首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
《Biochemical pharmacology》2011,81(12):1771-1792
Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of the non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans.  相似文献   

2.
Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of the non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans.  相似文献   

3.
Cancer, as one of the non-communicable diseases, remains one of the leading causes of death around the world. Recently, epigenetic changes in DNA methylation patterns at CpG sites (epimutations) or deregulated chromatin states of tumor promoting genes and noncoding RNAs emerged as major governing factors in tumor progression and cancer drug sensitivity. Furthermore, various environmental factors such as nutrition, behavior, stress, and toxins remodel our epigenomes lifelong in a beneficial or detrimental way. Since epigenetic marks (epimutations) are reversible in contrast to genetic defects, chemopreventive nutritional polyphenols (soy, genistein, resveratrol, catechin, curcumin) are currently evaluated for their ability to reverse adverse epigenetic marks in cancer (stem) cells to attenuate tumorigenesis-progression, prevent metastasis or sensitize for drug sensitivity. Although polyphenols in fruit and vegetables may help to reduce the risk of cancer, few protective effects have been firmly established, presumably because of inappropriate timing or dosing of diet exposure or due to confounding factors such as smoking and alcohol. In this review will discuss the possible epigenetic contributions of dietary polyphenols in cancer chemoprevention.  相似文献   

4.
Epigenetics oftenly described as the heritable changes in gene expression independent of changes in DNA sequence. Various environmental factors such as nutrition-dietary components, lifestyle, exercise, physical activity, toxins, and other contributing factors remodel the genome either in a constructive or detrimental way. Since epigenetic changes are reversible and nutrition is one of the many epigenetic regulators that modify gene expression without changing the DNA sequence, dietary nutrients and bioactive food components contribute to epigenetic phenomena either by directly suppressing DNA methylation or histone catalyzing enzymes or by changing the availability of substrates required for enzymatic reactions. Diets that contain catechol-dominant polyphenols are reported to suppress enzyme activity and activate epigenetically silenced genes. Furthermore, several dietary nutrients play a crucial role in one-carbon metabolism including folate, cobalamin, riboflavin, pyridoxine, and methionine by directly affecting S-adenosyl-l-methionine. Soy polyphenols block DNA methyltransferases and histone deacetylases to reverse aberrant CpG island methylation. Organosulfur rich compounds such as the sulforaphane found in broccoli appear to normalize DNA methylation and activate miR-140 expression, which represses SOX9 and ALDH1 and decreases tumor growth. The purpose of this short communication is to overview the epigenetic regulatory mechanisms of diet and other environmental factors. We discuss the epigenetic contributions of dietary components with a particular focus on nutritional polyphenols and flavonoids as epigenetic mediators that modify epigenetic tags and control gene expression. These mechanisms provide new insights to better understand the influence of dietary nutrients on epigenetic modifications and gene expression.  相似文献   

5.
Numerous dietary compounds, ubiquitous in fruits, vegetables and spices have been isolated and evaluated during recent years for their therapeutic potential. These compounds include flavonoid and non-flavonoid polyphenols, which describe beneficial effects against a variety of ailments. The notion that these plant products have health promoting effects emerged because their intake was related to a reduced incidence of cancer, cardiovascular, neurological, respiratory, and age-related diseases. Exposure of the body to a stressful environment challenges cell survival and increases the risk of chronic disease developing. The polyphenols afford protection against various stress-induced toxicities through modulating intercellular cascades which inhibit inflammatory molecule synthesis, the formation of free radicals, nuclear damage and induce antioxidant enzyme expression. These responses have the potential to increase life expectancy. The present review article focuses on curcumin, resveratrol, and flavonoids and seeks to summarize their anti-inflammatory, cytoprotective and DNA-protective properties.  相似文献   

