首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early postnatal developmental changes in N-methyl-d-aspartate (NMDA) receptor (NR) subunits regulate cerebellar granule cell maturation and potentially Purkinje cell development. We therefore investigated Purkinje cell morphology in slice cultures from mice with genetic subunit exchange from NR2C to NR2B (NR2C-2B). NR2C-2B Purkinje cells after 12 days in vitro showed a significantly impaired dendritic arbour complexity with reduced branching density as compared to wild-type cells, a phenotype that was reversed by NMDA treatment. These data support the concept that in cerebellar slice cultures, Purkinje cell dendritic outgrowth is regulated by granule cell inputs.  相似文献   

2.
The mutation Lurcher, resulting from a gain of malfunction of the delta2 glutamate receptor expressed specifically by cerebellar Purkinje cells, causes a primary total loss of these neurons of the cerebellar cortex, as well as the secondary degeneration of cerebellar granule and inferior olive neurons. The distributions of glutamate receptors sensitive to amino-methylisoxazole-propionic acid (AMPA), to kainic acid (KA), and to N-methyl-D-aspartic acid (NMDA) as well as metabotropic sites (MET1 and MET2) were examined in wild type and Lurcher mice by quantitative autoradiography. This study was undertaken to determine the gene effect on the distribution of the various glutamate receptor subtypes, as well as how the cerebellar lesion affects the glutamatergic system in other brain regions. In cerebellum, there were postsynaptic AMPA and metabotropic receptors on Purkinje cells, postsynaptic NMDA receptors on granule cells, as well as KA receptors on granule cells or on parallel fibers. Taking into account surface areas, binding to all receptor subtypes was lower in the cerebellar cortex of Lurcher mutants than in wild type mice, while in the deep cerebellar nuclei only KA receptors were diminished. In other brain regions, the alterations followed always the same pattern characterized by a decrease of NMDA and KA receptors but with an increase of AMPA sites; these reciprocal changes were seen in thalamus. neostriatum, limbic regions, and motor cerebral cortical regions. Comparisons of glutamate receptor distribution in Lurcher mutants and in human autosomal cerebellar ataxia may permit further understanding of the role of glutamate-induced toxicity on neuronal death in these heredo-degenerative diseases.  相似文献   

3.
We used standard techniques of receptor autoradiography to study the distribution of inhibitory and excitatory amino acid neurotransmitter receptors in human normal cerebellar cortex. Benzodiazepine (BDZ) receptor density was relatively high in both granule cell and molecular layers. GABAA receptor density was highest in granule cell layer with lower receptor density in molecular layer. There was a lower density of GABAB receptors than GABAA receptors in both molecular and granule cell layers with a relatively higher density of GABAB receptors in molecular layer than in granule cell layer. In granule cell layer, the density of the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors was greatest whereas in molecular layer the quisqualate (QA) receptor subtype density was greatest. With [3H]N-(1-[2-thienyl]cyclohexyl)3-4-piperidine as a ligand, there was no specific binding to the phencyclidine receptor. Molecular layer was also characterized by relatively high density of a non-NMDA/non-QA displaceable glutamate binding site. We studied also the cerebellar cortex of 4 cases of olivopontocerebellar atrophy (OPCA), a syndrome in which Purkinje and granule cells degenerate. In these specimens, there was significant decrement of BDZ and GABAA receptors in both molecular and granule cell layers, with loss of GABAB receptors in molecular layer. NMDA receptors were depleted in granule cell layer while QA receptors and the non-NMDA/non-QA glutamate binding site were significantly depleted in molecular layer. Our normal human and OPCA data are largely consistent with animal data about the cellular localization of cerebellar cortical amino acid neurotransmitter receptors.  相似文献   

