concentrations have been exceeded when NGF has been administered into the central nervous system of humans and animals.  相似文献   

5.
Expression of the nociceptive peptide, substance P (SP) is regulated by the neurotrophin, nerve growth factor (NGF), and exogenous exposure to high levels of NGF increases its cellular content and release. NGF utilizes two receptors, the NGF-specific tyrosine kinase receptor, TrkA, and also the non-specific neurotrophin receptor, p75(NTR) (p75). The purpose of this study is to determine the relative involvement of these receptors in nociception. To investigate the role of TrkA in SP signaling, sensory neurons from adult rats were grown in vitro and exposed to a TrkA-blocking antibody. Pretreatment with the antibody inhibited NGF-induced SP elevation. Furthermore, when neurons were exposed to K252a, a relatively specific TrkA kinase inhibitor, the NGF effect on SP was also inhibited. K252a did not prevent SP up-regulation in cells exposed to forskolin or glial cell line-derived neurotrophic factor (GDNF), two agents which increase SP expression independently of TrkA. When p75 was blocked by antiserum, SP up-regulation by NGF was also inhibited. The antiserum neither impacted neuronal survival or basal levels of SP expression, nor did it inhibit SP up-regulation induced by forskolin. Two other neurotrophins, which are also ligands for p75, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) did not block NGF-induced SP up-regulation, raising the possibility that activated p75 is able to cooperate in SP regulation regardless of which neurotrophin ligand occupies it. Our data suggest that NGF up-regulation of SP expression requires the involvement of both TrkA and p75, although the specific contribution of each receptor to SP signaling remains to be determined.  相似文献   

6.
K H Kwok  K B Law  R N Wong  K K Yung 《Brain research》1999,846(2):154-163
In the present study, a comparison of potency between a commercially available immunotoxin, 192-immunoglobulin-SAP (192-IgG), and a novel immunotoxin produced in our laboratory, anti-p75-anti-mouse IgG-trichosanthin conjugates (p75-TCS), was conducted. Both of the immunotoxins were specific for nerve growth factor p75 receptor. Cholinergic neurons in the rat basal forebrain and in the neostriatum were depleted after the injection of either 192-IgG or p75-TCS. These indicate that both types of immunotoxins are potent and useful in performing immunolesioning experiments. In addition, there were variations in potency among the two immunotoxins in different routes of administration. The 192-IgG was more potent than the p75-TCS in the case of ventricular injections. In case of striatal injections, 192-IgG caused serious tissue necrosis and considerable tissue damage in the brain region. In contrast, p75-TCS was potent and caused a selective and specific depletion of cholinergic neurons in the neostriatum. These results indicate that indirect immunotoxins may be more useful for performing immunolesioning experiments in case of brain parenchyma administration.  相似文献   

7.
The diphenylpiperazine, flunarizine, partially prevents apoptosis after trophic factor deprivation in neural crest-derived neurons. Flunarizine protects dorsal root ganglion neurons (DRG) after nerve growth factor (NGF) withdrawal in vitro and after peripheral nerve injury in newborn rats in vivo. We have further studied the mechanisms of neuronal protection by flunarizine. Oligosomal DNA fragmentation, a hallmark of apoptosis, was significantly decreased by treatment of DRG neurons with flunarizine after NGF deprivation. We examined the effect on survival of the timing of administration of flunarizine to DRG neurons both in vitro and in vivo. Flunarizine effectively rescued dissociated DRG neurons if administered up to six hours after NGF withdrawal. In vivo, flunarizine prevented DRG neuronal death after sciatic axotomy in newborn rats if given soon after injury. Long-term experiments were done to test the ability of flunarizine to protect neurons and enhance regeneration after sciatic nerve injury. Newborn rats were subjected to peripheral nerve injury and administered flunarizine for four weeks; no further treatment was given for an additional 12 weeks. The group treated with flunarizine demonstrated a significantly increased number of DRG and spinal motor neurons that had regenerated axons into the distal sciatic nerve as determined by retrograde labeling with HRR Myelinated axons in the sural nerve in the group treated with flunarizine increased by nearly two-fold compared to control animals. Thus, flunarizine was able to enhance survival and promote long-term regeneration of sensory and motor spinal neurons after peripheral nerve injury.  相似文献   