6.
Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in reversing some of these defects. Methylation of CpG islands is an important component of the epigenetic code, and a number of genes become abnormally methylated in breast cancer patients. Currently, several epigenetic-based synthetic drugs that can reduce DNA hypermethylation and histone deacetylation are undergoing preclinical and clinical trials. However, these chemicals are generally very toxic and do not have gene specificity. Epidemiological studies have shown that Asian women are less prone to breast cancer due to their high consumption of soy food than the Caucasian women of western countries. Moreover, complementary/and or alternative medicines are commonly used by Asian populations which are rich in bioactive ingredients known to be chemopreventive against tumorigenesis in general. Examples of such agents include dietary polyphenols, (-)-epigallocatechin-3-gallate (EGCG) from green tea, genistein from soybean, isothiocyanates from plant foods, curcumin from turmeric, resveratrol from grapes, and sulforaphane from cruciferous vegetables. These bioactive components are able to modulate epigenetic events, and their epigenetic targets are known to be associated with breast cancer prevention and therapy. This approach could facilitate the discovery and development of novel drugs for the treatment of breast cancer. In this brief review, we will summarize the epigenetic events associated with breast cancer and the potential of some of these bioactive dietary components to modulate these events and thus afford new therapeutic or preventive approaches.  相似文献   

7.
PURPOSE: Prior studies from our laboratory have demonstrated the efficacy of a combined treatment of low doses of dietary agents curcumin and phenylethylisothiocyanate in effectively suppressing prostate cancer in vitro in human prostate cancer PC3 cells as well as in vivo in immunodeficient mice implanted with PC3 cells. Hence, this study was undertaken to examine the potential chemopreventive properties of the two agents against transgenic adenocarcinoma of the mouse prostate. MATERIALS AND METHODS: The efficacy of AIN-76A diet supplemented with 2% curcumin or 0.05% PEITC or a combination of 1% curcumin and 0.025% PEITC for periods of 10 and 16 weeks was tested against adenocarcinoma of the mouse prostate. Immunohistochemistry and Western blot analysis were used to examine the expression of proliferation and apoptotic biomarkers. All statistical tests were two-sided. RESULTS: Supplementing AIN-76A diet with dietary phytochemicals curcumin or PEITC either alone or in combination, significantly decreased incidence of prostate tumor formation (P = 0.0064). Immunohistochemistry revealed a significant inhibition of high-grade PIN (P = 0.0006, 0.000069, 0.00029 for a treatment period of 10 weeks and P = 0.02582, 0.022179, 0.0317 for a treatment period of 16 weeks) along with decreased proliferation and increased apoptotic index in the curcumin, PEITC or curcumin and PEITC treated animals, respectively. Furthermore, Western blot analysis revealed that downregulation of the Akt signaling pathway may in part play a role in decreasing cell proliferation ultimately retarding prostate tumor formation. CONCLUSION: Our data lucidly evidence the chemopreventive merits of dietary phytochemicals curcumin and PEITC in suppressing prostate adenocarcinoma.  相似文献   

8.
The concept of cancer prevention by use of naturally occuring substances that could be included in the diet is under investigation as a practical approach towards reducing cancer incidence, and therefore the mortality and morbidity associated with this disease. Tea, which is the most popularly consumed beverage aside from water, has been particularly associated with decreased risk of various proliferative diseases such as cancer and atherosclerosis in humans. Various studies have provided evidence that polyphenols are the strongest biologically active agents in green tea. Green tea polyphenols (GTPs) mainly consist of catechins (3-flavanols), of which (-)-epigallocatechin gallate is the most abundant and the most extensively studied. Recent observations have raised the possibility that green tea catechins, in addition to their antioxidative properties, also affect the molecular mechanisms involved in angiogenesis, extracellular matrix degradation, regulation of cell death and multidrug resistance. This article will review the effects and the biological activities of green tea catechins in relation to these mechanisms, each of which plays a crucial role in the development of cancer in humans. The extraction of polyphenols from green tea, as well as their bioavailability, are also discussed since these two important parameters affect blood and tissue levels of the GTPs and consequently their biological activities. In addition, general perspectives on the application of dietary GTPs as novel antiangiogenic and antitumor compounds are also presented.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号