4.
It is known that cerebellar granule cells are powerful inducers for the differentiation of Purkinje cells. However, the detailed mechanism of this regulation has not yet been clarified. Here, using cerebellar neuronal culture, we show that the activation of NMDA receptors expressed by granule cells triggers the signaling pathway for the dendritic differentiation of Purkinje cells. This signal has been shown to promote the granule cell survival through BDNF-mediated TrkB activation, leading to Purkinje cell differentiation by increasing the granule-Purkinje cell interaction. Among the possible signal molecules provided to the dendrites of Purkinje cells from granule cells, nitric oxide was found to have no effect on the dendritic outgrowth and branching, but electrical activity and the subsequent intracellular Ca(2+) increase were thought to play an important role in the branching and thickening of the dendrites, because blockade of both non-NMDA and metabotropic glutamate receptors caused a significant decrease in the number of branch points and the diameter of Purkinje dendrites without apparently affecting the dendrite extension and spine formation. Collectively, these results suggest that Purkinje cell differentiation is regulated by two successive steps. The first step is initiated by the NMDA receptor-mediated signal in granule cells, which acts as a trophic factor for granule cells. The second step involves the activation of granule-Purkinje synapses, providing neurotrophic substances and electrical activity essential for Purkinje cell differentiation.  相似文献   

5.
In weaver mice, mutation of a G-protein inwardly rectifying K(+) channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, ionotropic glutamate receptors sensitive to N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA) were examined by autoradiography with [(3)H]MK-801, [(3)H]AMPA, and [(3)H]KA. These surveys were carried out in selected areas of cerebral cortex, hippocampus and related limbic regions, basal ganglia, thalamus, hypothalamus, brainstem, and cerebellum from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild-type (+/+) mice. In wv/+ and wv/wv mutants, NMDA receptor levels were lower in cortical areas, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus, and in the cerebellar granular layer. Densities of KA receptors were lower in cortical areas, hippocampus, limbic system structures, neostriatum, nucleus accumbens, thalamus and hypothalamus, superior and inferior colliculi, and cerebellar cortex of wv/wv mutants. Levels of AMPA receptors in the weaver were higher than in +/+ mice, particularly in somatosensory and piriform cortices and periaqueductal gray of wv/+, and in somatosensory cortex, CA1 field of Ammon's horn and cerebellar granular layer of wv/wv. Abnormal developmental signals, aberrant cellular responses, or a distorted balance between neurotransmitter interactions may underlie such widespread and reciprocal glutamate receptor alterations, while in the case of cerebellar cortex, NMDA receptors are lacking due to a massive disappearance of cerebellar granule cells and some loss of Purkinje neurons.  相似文献   

6.
Autoradiography was used to visualize insulin-like growth factor II (IGF-II) receptors in the cerebellar cortex of weaver and Purkinje cell degeneration (pcd) mice. These mutants were selected for their respective absence of granule or Purkinje cells. Histological preparations confirmed a severe loss of granule cells in the cerebella of weaver mutants and an absence of Purkinje cells in those of pcd mutants. Autoradiographs showed specific IGF-II binding to the granule cell layer of the cerebellar cortex in control mice, and in pcd mutants. No specific [125I]human IGF-II binding was observed in the cerebellar cortex of weaver mutants. These studies suggest that specific IGF-II receptor sites are located on the granule cells of the cerebellum.  相似文献   