8.
The low-affinity p75 receptor for nerve growth factor (p75NGFR) has been implicated in mediating neuronal cell death in vitro. A recent in vitro study from our laboratory showed that the death of sensory neurons can be prevented by reducing the levels of p75NGFR with antisense oligonucleotides. To determine if p75NGFR also functions as a death signal in vivo, we have attempted to reduce its expression in peripheral sensory neurons by applying antisense oligonucleotides to the proximal end of the transected sciatic or median and ulnar nerves. We report here that antisense oligonucleotides, when applied to the proximal stump of a transected peripheral nerve, are retrogradely transported and effectively reduce p75NGFR protein levels in sensory neurons located in the dorsal root ganglia. Furthermore, treatment of the proximal nerve stump with antisense p75NGFR oligonucleotides significantly reduced the loss of these axotomized sensory neurons. These findings further support the view that p75NGFR is a death signaling molecule and that it signals death in axotomized neurons in the neonatal sensory nervous system. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Septal axons provide a cholinergic innervation to the nerve growth factor (NGF)-producing neurons of the mammalian hippocampus. These cholinergic septal afferents are capable of responding to target-derived NGF because they possess trkA and p75(NTR), the two transmembrane receptors that bind NGF and activate ligand-mediated intracellular signaling. To assess the relative importance of p75(NTR) expression for the responsiveness of cholinergic septal neurons to hippocampally derived NGF, we used three lines of mutant and/or transgenic mice: p75(-/-) mice (having two mutated alleles of the p75(NTR) gene), NGF/p75(+/+) mice (transgenic animals overexpressing NGF within central glial cells and having two normal alleles of the p75(NTR) gene), and NGF/p75(-/-) mice (NGF transgenic animals having two mutated alleles of the p75(NTR) gene). BALB/c and C57B1/6 mice (background strains for the mutant and transgenic lines of mice) were used as controls. Both lines of NGF transgenic mice possess elevated levels of NGF protein in the hippocampus and septal region, irrespective of p75(NTR) expression. BALB/c and C57Bl/6 mice display comparably lower levels of NGF protein in both tissues. Despite differing levels of NGF protein, the ratios of hippocampal to septal NGF levels are similar among BALB/c, C57B1/6, and NGF/p75(+/+) mice. Both p75(-/-) and NGF/p75(-/-) mice, on the other hand, have markedly elevated ratios of NGF protein between these two tissues. The lack of p75(NTR) expression also results in a pronounced absence of NGF immunoreactivity in cholinergic septal neurons of p75(-/-) and NGF/p75(-/-) mice. BALB/c, C57B1/6, and NGF/p75(+/+) mice, on the other hand, display NGF immunoreactivity that appears as discrete granules scattered through the cytoplasm of cholinergic septal neurons. Elevated levels of NGF in the hippocampus and septal region coincide with hypertrophy of cholinergic septal neurons of NGF/p75(+/+) mice but not of NGF/p75(-/-) mice. Levels of choline acetyltransferase (ChAT) enzyme activity are, however, elevated in the septal region and hippocampus of both NGF/p75(+/+) and NGF/p75(-/-) mice, compared with control mice. These data indicate that an absence of functional p75(NTR) expression disrupts the normal cellular immunolocalization of NGF by cholinergic septal neurons but does not affect the ability of these neurons to respond to elevated levels of NGF, as determined by ChAT activity.  相似文献   

10.
11.
Sensory neurons with small diameters (A delta and C cells) are known to be responsive to exogenous NGF even at postnatal stages. We have examined whether large Group Ia sensory neurons (A alpha cells) arising from muscle spindles are also responsive to NGF in neonatal rats. For this purpose, monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in spinal motoneurons by Group Ia muscle afferent volleys. When a muscle nerve was crushed on the day after birth, the monosynaptic EPSPs elicited by afferent volleys from the muscle were depressed within several weeks. This synaptic depression was partially reversed by daily treatment with NGF. NGF treatment also enhanced the EPSPs evoked by stimulation of intact muscle nerves, but this effect was less marked than that on the EPSPs produced by stimulation of the previously crushed muscle nerve. Exogenous NGF was effective for the EPSPs when the treatment began on the day after birth but not when the treatment began 4 d after birth. Following crush of a muscle nerve on the day after birth, about 45% of the sensory neurons derived from the muscle were lost. The cell death of small sensory neurons was prevented by daily treatment with NGF, whereas the NGF treatment was ineffective in preventing the cell death of large sensory neurons. The results indicate that Group Ia sensory neurons are responsive to NGF during early postnatal life.  相似文献   