7.
The distribution of five NMDA receptor channel subunit mRNAs was examined in the mouse cerebellum from embryonic day 13 through postnatal day 56, by in situ hybridization with subunit-specific oligonucleotide probes. At postnatal days 21 and 56, each cerebellar neuron displayed differential expressions of the ∈ subunit mRNAs. The granule cells showed hybridizing signals for the ∈1 and ∈3 subunit mRNAs, the molecular layer neurons for the ∈4 subunit mRNA, and the cerebellar nucleus neurons for the ∈1 and ∈4 subunit mRNAs, whereas the Purkinje cells did not express any ∈ subunit mRNAs. At early postmitotic stages of development, the ∈2 subunit mRNA appeared in each cerebellar neuron, including the Purkinje cells, and the ∈4 subunit mRNA appeared in neurons of the molecular layer and the cerebellar nuclei. The expression patterns in the cerebellum altered drastically during the first 2 postnatal weeks: the ∈1 and ∈3 subunit mRNAs appeared in the granule cells and the cerebellar nucleus neurons, whereas the ∈2 subunit mRNA disappeared from each neuron and the signal levels of the ∈4 subunit mRNA decreased remarkably. In contrast to the differential expressions of the four ∈ subunit mRNAs, intense signals for the ζ 1 subunit mRNA were observed in each cerebellar neuron from early postmitotic stages through the mature stage. These findings suggest that anatomical organization of the ∈ subunits is heterogeneous in the cerebellum both spatially and temporally, which would give rise to functional diversity of the NMDA receptor channel. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Five N-methyl-D-aspartate (NMDA) receptor subunits have been identified thus far: NR1, NR2A, NR2B, NR2C, and NR2D. Here, we have analyzed the expression patterns of mRNAs for the NMDA receptor subunits in the developing and adult rats by in situ hybridization. The developmental changes of the expression patterns were most salient in the cerebellum. In the external granular layer, hybridization signals of mRNAs, for NR1, NR2A, NR2B, and NR2C appeared by postnatal day 3, but no NR2D mRNA was expressed at any developmental stage examined. The NR1 mRNA was expressed in all cerebellar neurons at all developmental stages examined. The signals for the NR2A mRNA appeared in Purkinje cells and granule cells during the second postnatal week. The signals for the NR2B mRNA in granule cells were seen transiently during the first 2 weeks after birth. The signals for NR2C mRNA appeared in granule cells and glial cells during the second postnatal week. The signals for NR2D mRNA appeared transiently in Purkinje cells during the first 8 postnatal days; in adult rats, these were seen in stellate and Golgi cells. In the cerebellar nuclei, mRNAs for NR1, NR2A, NR2B, and NR2D were more or less expressed on postnatal day 0, while expression signals for the NR2C mRNA were first detected in postnatal day 14. Thus, the most conspicuous changes of expression patterns were observed in the cerebellar cortex during the first 2 weeks after birth, when development and maturation of the cerebellum proceed most rapidly. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The gene expression of five NMDA receptor channel subunits, the ɛ1 ɛ2, epsiv;3, ɛ4 and ζ1 subunits, was examined in cerebellar Purkinje cells of the staggerer mouse at postnatal day 21. In the midline region of the staggerer cerebellum, signals for the ɛ1, ɛ4, and ζ1 subunit mRNAs were distributed in Purkinje cells, which have a large cell body aligned in a monolayer between the granular and molecular layers. In addition to the midline region, labelled neurons in the intermediate cerebellar region were, though at lower levels, aligned almost in a monolayer between the granular and molecular layers. In the hemisphere, most labelled neurons occurred in various locations in the granular layer and the cerebellar medulla. These regions, populated with Purkinje cells expressing the ɛl, ɛ4, and ζ1 subunit mRNAs, were separated from each other by narrow gap regions that contained neurons without any detectable NMDA receptor channel subunit mRNAs. These results suggest that there is discrete mediolateral heterogeneity in staggerer Purkinje cell populations, in terms of expression properties of the NMDA receptor channel subunits. When compared with wild-type Purkinje cells that express the ζ1 subunit alone, additional expression of the E subunits presumably explains the persistence of NMDA responses in adult staggerer Purkinje cells (Dupont et al Neuroscience, 12, 613-619, 1984).  相似文献   

10.
The distribution of 3H-mepyramine binding sites in cerebellae of normal mice and Purkinje cell degeneration, staggerer, weaver and reeler mutant mice was studied by light microscopic autoradiography. The binding of 3H-mepyramine to 20 micron coronal sections through the cerebellum and medulla had the characteristics expected of histamine-H1 receptor labeling. In the cerebellar cortex of normal mice, a high density of 3H-mepyramine binding was observed over the molecular layer and an intermediate density over the Purkinje cell layer, while the granule cell layer and white matter were almost devoid of labeling. The deep cerebellar nuclei were labeled to an intermediate density. In the 54 day old Purkinje cell degeneration mutant cerebellum, which is depleted of Purkinje cells, a greatly reduced labeling of the cerebellar cortex was observed. Labeling in the deep cerebellar nuclei was unaffected. In the 27 day old staggerer cerebellum, a mutation characterized by Purkinje cells which are almost devoid of spines and which do not form synaptic contacts with granule cells, a higher than normal grain density was seen over the cerebellar cortex, while normal grain density was observed over the deep cerebellar nuclei. The cerebellar cortex of 81 day old weaver mice, which is almost devoid of granule cells, had a high grain density over medial regions of the cortex, while the portion of the granule cell layer which remained relatively unaffected in the lateral parts of the cerebellum was unlabeled. The deep cerebellar nuclei had grain densities similar to littermate controls. In the 29 day old reeler cerebellae, which contain malpositioned Purkinje cells, high grain density regions corresponding to the heterotopically located Purkinje cells were observed. The present observations suggest that cerebellar cortical histamine-H1 receptors are associated predominantly with Purkinje cells. Furthermore, the expression of these H1 receptors appears not to be adversely affected by several alterations in the Purkinje cell environment, which have previously been shown to dramatically influence Purkinje cell morphology.  相似文献   

11.
Cultured cerebellar granule cells and cerebellar slices from neonatal rats have been widely used to examine the biochemistry of excitatory amino acid-induced cell death mediated in part by the activation of NMDA receptors. However, the NMDA subunit stoichiometry, producing functional NMDA receptors is different in cultured granule cells, neonatal and adult rat cerebellum as compared to the NMDA receptors in forebrain regions. We have used thel-2-chloropropionic acid (l-CPA) (750 mg/kg) model of NMDA-medialed selective cerebellar granule cell necrosis in vivo to examine the role of the glycine binding site and possible effect of the NR2C subunit (which is largely expressed only in the cerebellum) on granule cell necrosis. The abilities of various NMDA receptor antagonists were examined in vivo to determine the relative contribution of both glutamate and glycine sites involved in thel-CPA-induced neurotoxicity. The potent neuroprotective, non-competitive NMDA receptor antagonist dizocilpine (MK-801) was compared with glutamate and glycine site NMDA antagonists. We have examined a number of markers for thel-CPA-induced granule cell necrosis. Thel-CPA-induced reduction in cerebellar aspartate and glutamate concentrations were used as markers of granule cell necrosis. We also measured the cerebellar water content and sodium concentrations as measures of thel-CPA-induced cerebellar edema that accompanies the granule cell necrosis. Finally the ability of the NMDA antagonists to attenuate thel-CPA-induced reductions in body weight gain and the prevention of the loss in hindlimb function using a behavioral measure of hindlimb retraction were examined. The potent glutamate antagonists, CPP and CGP40116 and dizocilpine prevented thel-CPA-induced locomotor dysfunction and granule cell necrosis as measured by their ability to preventl-CPA-induced reductions in aspartate and glutamate concentrations. CPR CGP40116 and dizocilpine also prevented the appearance of cerebellar edema followingl-CPA administration. In addition, dizocilpine, CPP and CGP40116 were able to partially prevent thel-CPA-induced loss in body weight over the 48 h experimental period. In contrast, none of the glycine partial agonists or antagonists, namely (±)HA-966,d-cycloserine, MDL-29951, DPCQ, MNQX or L-701 252 were able to prevent thel-CPA-induced loss in body weight,l-CPA-induced granule cell necrosis and behavioral disturbances when administered to rats. None of the NMDA antagonists had any effect on the cerebellar neurochemistry when injected alone or had any effect on animal behavior except for dizocilpine, CPP, CGP401 l6 and (±)HA-966 which resulted in a transient sedation for between three and five hours immediately following their administration. In conclusion, we demonstrate that NMDA open channel blockade and glutamate antagonists can provide full neuroprotection against thel-CPA-induced granule cell necrosis. The failure of the glycine partial agonists and antagonists to provide any neuroprotection againstl-CPA-induced neurotoxicity in the cerebellum contrasts with their neuroprotective efficacy in other animal models of excitatory amino acid-induced cell death in forebrain regions in vivo. We therefore suggest that the glycine site plays a lesser role in modulating NMDA receptor function in the cerebellum and may explain why cells expressing NMDA receptors composed of NR1/NR2C subunits are particularly resistant to excitatory amino acid-induced neurotoxicity.  相似文献   