12.
Transforming growth factor alpha (TGF alpha) is a mitogenic polypeptide that is structurally homologous to epidermal growth factor (EGF) and appears to bind to the same receptor in all systems tested previously. In the present study, TGF alpha was found to enhance survival and neurite outgrowth of cultured neonatal rat dorsal root ganglion (DRG) neurons in a dose-dependent manner. This effect was observed with TGF alpha concentrations as low as 17.8 pM. By contrast, EGF at concentrations up to 83 nM was ineffective. Moreover, EGF did not antagonize the TGF alpha survival-promoting effect unless present in large excess (500-fold the concentration for which TGF alpha is effective); even in this case, only partial antagonism was achieved. Survival of neurons from nodose, trigeminal, and sympathetic ganglia was not increased by TGF alpha. Both a subpopulation of DRG neurons and of macrophages in the cultures bound iodinated TGF alpha. This binding was inhibited by excess unlabeled TGF alpha but not EGF. Our data are consistent with the possibilities that the actions of TGF alpha on DRG neurons occur indirectly via unidentified neurotrophic molecules other than NGF as well as directly on the neurons themselves. Thus, TGF alpha, in contrast to EGF, may act as a survival or maintenance factor for a subset of rat sensory neurons. Mediation of this neurotrophic effect appears to occur via a new form of TGF alpha receptor.  相似文献   

13.
Reactive astrocytes surround amyloid depositions and degenerating neurons in Alzheimer's disease (AD). It has been previously shown that beta-amyloid peptide induces inflammatory-like responses in astrocytes, leading to neuronal pathology. Reactive astrocytes up-regulate nerve growth factor (NGF), which can modulate neuronal survival by signaling through TrkA or p75 neurotrophin receptor (p75NTR). Here, we analyzed whether soluble Abeta peptide 25-35 (Abeta) stimulated astrocytic NGF expression, modulating the survival of cultured embryonic hippocampal neurons. Hippocampal astrocytes incubated with Abeta up-regulated NGF expression and release to the culture medium. Abeta-stimulated astrocytes increased tau phosphorylation and reduced the survival of cocultured hippocampal neurons. Neuronal death and tau phosphorylation were reproduced by conditioned media from Abeta-stimulated astrocytes and prevented by caspase inhibitors or blocking antibodies to NGF or p75NTR. Moreover, exogenous NGF was sufficient to induce tau hyperphosphorylation and death of hippocampal neurons, a phenomenon that was potentiated by a low steady-state concentration of nitric oxide. Our findings show that Abeta-activated astrocytes potently stimulate NGF secretion, which in turn causes the death of p75-expressing hippocampal neurons, through a mechanism regulated by nitric oxide. These results suggest a potential role for astrocyte-derived NGF in the progression of AD.  相似文献   

14.
Long-term cultures of dissociated nodose ganglion (NG) and superior cervical ganglion (SCG) neurons from newborn rabbits were used to compare their response to nerve growth factor (7S NGF). SCG neurons required added NGF for their survival and a concentration of 1 μg/ml was found to be optimal. NG neurons, on the other hand, survived well for a long term without addition of NGF, but its application (1 μg/ml) was found to be effective in accelerating the growth of fibers (neurites) and neuronal somata. It is concluded that unlike SCG, NG neurons do not depend on exogenous NGF but may require an intrinsic trophic-like factor which may be contained in the serum of the medium, emanating from glial cells or by metabolic cooperation between neurons.  相似文献   

15.
In neural crest-derived sensory ganglia, approximately half of the neuronal population expresses the transmembrane trkA receptor that is required for neuronal binding of target-derived nerve growth factor (NGF). These same neurons also express the p75 neurotrophin receptor (NTR) that increases the affinity of trkA for NGF. Depleting p75NTR expression reduces both the survival of trkA-positive sensory neurons and their afferent innervation of peripheral targets. In this investigation, we assessed the neurochemical and structural plasticity of trigeminal sensory neurons in p75NTR-deficient mice in response to either normal or elevated levels of NGF during postnatal development and into adulthood. Although p75NTR-deficient mice have 30% fewer trigeminal neurons, levels of trkA mRNA expression are modestly elevated in these mutant mice as compared to control mice. The density of central afferent axons and local levels of NGF are, however, comparable between mutant and control animals. Thus, despite the survival of fewer trigeminal neurons, neither ganglionic levels of trkA mRNA expression nor the density of central afferent projections are depleted in p75NTR-deficient mice. In response to elevated levels of NGF protein, transgenic mice with and without p75NTR expression display both increased levels of trkA mRNA expression and a greater density of trigeminal central afferent axons as compared to control mice. These data further reveal that an absence of p75NTR function in trigeminal sensory neurons does not diminish their capacity for NGF-dependent plasticity, namely trkA mRNA expression and collateral growth of central afferent axons.  相似文献   