12.
Cerebellar granule neurons cultured in medium containing a physiological concentration of KCl (5 mM) undergo apoptosis. The cells can be rescued by the in vitro addition of NMDA. The protective effect of NMDA is thought to reflect the in vivo innervation of developing cerebellar granule neurons by glutamatergic afferents. In the current work, we investigated the mechanism of the anti-apoptotic (protective) effect of NMDA. NMDA treatment reduced caspase-3-like activity in cerebellar granule neurons, and the time course and concentration dependence of the protective effect of NMDA mirrored the ability of NMDA to induce brain-derived neurotrophic factor (BDNF) expression. Furthermore, a Trk receptor antagonist, K252a, as well as a blocking antibody to BDNF, attenuated the protective effects of both NMDA and BDNF. These results suggest that NMDA-induced BDNF expression mediates the anti-apoptotic effect of NMDA. The protective effects of NMDA and BDNF were reduced by inhibitors of the phosphatidylinositol 3'-OH kinase (PI 3-kinase) signal transduction cascade (wortmannin and LY29004) but not by a MAP kinase kinase (MEK) inhibitor (PD98059) or a protein kinase A inhibitor (Rp-cAMPS). BDNF increased phosphorylation of Akt, a target of PI 3-kinase, and NMDA also induced Akt phosphorylation, but only after an exposure that was long enough to induce BDNF expression. Furthermore, ethanol, which interferes with NMDA receptor function, inhibited the NMDA-induced increase in BDNF levels but did not block the protective effect of BDNF. These findings further support the role of BDNF in the anti-apoptotic effect of NMDA in cerebellar granule neurons and suggest that the NMDA-BDNF interaction may play a key role in in vivo cerebellar granule neuron development, as well as in the deleterious effects of ethanol on the developing cerebellum.  相似文献   

13.
14.
Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA. In cerebellar slices, AMPA induced the degeneration of most Purkinje cells together with a population of Golgi cells; in hippocampal slices the neurons were affected in the order CA3 > CA1 > dentate granule cells. Three mechanisms could be discerned: an acute one in which neurons (e.g. cerebellar Golgi cells) underwent a rapid degeneration; a delayed one in which the neurons (Purkinje cells and hippocampal neurons) appeared to be only mildly affected immediately after a 30 min exposure but then underwent a protracted degeneration during the postincubation period (1.5 - 3 h); and finally a slow toxicity, which took place during long (2 h) exposures to AMPA (3 - 30 microM). Although Purkinje cells were vulnerable in both cases, the efficacy of AMPA was higher for the delayed mechanism than for the slow one. The pathology displayed by the acutely destroyed Golgi neurons was a classical oedematous necrosis, whereas most neurons vulnerable to the delayed and slow mechanisms displayed a 'dark cell degeneration', whose cytological features bore a close resemblance to those of neurons irreversibly damaged by ischaemia, hypoglycaemia or status epilepticus in vivo.  相似文献   

15.
Light microscopic autoradiography of [3H]quinuclidinyl benzilate binding sites was used to study the distribution of muscarinic cholinergic receptors in mouse mutants which have abnormalities affecting specific cerebellar cell types. In the normal C57BL/6J mouse, binding sites were distributed throughout the cerebellar cortex, with the highest levels in the granule cell layer and deep cerebellar nuclei. Normal binding site density was observed in the cerebellum of the weaver mutant in which the majority of granule cells had degenerated. The density of [3H]quinuclidinyl benzilate binding sites was elevated in the cortex of the reeler, despite a reduction in the number of granule cells. The concentration of binding sites was also high over the Purkinje cell masses where granule cells were largely absent. No significant reduction in cortical [3H]quinuclidinyl benzilate binding site density was detected in the Purkinje cell degeneration mutant, in which essentially all Purkinje cells had degenerated. In contrast, receptor binding in the deep cerebellar nuclei of this mutant was significantly increased. A substantial increase in labeling was observed in the cortex and deep nuclei of the staggerer cerebellum in which a large fraction of Golgi II cells, Purkinje cells, granule cells and mossy fibers have degenerated. We discuss the possibility that the persistence of [3H]quinuclidinyl benzilate binding sites in all four mutants may imply a non-neuronal localization for a large proportion of muscarinic receptors in the mouse cerebellar cortex.  相似文献   

16.
The distribution of cerebellar [3H]muscimol binding sites was studied autoradiographically in normal C57BL/6J mice and in the weaver, reeler, Purkinje cell degeneration and staggerer mutant mice. In the normal 79-day-old mouse cerebellum, the highest concentration of [3H]muscimol binding sites was observed in the granule cell layer. A much lower grain density was present over the Purkinje cell and molecular layers and negligible numbers of binding sites were seen over the deep cerebellar nuclei and white matter. A significant decrease in [3H]muscimol labeling was observed over the cerebellar cortex of the 81-86-day-old weaver mutant; this was most pronounced in the vermis where granule cell loss was the greatest. Over the hemispheres, where fewer granule cells degenerate, a higher density of binding sites remained. In the 27-29-old reeler cerebellum, where Purkinje cells are malpositioned, no labeling was seen over the deep Purkinje cell masses. In the quasi-normal superficial cortex, labeling density over the surviving granule cell layer was only slightly decreased. In the 54-57-day-old Purkinje cell degeneration mutant, where essentially all Purkinje cells have disappeared by day 45, a 29% decrease in grain density over the granule cell layer was observed, while labeling was still present in the molecular layer. Virtually no [3H]muscimol labeling was detected over any part of the cerebellar cortex of the 25-27-day-old staggerer mutant (which lacks parallel fiber-Purkinje cell synapses), although clusters of surviving granule cells were present in significant numbers in the lateral aspects of the cortex. Our autoradiographic data indicate that GABAA receptors are associated with granule cells in both the molecular and granule cell layers. Furthermore, our results raise the possibility that the maintenance of receptor levels may be dependent upon synaptic contacts between the granule cell and its main postsynaptic target, the Purkinje cell.  相似文献   

17.
The cellular and synaptic organization of new born mouse cerebellum maintained in organotypic slice cultures was investigated using immunohistochemical and patch-clamp recording approaches. The histological organization of the cultures shared many features with that observed in situ. Purkinje cells were generally arranged in a monolayer surrounded by a molecular-like neuropil made of Purkinje cell dendritic arborizations. Purkinje cell axons ran between clusters of small round cells identified as granule cells by Kv3.1b potassium channel immunolabelling. The terminal varicosities of the Purkinje cells axons enwrapped presumptive neurons of the cerebellar nuclei whereas their recurrent collaterals were in contact with Purkinje cells and other neurons. Granule cell axons established contacts with Purkinje cell somata and dendrites. Parvalbumin and glutamine acid decarboxylase (GAD) immunohistochemistry revealed the presence of presumptive interneurons throughout the culture. The endings of granule cell axons were observed to be in contact with these interneurons. Similarly, interneurons endings were seen close to Purkinje cells and granule cells. Whole cell recordings from Purkinje cell somata showed AMPA receptor-mediated spontaneous excitatory post-synaptic currents (sEPSCs) and GABAA receptor-mediated spontaneous inhibitory post-synaptic currents (sIPSCs). Similar events were recorded from granule cell somata except that in this neuronal type EPSPs have both a NMDA component and an AMPA component. In addition, pharmacological experiments demonstrated a GABAergic control of granule cell activity and a glutamatergic control of GABAergic neurons by granule cells. This study shows that a functional neuronal network is established in such organotypic cultures even in the absence of the two normal excitatory afferents, the mossy fibers and the climbing fibers.  相似文献   