16.
17.
We have investigated the role of the low-affinity nerve growth factor (NGF) receptor p75NGFR in determining the death of neuronally differentiated PC12 cells after withdrawal of NGF. A range of high and low p75NGFR-expressing cells were obtained by a combination of fluorescence activated cell sorting (FACS) and stable transfection with a p75NGFR expression vector. Cells were readily differentiated to a neuronal phenotype irrespective of the level of p75NGFR expression. However, the rate and extent of neuronal death following NGF deprivation were extremely sensitive to the level of p75NGFR expression. The highest expressing cells died most rapidly. Cells selected for very low levels of p75NGFR expression exhibited resistance to NGF withdrawal, and remained as viable, differentiated neurons, with minimal cell death, for at least 5 days in the absence of NGF. Antisense oligonucleotides against p75NGFR were shown to down-regulate p75NGFR in PC12 cells and, further, to significantly enhance survival in the absence of NGF. These results consolidate and generalize our previous findings that p75NGFR induces cell death in postnatal sensory neurons in the absence of NGF. The ability to induce cell death in the absence of NGF appears to be a more general role of p75NGFR in differentiated neurons, and an important new paradigm for the mechanism of NGF-dependent survival. © 1996 Wiley-Liss, Inc.  相似文献   

18.
This study examined the roles of nerve growth factor (NGF) and the p75 neurotrophin receptor (p75NTR) in the growth of dorsal root ganglion (DRG) central processes in the dorsal horn. Two genetically modified mouse strains were used: transgenic mice that overexpress NGF in the CNS under the control of the glial fibrillary acidic protein promoter, and p75NTR exon III null mutant mice that express a hypomorphic form of this receptor. In both NGF transgenic and nontransgenic mice with hypomorphic expression of p75NTR, there is a significant loss of DRG neurons compared to mice with normal p75NTR expression. This reduction in neuron number has been shown to underlie a corresponding decrease in peripheral nociceptive sensory innervation. Within the CNS, however, nociceptive innervation of the dorsal horn appears to be unaffected by hypomorphic expression of p75NTR. Comparisons of calcitonin gene-related peptide immunoreactivity in the dorsal horn revealed that the area occupied by DRG central processes was not significantly different between p75NTR hypomorphic mice and wild-type siblings, or between NGF transgenic mice with either hypomorphic or normal expression of p75NTR. We propose that DRG central processes arborize extensively in both NGF-transgenic and nontransgenic p75NTR hypomorphic mice in order to compensate for the loss of DRG neurons and restore dorsal horn innervation to normal levels. We also present evidence suggesting that NGF plays only a minor role in the growth of DRG central processes.  相似文献   

19.
Myelin-associated glycoprotein (MAG) is a molecule expressed by myelinating cells at the myelin/axon interface, which binds to an as yet unidentified molecule on neurons. We have used a MAG-immunoglobulin Fc fusion protein to examine the expression and regulation of the MAG binding molecule on sensory neurons in culture. Binding of the MAG-Fc reached a maximum at 24-48 h and was higher on neurons which expressed high levels of neurofilament. Nerve growth factor (NGF) upregulated expression of the MAG binding molecule in a dose dependent manner. Schwann cells co-cultured with sensory neurons in serum-free medium stimulated maximal expression of the MAG binding molecule, which was decreased by addition of anti-NGF to the co-cultures. This indicated that Schwann cells can modulate expression of the MAG binding molecule via production of NGF and may represent a physiological mechanism for regulation of MAG-MAG binding molecule interactions during myelination and remyelination.  相似文献   

20.
It is clear that nerve growth factor (NGF) has a role in the central nervous system. In order to begin to determine the possible roles of NGF in the CNS, neonatal rats were given daily subcutaneous injections of antibodies to NGF (ANTI-NGF) beginning at birth for a period of one month. By utilizing the monoclonal antibody, 192-IgG, which recognizes the p75 NGF receptor (NGFR), and standard immunohistochemical techniques we have localized p75 NGFR in variously aged ANTI-NGF-treated animals and compared the anatomic localization and relative density of the p75 NGFR immunoreactive (p75 NGFR-I) regions to same age untreated and preimmune sera-treated littermates. We confirm previously reported localizations of p75 NGFR-I in the rat brain. In addition, we demonstrate that p75 NGFR-I levels of ANTI-NGF-treated rats found in the molecular, the granular and the Purkinje cell layers of the cerebellum, the vestibular nuclei, the spinal tract of V and the cochlear nuclei remain at lower concentrations compared to same-age control animals. We also demonstrate that p75 NGFR-I levels in the basal nucleus approaches background levels after ANTI-NGF treatment. We hypothesize that ANTI-NGF biologically inactivates NGF, which over a period of 30 days results in decreased p75 NGFR-I. These results are consistent with neuronal loss in these regions following ANTI-NGF treatment. Furthermore, the immunological methods used to produce the specific deficits in the present study may have broader implications with respect to usefulness as a method for determining the dependency of CNS neuronal populations for a putative neurotrophic factor and as a method for the development of models of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号