18.
NMDA-receptors on Purkinje cell dendrites in guinea pig cerebellar slices   总被引:1,自引:0,他引:1  
The Mg2+-dependent depolarizing action of N-methyl-D-aspartate (NMDA) was intrasomatically investigated, in comparison with quisqualate (QA), in Purkinje cells in cerebellar slices from adult guinea pigs. NMDA applied iontophoretically to the proximal dendritic region (about 100 micron from the Purkinje cell soma) induced depolarizations and spike firings in about the half of the Purkinje cells tested in nominal Mg2+-free medium (contaminated with 4-11 microM Mg2+), and 1 mM Mg2+ almost completely blocked this NMDA action. Application of NMDA onto the distal dendritic region (about 200 micron from the soma) caused no depolarization at all even in the Mg2+-free medium. QA applied onto either the proximal or distal dendritic region consistently showed Mg2+-independent depolarizations. The amplitude of NMDA-induced depolarization in the Mg2+-free medium was non-linearly related to the membrane potential, i.e. smaller at a hyperpolarized potential level. 2-Amino-5-phosphonovalerate blocked the NMDA action partially but more selectively than the QA action, while the reverse was the case for glutamic acid diethylester. These results suggest that the Mg2+-dependent, NMDA-sensitive receptor, which is distinct from the QA receptor and probably similar to the well-known NMDA receptor, is present on the proximal dendrite of the cerebellar Purkinje cell of the guinea pig.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) regulates neuronal survival, neurite outgrowth, and excitatory synaptic transmission. We reported recently that acute BDNF exposure decreased gamma-aminobutyric acid (GABA) responses in cultured mouse cerebellar granule cells through tyrosine receptor kinase B (TrkB) receptor-mediated signaling. In the present study, we extend this work to investigate BDNF-induced modulation of GABA responses and GABA(A) receptor-mediated synaptic events in cerebellar slices. Thin (200 microm) parasagittal slices of cerebellum were prepared from postnatal Day 7 and 14 mice. Purkinje cells and granule cells, both of which express TrkB-like immunoreactivity, were identified for whole-cell recording. BDNF promptly enhanced GABA responses in Purkinje cells but, consistent with our previous finding in culture, attenuated those recorded in granule cells. In Purkinje cells, BDNF exposure shifted rightward the cumulative peak amplitude distribution for miniature inhibitory postsynaptic currents (mIPSCs) without changing the mIPSC frequency. BDNF-induced potentiation of Purkinje cell responses to GABA was blocked by TrkB-Fc (receptor body that sequesters BDNF), K252a (inhibitor of TrkB receptor autophosphorylation), U73122 (inhibitor of phospholipase-Cgamma [PLCgamma]), KN62 (specific inhibitor of calcium/calmodulin-dependent kinase), KT5720 (specific cyclic AMP-dependent kinase inhibitor), and by intracellular dialysis of Rp-cyclic AMP or BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N, N',N'-tetraacetic acid). Overall, our results indicate that BDNF acutely potentiates GABA(A) receptor function in cerebellar Purkinje cells via the TrkB receptor-PLCgamma signal transduction cascade. In addition, we propose that cyclic AMP-mediated intracellular signaling mechanisms may facilitate manifestation of the BDNF-induced modulatory outcome.  相似文献   

20.
Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor gene that results in a large, constitutive inward current in the cerebellar Purkinje cells of +/Lc mice. +/Lc Purkinje cells fail to differentiate fully and die during postnatal development. In normal mice, interactions with granule cells promote Purkinje cell dendritic differentiation. Partial destruction of the granule cell population in young +/Lc mice by x irradiation resulted in a significant increase in Purkinje cell dendritic growth and improved cytoplasmic structure but did not prevent Purkinje cell death. These results indicate two components to Purkinje cell abnormalities in +/Lc mice: a retardation/blockade of dendritic development that is mediated by interactions with granule cells and the death of the cell. Thus, the normal trophic effects of granule cell interaction on Purkinje cell development are absent in the +/Lc cerebellum, suggesting that granule cells are powerful regulators of Purkinje cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号